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Introduction: how to define distance on a “quantum space” ?

I Length operator in Doplicher-Fredenhagen-Roberts [DFR] model,

[qµ, qν ] = iθµνI =⇒ L
.

=

√√√√ 2N∑
µ=1

dq2
µ with dqµ = qµ ⊗ I− I⊗ qµ,

qµ acts on H. The set of outputs of a distance measurement is Sp(L).
A couple of “quantum points” is a 2-point state vector φ ∈ H ⊗H.
The associated mean value of the distance is 〈φ, Lφ〉.

I Spectral triple (A π→ H,D). Connes’ spectral (pseudo)-distance between
states ω, ω′ of A (i.e normalized, positive linear applications A → C)

dD(ω, ω′)
.

= sup
a∈A
{|ω(a)− ω′(a)|, ‖[D, π(a)]‖ ≤ 1} .

Consider a separable (i.e. non-entangled) 2-point state vector φ = ψ1 ⊗ ψ2, and
the associated vector states ωψi (a) = 〈ψi , π(a)ψi 〉. Define the quantum length as

dL(ωψ1 , ωψ2 )
.

= 〈ψ1 ⊗ ψ2, L(ψ1 ⊗ ψ2)〉.

Question: to what extent does the spectral distance and the quantum length
measure the same thing: dL(ωψ1 , ωψ2 ) = dD(ωψ1 , ωψ2 ) ?



I. Commutative case

II. The Moyal plane as a common framework

• quantum length in the DFR model
• spectral distance in the Moyal plane

Obvious discrepancies: does the quantization of the coordinates necessarily
imply a minimal length ?

III. Spectral triple doubling: A → A⊗ C2

• coherent states
• stationary states

IV. Integrations of the line element in noncommutative geometry

• geodesic equation in the Moyal plane



I. Commutative case

Comparing Connes spectral distance dD to the quantum length dL is idiotic:

dD(ψ,ψ) = 0 while dL(ψ,ψ) = 〈ψ ⊗ ψ, L(ψ ⊗ ψ)〉 has no reason to vanish !

Nevertheless, the comparison makes sense, for dL = dD in the commutative case:

I The coordinate operator qµ acts on ψ ∈ L2(R2N) as (qµψ)(x) = xµψ(x).

The universal differential dqµ acts on ψ1 ⊗ ψ2 as

(dqµ(ψ1 ⊗ ψ2))(x , y) = (xµ − yµ) ((ψ1 ⊗ ψ2))(x , y).

The length operator L acts as multiplication by dgeo(x , y) =
√∑

µ(x2
µ − y 2

µ).

dL(δx , δy ) = dgeo(x , y)



I Let M be a Riemannian spin manifold, and

A = C∞0 (M) , H = L2(M,S), D = ∂/.

Then the spectral distance dD coincides with the Wassertein distance of
optimal transport theory. In particular on pure states, that is evaluations at
points: δx(f ) = f (x), one has

dD(δx , δy ) = dgeo(x , y) = dL(δx , δy ).

Real line:

representation : (π(f )ψ)(x) = f (x)ψ(x), f ∈ C∞0 (R), ψ ∈ L2(R),

norm : [D, π(f )]ψ = [
d

dx
, f ]ψ =

(
df

dx

)
ψ =⇒ ‖[D, f ]‖ = sup

x∈R
|f ′(x)|,

pure states : δx(f ) = f (x),

spectral distance : sup
f∈C∞0 (R)

{|f (x)− f (y)| / ‖f ′‖ ≤ 1} = |x − y |.

f(Y)

X Y
f(X)



On the Euclidean space, the quantum length dL and the spectral distance dD are
two equivalent ways of “algebrizing” the usual notion of distance.

How much do they differ in the noncommutative case ?



II. The Moyal plane as a common framework

DFR model
The qµ’s are affiliated to the algebra of compact operators K. Furthermore, there
is an action of the Poincaré group which we do not take into account here,
meaning we fix once for all the symplectic form (in dimension 2),

Θ = {θµν} = λP

(
0 1
−1 0

)
with λP the Planck length.

Spectral triple for Moyal plane

A = (S(R2), ?), H = L2(R2)⊗ C2, D = −i
2

Σ
µ=1

σµ∂µ

where (f ? g)(x) =
1

(πθ)2

∫
d2s d2t f (x + s)g(x + t)e−i2sΘ−1t .

The left regular representation of f ∈ A on H is

π(f ) = L(f )⊗ I2 : π(f )ψ =

(
f ? ψ1

f ? ψ2

)
.

D = −i
√

2

(
0 ∂̄
∂ 0

)
with ∂ =

1√
2

(∂1 − i∂2), ∂̄ =
1√
2

(∂1 + i∂2).

I Ā = K: common framework to compare dL and dD .



