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LET US RECAPITULATE SOME OF THE KNOWN

RESULTS ON T-DUALITY FOR A CLOSED BOSONIC

STRING IN PRESENCE OF CONSTANT BACKGROUNDS-

G
(0)
µ̂ν̂ AND B

(0)
µ̂ν̂

S =
1

2

∫

dσdτ
(

G
(0)
µ̂ν̂ ∂aX

µ̂∂aXν̂ + ǫabB
(0)
µ̂ν̂ ∂aX

µ̂∂bX
ν̂

)

IS THE ACTION AND THE CORRESPONDING

HAMILTONIAN DENSITY IS

Hc = ZTM0(G
(0),B(0))Z

WHERE

Z =





P

X ′



 , M0 =







G(0)−1
−G(0)−1

B(0)

B(0)G(0)−1
G(0)−1

− B(0)G(0)−1
B(0)







UNDER THE INTERCHANGE P ↔ X′ THE HAMIL-

TONIAN REMAINS INVARIANT IF M0 ↔ M−1
0 .

THE HAMILTONIAN DENSITY IS ALSO INVARI-

ANT UNDER THE GLOBAL

O(D̂, D̂) TRANSFORMATION

Z → Ω0Z, M0 → Ω0M0Ω
T
0 , η0 → η0, Ω0 ∈ O(D̂, D̂)

WHERE η0 IS THE O(D̂, D̂) METRIC.

η0 =





0 1

1 0





1 IS D̂ × D̂ UNIT MATRIX. Z IS 2D̂ DIMEN-

SIONAL VECTOR AND M0 IS 2D̂× 2D̂ SYMMET-

RIC MATRIX.
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IN GENERAL THE BACKGROUNDS MAY DE-

PEND ON THE SPACETIME COORDINATES

Xµ̂. THE WORLDSHEET ACTION IS A σ-MODEL

ACTION. THESE BACKGROUNDS SATISFY β-

FUNCTION EQUATIONS - THE EQUATIONS OF

MOTION.

CONSIDER A SCENARIO WHERE THE BACK-

GROUNDS DEPEND ONLY ON SOME OF THE

SPACE TIME COORDINATES.

Xµ̂ = {Xµ,Yα}, µ = 0,1,2..D− 1, α = D, .D̂− 1

WITH D̂ = D + d.
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BACKGROUNDS ARE DECOMPOSED AS FOL-

LOWS (HASAN-SEN):

G
(0)
µ̂ν̂ (Xµ) =





gµν(X
µ) 0

0 Gαβ(Xµ)



 ,

B
(0)
µ̂ν̂ (Xµ) =





bµν(X
µ) 0

0 Bαβ(Xµ)





INTRODUCE A PAIR OF VECTORS

V AND W OF DIMENSIONS 2D AND 2d RESPEC-

TIVELY.

V =





P̃µ

X ′µ



 , W =





Pα

Y ′α





THE CANONICAL HAMILTONIAN DENSITY IS

Hc =
1

2

(

VTM̃V + WTMW
)

WHEREAS M̃(X) IS A2D× 2D MATRIX M(X) IS

ANOTHER 2d × 2d MATRIX GIVEN BY

M̃ =





gµν −gµρbρν

bµρg
ρν gµν − bµρg

ρλbλν





AND

M =





Gαβ −GαγBγβ

BαγG
γβ Gαβ − BαγG

γδBδβ





LET US FOCUS ON THE SECOND TERM AND

DEFINE

H2 =
1

2
WTMW
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WHICH WILL BE IMPORTANT FOR US LATER.

UNDER GLOBAL O(d,d) TRANSFORMATIONS

M → ΩMΩT, W → ΩW , ΩTηΩ = η, Ω ∈ O(d,d)

WHERE

η =





0 1

1 0





NOW 1 BEING d × d UNIT MATRIX

AND W IS O(d,d) VECTOR.

SINCE M̃ AND V ARE INERT UNDER THIS DU-

ALITY TRANSFORMATION, Hc, THE FULL HAMIL-

TONIAN DENSITY, IS O(d,d) INVARIANT.
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REMARKS:

IF WE CONSIDER TOROIDAL COMPACTIFI-

CATION, ON Td, AND Yα ARE THE COMPACT

COORDINATES, THEN THE DUALITY GROUP

IS O(d,d,Z).

THE MODULI G AND B PARAMETRIZE THE

COSET O(d,d)
O(d)×O(d)

IN GENERAL FOR COMPACTIFICATION ON

Td, THE S-S PROCEDURE IS

êA
M =





er
µ(X) Aβ

µ(X)Ea
β(X)

0 Ea
α(X)





THE D-DIMENSIONAL SPACETIME METRIC IS:

gµν(X) = er
µe

s
νg

0
rs, g0

rs BEING D-DIMENSIONAL

LORENTZIAN SIGNATURE FLAT METRIC.