Pure states
The evaluation at x is not a state of Ā for (f ∗ ? f )(x) may not be positive.
Keeping in mind the analogy pure states = points, let’s take the pure states of Ā
as “quantum (or fuzzy) points”. By a well known result of operator algebra:
the pure states of Ā = K are the vector states in an irreducible representation.

The left regular representation L is not irreducible, it is a multiple of the
Schrödinger representation πS . Intertwiner:

W : hmn → hm ⊗ hn m, n ∈ N,

where the hmn’s are Wigner transition functions (orthonormal basis of L2(R2)),
hm’s are the eigenfunctions of the quantum h.o. (orthonormal basis of L2(R)).

WL(f )W ∗ = πS(f )⊗ I =⇒
{

WL(x1)W ∗ = X ⊗ I WL(z)W ∗ = a∗ ⊗ I
WL(x2)W ∗ = P ⊗ I WL(z̄)W ∗ = a⊗ I

with X ,P, a, a∗ the position, momentum, creation and annihilation operators.

I The set of pure states of A is thus the set of vector states,

ωψ(f )
.

= 〈ψ, πS(f )ψ〉,

where ψ =
∑

m ψmhm is a unit vector in L2(R).



Proposition E. Cagnache, F. D’Andrea, P.M., J.C. Wallet (J. Geo. Phys. 2009)

1. The spectral distance on the Moyal plane is not bounded, neither above nor
below from zero. Furthermore it is not quantized: for any r ∈ R+ ∪ {∞} there
exist pure states ω, ω′ such that

dD(ω, ω′) = r .

2. The Moyal plane (A,H,D) is not a spectral metric space in the sense of
Rieffel, i.e. the metric topology on the state space is not the weak-∗ topology.

3. Restricting to stationary states, that is eigenstates of the quantum harmonic
oscillator,

ωm(f )
.

= 〈hm, πS(f )hm〉,

the spectral distance is quantized,

dD(ωm, ωn) =
λP√

2

n∑
k=m+1

1√
k
.

The stationary states form a 1-dimensional lattice within the space of pure states
of the Moyal algebra A.



Proposition D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli (2010) & F. Mercati, P.M, L. Tomassini (2011)

1. The quantum length is discrete and bounded above from zero,

Sp(L) = { 2λP

√
j +

1

2
, j ∈ N }.

2. The ground state, with eigenvalue 2λ2
P , of

L2 = 2(H ⊗ I + I⊗ H − a⊗ a∗ − a∗ ⊗ a),

is infinitely degenerate. There is only one separable ground state h0 ⊗ h0.

3. Caution when to take the square root:

dL(ωm, ωn) ≤ λP

√
2(m + n + 1) =

√
dL2 (ωm, ωn),

with equality only for m = n = 0,

dL(ω0, ω0) =
√

2λP =
√

dL2 (ω0, ω0).



Even restricting to stationary states, there are obvious discrepancies.

Spectral distance: no minimal length,

dD(ωm, ωn) =
λP√

2

n∑
k=m+1

1√
k
.

Quantum length: minimal length,

√
2λP ≤ dL(ωm, ωn) ≤

√
dL2 (ωm, ωn) = λP

√
2(m + n + 1).



The spectral distance is “fermionic”,

ψ ⊗ ψ → dD(ψ,ψ) = 0.

The quantum length is“bosonic”,

dL(ψ,ψ) = 〈ψ ⊗ ψ, Lψ ⊗ ψ〉 6= 0.

I We need to “bosonify” the spectral distance, that is allowing the emergence
of a minimal length

dDb
(ωψ, ωψ) ≥

√
2λP ,

and/or to we need to “fermionify” the quantum length, that is to turn it
into a true distance,

dLf
(ωψ, ωψ) = 0.

This is achieved thanks to a standard procedure in noncommutative
geometry, consisting in doubling the spectral triple.



III. Spectral triple doubling

A′ .= A⊗ C2, H′ .= H ⊗ C2, Db
.

= ∂/ ⊗ I + γ5 ⊗
(

0 Λ−1
b

Λ−1
b 0

)
, Λb = const.

Pure states: ωi
.

= ω ⊗ δi , with δi , i = 1, 2, are the pure states of C2.

Pythagoras equality: dDb
(ω1, ω

′
2) =

√
d2

D(ω, ω′) + Λ2
b (in progress with F. D’Andrea)

Proposition P.M., L. Tomassini (2011)

Assuming Pythagoras, the quantum
square-length identifies to the spectral distance
in the doubled Moyal space,√

dL2 (ω, ω′) = dDb
(ω1, ω

′
2)

with Λb = min(dL(ω, ω), dL(ω′, ω′)), iff

dD(ω, ω′) = dLf
(ω, ω′) (1)

where

dLf
(ω, ω′)

.
=
√

dL2 (ω, ω′)− Λ2
b.

(d
L2

 )1/2 = d
Db

ω
1

ω
2

ω
2

0

d
D

= d
Lf

Λ
b

λ P

ω'
2

ω
1

0 ω'
1

(1) captures the true difference
between the spectral distance
and the quantum length, once
solved the obvious discrepancies.



Condition (1) does not hold for stationary states since, assuming m ≤ n,

dLf
(ωm, ωn) = λP

√
2(n −m) while dD(ωm, ωn) =

λP√
2

n∑
k=m+1

1√
k
.

But it holds true for coherent states, that is the quantum states such that the
mean values of the quantum observables X (t),P(t) and H take the value of the
position, momentum and energy of a classical oscillator.



Coherent states:

Coherent states are translations of the ground state ω0 of the quantum harmonic
oscillator,

ωκ(f )
.

= ω0 ◦ αλp

√
2κ(f )

where, for any κ ∈ C ' R2,

(ακf )(x) = f (x + κ).

ωκ mimics a classical oscillator, with amplitude |κ|, and phase arg(κ).

ωκ is a pure state of the Moyal algebra A, since it is a vector state,

ωκ = ωψ for ψ =
∑
m∈N

e−
|κ|2

2
κm

√
m!

hm ∈ L2(R).

The Dirac operator commutes with translation so the spectral distance is
invariant by translation

dD(ω ◦ ακ, ω′ ◦ ακ) = dD(ω, ω′).



Theorem P.M., L. Tomassini (2011)

For any states ω,
dD(ω, ω ◦ ακ) = |κ|.

Therefore, considering the ground state ω0 and any coherent state ωκ, condition
(1) between the spectral distance and the fermionified quantum length is satisfied:

dD(ω0, ωκ) = λP

√
2|κ| = dLf

(ω0, ωκ).

I Coherent states are good candidates as “quantum points”, not only from
DFR optimal localisation perspective, but also from Connes distance formula.



IV. Integrations of the line element in NCG

Condition (1) does not hold for stationary states since, assuming m ≤ n,

dLf
(ωm, ωn) = λP

√
2(n −m),

while

dD(ωm, ωn) =
λP√

2

n∑
k=m+1

1√
k
.

The same line element λP√
2x

dx is integrated along a continuous geodesic

(quantum length), or along a discrete geodesic (spectral distance),

dLf
(ω0, ωn) =

∫ n

0

λP√
2x

dx , dD(ω0, ωn) =
m∑

k=0

λP√
2k
.

I Both the spectral distance and the quantum length quantize the coordinates,
hence the line element. The spectral distance also quantizes the geodesic.

I The difference vanishes at high energy: for fixed m,

lim
n→∞

dD(ωm, ωn)− dLf
(ωm, ωn)

dLf
(ωm, ωn)

= 0.



Let us call optimal element the element of the algebra that attains the supremum
in the spectral distance formula.

On the Euclidean plane, the geodesic distance function l(xµ)
.

=
√

x2
1 + x2

2 yields
both the length operator L = l(dqµ) and - up to a regularization at infinity - the
optimal element l(qµ).

The quantum length supposes that the function l is known a priori: quantization
of the geometry. The spectral distance formula is an equation whose solution is
the function l : geometrization of the quantum (i.e. starting from algebraic
objects and build a distance).

I Two distinct points of view, which coincide on the Euclidean plane because
the length operator is the optimal element.

I This is no longer true in the Moyal case.



Geodesic equation in the Moyal plane

Writing da
.

= a⊗ I− I⊗ a, with a = πS(z), z
.

= x+iy√
2

, one obtains the length

operator as L = li (da) with

l1(z)
.

=
√

2(zz̄ − λ2
P) or l2(z)

.
=
√

zz̄ + z̄z or l3(z)
.

=
√

2(z̄z + λ2
P).

The optimal element is - up to regularization - l0(a) where l0 is solution of

(∂z l0 ? z) ? (∂z l0 ? z)∗ =
1

2
z̄ ? z . (2)

I li , i = 1, 2, 3, are not solution of (2).

I For the Moyal plane, eq.(2) plays the role of the equation of the geodesic
between stationary states. Notice that in the commutative limit (2) gives

|∂z l0|2 =
1

2
,

which is satisfied by l0(z) =
√

2|z |.



Conclusion

I The quantum length dL in the DFR model and Connes spectral distance dD

are two ways to treat the metric aspect of a quantum space: points are
“talking to each other” either through the interacting part

Hint
.

= −a⊗ a∗ − a∗ ⊗ a

of the square L2 of the length operator, or through the Dirac operator.

I Both dL and dD coincide with the geodesic distance in the commutative case.

I In the noncommutative case, assuming some Pythagoras equalities, dL and
dD can be compared after a doubling of the spectral triple. This gives a
quantum taste to the spectral distance, and also allows to turn the quantum
length into a true distance.

I The quantum length and the spectral distance coincide between the ground
state and any coherent states.

I On stationary states, the quantum length and the spectral distance no longer
coincide. The difference can be interpreted as two different ways of
integrating the same quantum line element.
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