Gαβ = Ea
αE

b
βδab IS THE METRIC ALONG COMPACT

DIRECTIONS Aβ
µ ARE THE GAUGE FIELDS AS-

SOCIATED WITH THE d-DIMENSIONAL TORUS.

B
(0)
µ̂ν̂ (Xµ) =





bµν(X
µ) Bµα(Xµ)

Bνβ(Xµ) Bαβ(Xµ)




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• INTRODUCTION

• T-DUALITY FOR FIRST EXCITED LEVEL

• HIGHER LEVELS AND O(d,d) SYMMETRY

• SUMMARY AND CONCLUSIONS
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EXCITED MASSIVE STRINGY STATES ARE IN-

TERESTING.

⋄AT PLANCKIAN ENERGY SCATTERING, STRINGY

STATES ARE IMPORTANT. IN THE α′ → ∞LIMIT,

THERE IS CONJECTURED SYMMETRY ENHANCE-

MENT. GROSS, MENDE, AMATI, CIAFALONI,

VENEZIANO...,

⋄ THERE ARE EVIDENCES FOR EXISTENCE

OF GAUGE SYMMETRY ASSOCIATED WITH

MASSIVE STATES. EVANS, OVRUT, KUBOTA,

VENEZIANO...

⋄ HIGHER SPIN MASSLESS FIELD THEORY -

CLUE FROM STRING HIGHER SPIN STATES.

SAGNOTI, TARONNA....

⋄ ROLE OF HIGHER MASS STATES WHEN β-

FUNCTION IS COMPUTED FOR MASSLESS SEC-

TOR IN HIGHER LOOPS IN CASE OF CLOSED

BOSONIC STRING. DAS, SATHIAPALAN, ITOI,

WATABIKI

LET US DISCUSS T-DUALITY PROPERTIES OF

EXCITED MASSIVE STATES OF CLOSED BOSONIC

STRING IN THE CONTEXT OF THE PRECED-

ING REMARKS.
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WHEN THE ’VERTEX TENSORS’ ARE INDE-

PENDENT OF SPACETIME COORDINATES -

THE SIMPLEST CASE.

TO HAVE THE DUALITY SYMMETRY, WHEN

WE INTERCHANGE P ↔ X′ THESE TENSORS

(BACKGROUNDS) MUST TRANSFORM IN A

CERTAIN MANNER JUST LIKE G(0) ↔ G(0)−1

FOR

CONSTANT G(0).

IN GENERAL THE VERTEX OPERATORS WILL

DEPEND ON SPACETIME COORDINATES

Xµ̂, µ̂ = 0,1, ..D̂− 1 - HOWEVER, WHEN THEY DE-

PEND ONLY ON A SUBSET OF COORDINATES

Xµ, µ = 0,1, ..D− 1 AND INDEPENDENT

OF Yα, α = D,D + 1, ..D̂− 1 : D + d = D̂−THEY CAN

BE CAST IN AN O(d,d) SYMMETRIC FORM

THE CHECK IS BY EXPLICIT CALCULATIONS.

• FIRST RECALL SOME OF THE ESSENTIAL

PROPERTIES OF THE VERTEX OPERATORS

FOR OUR PURPOSE.
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• WE WORK IN THE WEAK FIELD APPROXI-

MATION. THE VERTEX OPERATORS, Φ̂n(Xµ̂),n,

REFERRING TO THE LEVEL OF EXCITED STATE,

ARE REQUIRED TO BE (1,0) AND (0,1) PRI-

MARIES WITH RESPECT TO

T++ AND T−− RESPECTIVELY.

WHERE

T++ =
1

2
(Ĝ

(0)
µ̂ν̂ ∂Xµ̂∂Xν̂), T−− =

1

2
(Ĝ

(0)
µ̂ν̂ ∂̄Xµ̂∂̄Xν̂)

WHERE (Ĝ
(0)
µ̂ν̂ = (1,−1,−1...) AND TRESS ENERGY

MOMENTUM TENSORS ARE DEFINED FOR FLAT

TARGET SPACE METRIC WITH

∂Xµ̂ = Ẋµ̂ + X′µ̂, ∂̄Xµ̂ = Ẋµ̂ − X′µ̂

•THEY ARE CONSTRAINED AND SATISFY ’EQUA-

TIONS OF MOTION’ AND CERTAIN TRANSVER-

SALITY CONDITIONS.

IN CASE OF MASSLESS GRAVITON IN WEAK

FIELD APPROXIMATION: Gµ̂ν̂(X
µ̂) = G

(0)
µ̂ν̂ + hµ̂ν̂(X

µ̂).

THE CONSTRAINTS ARE:

∇2hµ̂ν̂ = 0, and ∂µ̂hµ̂ν̂ = 0

• THE FIRST EXCITED MASSIVE STATE OF

CLOSED BOSONIC STRING.

THE VERTEX OPERATOR IS

Φ̂1 = V̂
(1)
1 + V̂

(2)
1 + V̂

(3)
1 + V̂

(4)
1
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WHERE

V̂
(1)
1 = A

(1)
µ̂ν̂,µ̂′ν̂′(X)∂Xµ̂∂Xν̂∂̄Xµ̂′∂̄Xν̂′

V̂
(2)
1 = A

(2)
µ̂ν̂,µ̂′(X)∂Xµ̂∂Xν̂∂̄2Xµ̂′, V̂

(3)
1 = A

(3)
µ̂,µ̂′ν̂′(X)∂2Xµ̂∂̄Xµ̂′∂̄Xν̂′

V̂
(4)
1 = A

(4)
µ̂,µ̂′(X)∂2Xµ̂∂̄2Xµ̂′

WE DEFINE V̂
(i)
1 , i = 1,2,3,4 AS VERTEX FUNC-

TIONS

UNPRIMED INDICES AND PRIMED INDICES

CORRESPOND TO RIGHT MOVING AND LEFT

MOVING SECTORS RESPECTIVELY

(∂Xµ̂ AND ∂Xµ̂′).

WE DEMAND Φ̂1 TO BE (1,1) WITH RESPECT

TO T±±, THEN V̂
(i)
1 (i.e.A(i)) ARE CONSTRAINED

- THEY ARE NOT INDEPENDENT.

NOTE (i) ONLY V̂
(1)
1 IS (1,1) ON ITS OWN.

HOWEVER, THE OTHER THREE VERTEX FUNC-

TIONS V̂
(2)
1 − V̂

(4)
1 ARE RELATED TO V̂

(1)
1

(ii) WHEN WE DEMAND Φ̂1 TO BE (1,1) THERE

ARE TWO TYPES OF CONSTRAINTS ON THE

VERTEX FUNCTIONS.

(a) EACH SATISFIES A MASS SHELL CONDI-

TION

(∇̂2 − 2)A
(1)
µ̂ν̂,µ̂′ν̂′(X) = 0, (∇̂2 − 2)A

(2)
µ̂ν̂,µ̂′(X) = 0,

AND

(∇̂2 − 2)A
(3)
µ̂,µ̂′ν̂′(X) = 0, (∇̂2 − 2)A

(4)
µ̂,µ̂′(X) = 0
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∇̂2 IS D̂ DIMENSIONAL LAPLACIAN DEFINED

IN TERMS OF FLAT SPACETIME METRIC.

(b) TRANSVERSALITY CONDITIONS:

A
(2)
µ̂ν̂,µ̂′ = ∂ ν̂′A

(1)
µ̂ν̂,µ̂′ν̂′, A

(3)
µ̂,µ̂′ν̂′ = ∂ ν̂A

(1)
µ̂ν̂,µ̂′ν̂′, A

(4)
µ̂,µ̂′ = ∂ ν̂′∂ ν̂A

(1)
µ̂ν̂,µ̂′ν̂′

NOTE HOW THREE VERTEX FUNCTIONS RE-

LATED A
(2)
µ̂ν̂,µ̂′,A

(3)
µ̂,µ̂′ν̂′ AND A

(4)
µ̂,µ̂′ A

(2)
µ̂ν̂,µ̂′,A

(3)
µ̂,µ̂′ν̂′ AND A

(4)
µ̂,µ̂′

ARE RELATED TO A
(1)
µ̂ν̂,µ̂′ν̂′ THE OTHER SET OF

CONSTRAINTS ARE

A
(1)µ̂
µ̂ ,µ̂′ν̂′ +2∂µ̂∂ ν̂A

(1)
µ̂ν̂,µ̂′ν̂′ = 0

AND

A
(1)
µ̂ν̂,µ̂′

µ̂′

+ 2∂µ̂′∂ ν̂′A
(1)
µ̂ν̂,µ̂′ν̂′ = 0
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CONSIDER THE CASE WHEN TENSORS

V̂
(i)
1 (i.e. A(i)) DO NOT DEPEND ON SPACETIME

COORDINATES. THIS THIS ANALOG OF THE

CASE WHEN G AND B ARE INDEPENDENT

OF X.

LET US FOCUS ON V̂
(1)
1

V̂
(1)
1 = A

(1)
µ̂ν̂,µ̂′ν̂′∂Xµ̂∂Xν̂∂̄Xµ̂′∂̄Xν̂′

WE RAISE AND LOWER THE INDICES BY FLAT

SPACE METRIC AND THEREFORE ∂Xµ̂ = Pµ̂ + X′µ̂

THUS THE ABOVE EQUATION WHEN EXPRESSED

IN TERMS OF Pµ̂ AND X′µ̂ HAVE FOLLOWING

FORMS.

(I) G
(1)

µ̂ν̂,ρ̂λ̂
Pµ̂Pν̂Pρ̂Pλ̂ - PRODUCT OF MOMENTA

ONLY.

(II) G
(2)

µ̂ν̂,ρ̂λ̂
X′µ̂X′ν̂X′ρ̂X′λ̂ - PRODUCT OF X’ ONLY

(III) G
(3)

µ̂ν̂,ρ̂λ̂
Pµ̂Pν̂Pρ̂X′λ̂ - PRODUCT OF THREE MO-

MENTA AND ONE X’; THERE ARE FOUR SUCH

TERMS

(IV ) G
(4)

µ̂ν̂,ρ̂λ̂
X′µ̂X′ν̂X′ρ̂Pλ̂ - PRODUCT OF THREE X’

AND ONE P; THERE ARE ALSO FOUR SUCH

TERMS

(V ) G
(5)

µ̂ν̂,ρ̂λ̂
Pµ̂Pν̂X′ρ̂X′λ̂ - THERE SIX TERMS LIKE

THIS WHICH IS PRODUCT OF A PAIR OF P’S

AND PAIR OF X’
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WE CONCLUDE FROM CAREFUL INSPECTION

OF THE TOTAL 16 TERMS IN (I)-(V) THAT

’VERTEX’ A(1) REMAINS INVARIANT UNDER

THE INTERCHANGE P ↔ X′ IF WE ALSO IN-

TERCHANGE G(1) ↔ G(2),G(3) ↔ G(4) AND THE

SIX TERMS IN (V) REARRANGE THEMSELVES

TO REMAIN INVARIANT.

THIS IS THE ANALOG OF G ↔ G−1 UNDER τ ↔ σ

DUALITY FOR CONSTANT TENSOR A(1).
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LET US CONSIDER THE SCENARIO WHEN THE

VERTEX FUNCTION, A
(1)
µ̂ν̂,µ̂′ν̂′(X)∂Xµ̂∂Xν̂∂̄Xµ̂′ DE-

PENDS ON Xµ, µ = 0,1, ..D− 1 AND IS INDEPEN-

DENT OF INTERNAL COORDINATES Yα.

THE VERTEX FUNCTION WILL BE DECOM-

POSED INTO THE FOLLOWING FORMS:

(i) A TENSOR A
(1)
µν,µ′ν′ ONE WHICH HAS ALL

LORENTZ INDICES.

(ii) ANOTHER: THREE LORENTZ INDICES AND

ONE INTERNAL INDEX.

(iii) A TENSOR WITH TWO LORENTZ INDICES

AND TWO INTERNAL INDICES

(iv)A TENSOR WITH ONE LORENTZ INDEX

AND THREE INTERNAL INDICES.

(v) A TENSOR WITH ALL INTERNAL INDICES:

A
(1)
αβ,α′β′ WHICH WILL CONTRACT WITH

∂Yα∂Yβ∂̄Yα′
∂̄Yβ′

.
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CONSIDER THE VERTEX FUNCTION (v). WE

SHALL TAKE UP OTHERS LATER.

JUST LIKE THE CASE OF CONSTANT A(1), THERE

ARE 16 TERMS.

(I) A
(1)
αβ,α′β′(X)PαPβPα′

Pβ′

(II) A
(1)
αβ,α′β′(X)Y′αY′βY′α′

Y′β′
.

(III)−A
(1)
αβ,α′β′(X)PαPβPα′

Y′β′
, −A

(1)
αβ,α′β′(X)PαPβY′α′

Pβ′
,

+A
(1)
αβ,α′β′(X)PαY′βPα′

Pβ′
, +A

(1)
αβ,α′β′(X)Y′αPβPα′

Pβ′

(IV)−A
(1)
αβ,α′β′(X)Y′αY′βPα′

Y′β′
−A

(1)
αβ,α′β′(X)Y′αY′βY′α′

Pβ′

+A
(1)
αβ,α′β′(X)Y′αPβY′α′

Pβ′

+A
(1)
αβ,α′β′(X)PαY′βY′α′

Y′β′

(V) +A
(1)
αβ,αβ′(X)PαPβY′α′

Y′β′
+A

(1)
αβ,αβ′(X)Y′αY′βPα′

Pβ′

+A
(1)
αβ,αβ′(X)PαY′βPα′

Y′β′
−A

(1)
αβ,αβ′(X)Y′αPβY′α′

Pβ′

−A
(1)
αβ,αβ′(X)Y′αPβY′α′

Pβ′
−A

(1)
αβ,αβ′(X)Y′αPβPα′

Y′β′

OUR GOAL IS TO CAST THE VERTEX FUNC-

TION IN AN O(d,d) INVARIANT FORM. WE WOULD

LIKE TO COMBINE VARIOUS TERMS IN (I)-

(V) TO ACHIEVE THIS. RECALL

W =





P

Y ′





EXPRESSIONS IN (I) AND (II) CAN BE COM-

BINED TO CONSTRUCT TENSORS OF O(d,d)
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TO CONTRACT WITH THE VECTORS W .

THE COMBINED TERMS IN (III) AND (IV) HAVE

RIGHT STRUCTURES TO FORM AN O(d,d) IN-

VARIANT PIECE.

FINALLY THE SIX TERMS IN (V) CAN BE RE-

ARRANGED TO OBTAIN AN O(d,d) INVARI-

ANT EXPRESSION.

BASICALLY WE CONTRACT O(d,d) TENSORS

WITH O(d,d) VECTORS LIKEW AND ηW . WHEN

WE LOOK AT OTHER VERTEX FUNCTIONS

WITH INTERNAL INDICES:

V
(2)
1 = A

(2)
αβ,α′(X)∂Yα∂Yβ∂̄2Yα′

V
(3)
1 = A

(3)
α,α′β′(X)∂2Yα∂Yα′

∂Yβ′

V
(4)
1 = A

(4)
α,α′(X)∂2Yα∂̄2Yα′

WE NOTE THAT WHEN THE CONSTRAINTS

SUCH AS TRANSVERSALITY CONDITIONS ARE

ENFORCED, THESE INVOLVE PARTIAL DERIVA-

TIVES WITH RESPECT TO INTERNAL COOR-

DINATES, THESE VERTEX FUNCTIONS VAN-

ISH.
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EVEN IF WE WERE TO EXPLORE THEIR T-

DUALITY PROPERTIES, BEFORE IMPOSING

THE REQUIREMENTS THAT THEY BE (1,1),

WE ENCOUNTER ANOTHER DIFFICULTY.

NOTE THAT HIGHER ORDER DERIVATIVES

OF

∂, ∂̄ ACT ON Yα THUS WE DEAL WITH τ AND σ

DERIVATIVES ON P AND Y′ AND THEREFORE,

NICE CORRESPONDENCE OF τ ↔ σ WITH P ↔ Y′

IS NO LONGER SO SIMPLE.

IN FACT BY CONSTRUCTING COMBINATIONS

OF VARIOUS TERMS AND DEFINING THE

O(d,d) VECTOR W AND THEIR τ AND σ DERIVA-

TIVES,

WE CAN SHOW VERTEX FUNCTION CAN BE

CAST IN O(d,d) INVARIANT FORM - A BIT

TRICKY.

THIS IS NOT AN EFFICIENT METHOD WHEN

WE CONSIDER HIGHER EXCITED MASSIVE

LEVELS.

WE ENCOUNTER STRING OF TERMS OF TWO

TYPES:

(a) PRODUCTS LIKE ∂Y∂Y...∂̄Y∂̄Y..

(b) HIGHER DERIVATIVES AND THEIR PROD-

UCTS LIKE

∂mY∂Y...∂̄nY∂̄Y..

AN EXAMPLE: SECOND MASSIVE LEVEL
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ONE OF THE VERTEX FUNCTIONS IS

V
(1)
2 = C

(1)
αβγ,α′β′γ′(X)∂Yα∂Yβ∂Yγ∂̄Yα′

∂̄Yβ′
∂̄Yγ′

WE CAN EXPRESS V
(1)
2 IN TERMS OF Pα,Y′α

AS IN THE EARLIER CASE AND EXPRESS IT

IN A MANIFESTLY O(d,d) INVARIANT FORM;

HOWEVER THE PROCEDURE IS QUITE TE-

DIOUS.

MOREOVER, THE VERTEX OPERATOR FOR

SECOND MASSIVE LEVEL IS A SUM OF NINE

VERTEX FUNCTIONS WITH HIGHER POWERS

OF ∂ AND ∂̄ ACTING ON Yα.
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WE PROPOSE AN EFFICIENT METHOD TO HAN-

DLE THESE PROBLEMS BASED ON FOLLOW-

ING OBSERVATIONS:

(a) THE BASIC BUILDING BLOCKS OF ANY

VERTEX FUNCTION ARE

∂Yα = Pα + Y′α AND ∂̄Yα = Pα − Y′α

(b) EACH VERTEX FUNCTION AT EACH MASS

LEVEL IS EITHER STRING OF PRODUCTS OF

THESE BASIC BLOCKS OR THESE BLOCKS

ARE OPERATED BY ∂ AND ∂̄ RESPECTIVELY

SO THAT THE VERTEX FUNCTION HAS THE

DESIRED DIMENSIONS.

(c) IN ORDER TO CAST VERTEX FUNCTIONS

IN A T-DUALITY INVARIANT FORM, IT IS NOT

CONVENIENT TO DEAL WITH P ± Y′. WE ADOPT

THE FOLLOWING STRATEGY:

INTRODUCE THE PROJECTION OPERATORS

P± =
1

2
(1 ± σ̃3), σ̃3 =





1 0

0 −1





HERE 1 IS 2d × 2d MATRIX. THE DIAGONAL EN-

TRIES OF σ̃3 ARE d× d UNIT MATRIX.

WE PROJECT OUT TWO O(d,d) VECTORS AS

FOLLOWS

P = P+W , Y′ = P−W
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THEREFORE,

P + Y′ =
1

2

(

P+W + ηP−W
)

, P − Y′ =
1

2

(

P+W − ηP−W
)

NOTE THAT η FLIPS LOWER COMPONENT

Y′ OF W TO THE UPPER COMPONENT.

• WHEN WE HAVE ONLY PRODUCTS OF

P + Y′ AND P − Y′, WE FIRST EXPRESS THEM

AS PRODUCT OF O(d,d) VECTORS AND THEN

CONTRACT THESE VECTOR INDICES WITH

INDICES OF SUITABLY CONSTRUCTED

O(d,d) TENSORS.

• NOW WE DEAL WITH WORLDSHEET PAR-

TIAL DERIVATIVES ∂ AND ∂̄ WHICH KEEP ACT-

ING ON P ± Y′ IN SOME VERTEX FUNCTIONS.

DEFINE

∆τ = P+∂τ , ∆σ = P+∂σ, ∆±(τ, σ) =
1

2
(∆τ ± ∆σ)

WE HAVE TWO USEFUL RELATIONS

∂(P + Y′) = ∆+(τ, σ)
(

P+W + ηP−W
)

AND

∂̄(P − Y′) = ∆−(τ, σ)
(

P+W − ηP−W
)

WE USE ABOVE TWO RELATIONS TO EXPRESS

THE BASIC BUILDING BLOCKS AND THEIR

WORLDSHEET DERIVATIVES IN TERMS OF

O(d,d) VECTORS.
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THESE PRODUCTS OF VECTORS WILL BE CON-

TRACTED WITH THE O(d,d) TENSORS.

RECALL THAT THE M-MATRIX APPEARING

IN THE O(d,d) FORM OF THE HAMILTONIAN

IS DEFINED IN TERMS OF THE BACKGROUNDS

Gαβ AND Bαβ.

IT IS NOW STRAIGHT FORWARD TO EXPRESS

V
(2)
1 ,V

(3)
1 AND V

(4)
1 IN DUALITY INVARIANT FORM.

WHEN WE CONSTRUCT VERTEX OPERATORS

FOR HIGHER AND HIGHER EXCITED STATES

A VARIETY OF VERTEX FUNCTIONS WILL

APPEAR.
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NOTE: FROM THE STRUCTURE OF THE VER-

TEX FUNCTIONS THAT EACH ONE OF THEM

CAN BE EXPRESSED IN AN O(d,d) INVARI-

ANT FORM FOLLOWING OUR PRESCRIPTIONS.

CONSIDER THE nth EXCITED LEVEL

• THE DIMENSION OF ALL RIGHT MOVERS

CONSTRUCTED FROM ∂Y AND POWERS OF

∂ ACTING ON ∂Y SHOULD BE n + 1

• SAME HOLDS FOR THE LEFT MOVING SEC-

TOR.

• CONSIDER RIGHT MOVING SECTOR OF THE

TYPE Πn+1
1 ∂Yαi LEFT MOVING SECTOR OF

SAME TYPE: Πn+1
1 ∂̄Yαi THE VERTEX FUNC-

TION IS WRITTEN AS

Vα1,α2...αn+1,α′
1α′

2...α′
n+1

(X)Πn+1
1 ∂YαiΠn+1

1 ∂̄Yα′
i

THESE PRODUCTS Πn+1
1 ∂Yα′

i AND Πn+1
1 ∂̄Yα′

i

CAN BE CONVERTED TO PRODUCTS OF

PROJECTED W FOR RIGHT MOVERS AND ALSO

FOR LEFT MOVERS.

A GENERIC VERTEX FUNCTION HAS THE STRUC-

TURE

∂pYαi∂qYαj∂rYαk...∂̄p′
Yα′

i∂̄q′Yα′
j∂̄r′Yα′

k...,

WITH THE CONSTRAINT

p + q + r = n + 1, p′ + q′ + r′ = n + 1
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REMARKS: THIS HAS TO BE CONVERTED INTO

PRODUCTS OF W AND THEIR DERIVATIVES

FORM AN O(d,d) TENSOR. THE RANK OF

THE TENSOR IS DECIDED BY THE CONSTRAINTS

SATISFIED BY p, q, r, etc. AS GIVEN ABOVE.

THE RESULTING TENSOR WILL BE CONTRACTED

WITH AN O(d,d) TENSOR TO GIVE THE COR-

RESPONDING VERTEX FUNCTION.

THE CONSTRUCTION OF SUCH A VERTEX

FUNCTION

STEP I: REWRITE

∂pY = ∂p−1(P + Y′), ∂̄p′
(P − Y′) = ∂̄p′−1(P − Y′)

STEP II: USING THE PROJECTION OPERA-

TORS

∂p−1(P + Y′) = ∆+
p−1(P + Y′), ∂̄p′−1(P − Y′) = ∆−

p′−1(P − Y′)

STEP III:

∆+
p−1(P + Y′) = ∆+

p−1
(

P+W + ηP−W
)

∆p′−1(P − Y′) = ∆−
p′−1

(

(P+W − ηP−W
)

O(d,d) INVARIANT FORM

A GENERIC VERTEX OPERATORS CAN BE EX-

PRESSED AS

Vn+1 = Aklm..,k′l′m′..(X)∆+
p−1Wk

+∆q−1
+ W l

+∆+
r−1Wm

+ ..

∆−
p′−1Wk′

−∆−
p′−1W l′

−∆−
p′−1Wm′

−

WHERE W± = (P+W ± ηP−W) WITH

p + q + r = n + 1 AND p′ + q′ + r′ = n + 1
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INDICES {k, l,m;k′, l′,m′} APPEARING ON W±

REFER TO COMPONENTS OF THE O(d,d) VEC-

TORS.

Aklm..,k′l′m′..(X) IS O(d,d) TENSOR.

THE VERTEX Vn+1 WILL BE O(d,d) INVARI-

ANT IF THE TENSOR Aklm..,k′l′m′..(X) TRANS-

FORMS AS

Aklm..,k′l′m′.. → Ωp
kΩ

q
l Ω

r
m...Ωp′

k′Ω
q′

l′ Ω
r′

m′Apqr..,p′q′r′..

SINCE THE EACH TERM IN THE PRODUCT

∆p−1Wk
+....∆p′−1

− Wk′ TRANSFORMS LIKE AN O(d,d)

VECTOR.

SO FAR WE HAVE CONSTRUCTED VERTEX

FUNCTIONS CONSTRUCTED OUT OF THE CON-

TRACTION OF ∂Yα, ∂̄Yα etc. WHOSE INDICES

ARE CONTRACTED WITH X-DEPENDENT TEN-

SORS WITH INTERNAL INDICES ONLY.

ALL THESE LEVELS TRANSFORM LIKE SCALARS

UNDER SO(D− 1).

NOTE THAT ONCE WE ALLOW ∂Xµ, ∂̄Xµ AND

THEIR DERIVATIVES TO APPEAR IN THE VER-

TEX FUNCTIONS WITH APPROPRIATE CON-

TRACTION OF LORENTZ INDICES, WE SHALL

HAVE MANY MORE VERTEX FUNCTIONS.

LET US CONSIDER THE FIRST EXCITED MAS-

SIVE LEVEL AND THE POSSIBLE VERTEX FUNC-

TIONS ASSOCIATED WITH IT.
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RECALL TENSORS WITH SPACETIME INDICES

TRANSFORM TRIVIALLY UNDER O(d,d) AND

SO DOES Xµ.

Ṽ
(1)
1 = Ã

(1)
µν,µ′ν′∂Xµ∂Xν∂̄Xµ′∂̄Xν′

Ṽ
(2)
1 = Ã

(2)
µ,µ′ν′∂

2Xµ∂̄Xµ′∂̄Xν′, Ã
(3)
µν,µ′∂Xµ∂Xν∂̄2Xµ′

Ṽ
(3)
1 = Ã

(3)
µ,µ′∂

2Xµ∂̄2Xµ′

ALL THESE VERTEX FUNCTIONS ARE O(d,d)

INVARIANT.

VERTEX FUNCTIONS OF THE TYPE LISTED

BELOW:

(1). B̃
(1)
µα,α′β′∂Xµ∂Yα∂̄Yα′

∂̄Yβ′
AND OTHER SIMI-

LAR TERMS.

(2). B̃
(2)
µβ,µ′β′∂Xµ∂Yβ∂̄Xµ′∂̄Yβ′

AND OTHER TERMS

LIKE THESE.

(3). B̃
(3)
µν,µ′β′∂Xµ∂Xν∂̄Xµ′∂̄Yβ′

AND OTHER TERMS

LIKE THESE.

LET US EXAMINE THE TERMS (1), (2) AND (3)

ABOVE. FIRST ONE IS A THREE INDEX TEN-

SOR IN INTERNAL INDICES, SECOND WITH

TWO INTERNAL INDICES AND THIRD IS RANK

ONE. THESE INDICES ARE SATURATED WITH

INDICES OF INTERNAL COORDINATES.

THUS

B̃
(1)
µα,α′β′, B̃

(2)
µβ,µ′β′, B̃

(3)
µν,µ′β′

TRANSFORM AS RANKS THREE, TWO AND

TENSORS AND THE LAST ONE AS A VECTOR.
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SINCE LORENTZ INDICES ARE SATURATED

BY CONTRACTION WITH SPACETIME COOR-

DINATES, WHEN WE CONVERT ∂Yα, ∂̄Yβ′
TO W

WE NEED TO CONSTRUCT THIRD RANK, SEC-

OND RANK AND RANK ONE O(d,d)

TENSORS/VECTORS.

WE MAY ARGUE THAT ANY VERTEX FUNC-

TION AT A GIVEN LEVEL WITH ARBITRARY

NUMBER OF LORENTZ INDICES AND INTER-

NAL INDICES WHICH ARE SATURATED WITH

INDICES OF CORRESPONDING SPACETIME AND

INTERNAL COORDINATES (ON WHICH ARBI-

TRARY NUMBER OF DERIVATIVES ARE ACT-

ING) i.e. ∂, ∂̄ , CAN BE EXPRESSED IN O(d,d)

INVARIANT FORM.

FOR EXAMPLE A VERTEX FUNCTION OF THE

FORM

Tµαiαjµ
′α′

iα
′
j
∂mXµ∂pYαi∂qYαj...∂̄m′

Xµ′∂̄p′
Yα′

i∂̄q′Yα′
j..

CAN BE EXPRESSED IN A DUALITY INVARI-

ANT FORM.
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SUMMARY AND CONCLUSIONS

WE HAVE ATTEMPTED TO STUDY T-DUALITY

SYMMETRY ASSOCIATED WITH EXCITED MAS-

SIVE STATES OF A CLOSED BOSONIC STRING.

THIS CONJECTURE IS VERIFIED IN A SIM-

PLE SCENARIO WHEN THE SPACETIME IS CON-

SIDERED TO BE FLAT AND INTERNAL DI-

RECTIONS ARE ALSO TAKEN TO BE FLAT.

WE INTRODUCED A METHOD TO CONSTRUCT

O(d,d) INVARIANT VERTEX FUNCTIONS FOR

EACH EXCITED LEVEL.

HOWEVER, THIS TECHNIQUE IS NOT VERY

GENERAL. IF ALLOW TO HAVE NONTRIVIAL

INTERNAL METRIC Gαβ,Bαβ AND NONTRIV-

IAL GAUGE FIELDS ASSOCIATED WITH THE

d-ISOMETRIES, THEN THINGS GET MORE COM-

PLICATED.

FURTHERMORE, IF THE SPACETIME IS CURVED

AND ANTISYMMETRIC TENSOR IS NONZERO

i.e. gµν,bµν ARE NONTRIVIAL, WE FACE MORE

COMPLICATIONS.

HASAN-SEN TYPE COMPACTIFICATION WITH

FLAT INTERNAL DIRECTIONS Gαβ = δαβ AND Bαβ = 0

COULD BE HANDLED USING THIS METHOD.
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