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Introduction

Data to define a heterotic N=1, d=4 Calabi-Yau compacitification: 

XV

- A Calabi-Yau 3-fold X

- Anomaly condition:                      c2(V ) ≤ c2(TX)
(hidden sector with 5-branes and/or bundle)

- A stable holomorphic vector bundle    on     
  with structure group   G ⊂ SU(n) ⊂ E8
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GUT Model

Introduction

Data to define a heterotic N=1, d=4 Calabi-Yau compacitification: 

XV

- freely acting symmetry    on   , so 
  is smooth and non simply-connected

Γ X X̂ = X/Γ

- bundle   needs to be equivariant so it
  descends to a bundle    on 

V
X̂V̂

- complete bundle           with Wilson line
  to break GUT group
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N=1, D=4
GUT Model

N=1, D=4
standard-like
model
(hopefully)

Introduction

Data to define a heterotic N=1, d=4 Calabi-Yau compacitification: 

XV

- freely acting symmetry    on   , so 
  is smooth and non simply-connected

Γ X X̂ = X/Γ

- bundle   needs to be equivariant so it
  descends to a bundle    on 

V
X̂V̂

- complete bundle           with Wilson line
  to break GUT group

WV̂ ⊕W

- A Calabi-Yau 3-fold X

- Anomaly condition:                      c2(V ) ≤ c2(TX)
(hidden sector with 5-branes and/or bundle)

- A stable holomorphic vector bundle    on     
  with structure group   G ⊂ SU(n) ⊂ E8

Wednesday, September 14, 2011



Frequently: structure group                   with commutant =   
              low energy gauge group        is used.      

G = SU(5) ⊂ E8

SU(5)

248E8 → [(1,24)⊕ (5, 1̄0)⊕ (5̄,10)⊕ (10,5)⊕ (1̄0, 5̄)⊕ (24,1)]SU(5)×SU(5)
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split at special loci in moduli space and the low-energy
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Frequently: structure group                   with commutant =   
              low energy gauge group        is used.      

G = SU(5) ⊂ E8

SU(5)

248E8 → [(1,24)⊕ (5, 1̄0)⊕ (5̄,10)⊕ (10,5)⊕ (1̄0, 5̄)⊕ (24,1)]SU(5)×SU(5)

−→ SU(5)GUT with matter in          (plus mirrors)10, 5̄, 1

Observation: bundle structure groups can (and often do)
split at special loci in moduli space and the low-energy
gauge group enhances. For example: 

SU(5) → S(U(4)× U(1))

bundle gauge group
SU(5) → SU(5)× U(1)

Here, we study bundles with a “maximal” splitting:

SU(5) → S(U(1)5) SU(5) → SU(5)× U(1)4
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Key features:

 Gauge fields are Abelian and bundle is a sum of line
    bundles -> much easier to handle technically

 Abelian bundle still carries many of the properties
   of the generic non-Abelian bundle

 We have to remember that Abelian bundle usually
   resides in a larger, non-Abelian bundle moduli space.
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Heterotic line bundle models

CY manifold    with          Kahler parameters   ,
Kahler form           and freely acting symmetry   .    

X h1,1(X) ti

J = tiJi Γ
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Heterotic line bundle models

Line bundles on   : classified by first Chern class,
            denotes line bundle with              . 

X

L = OX(k) c1(L) = kiJi

CY manifold    with          Kahler parameters   ,
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Heterotic line bundle models

Line bundles on   : classified by first Chern class,
            denotes line bundle with              . 

X

L = OX(k) c1(L) = kiJi

Bundle   with structure group          :     V S(U(1)5)

V =
5�

a=1

La =
5�

a=1

OX(ka) c1(V ) =
5�

a=1

kiaJi
!
= 0where

CY manifold    with          Kahler parameters   ,
Kahler form           and freely acting symmetry   .    

X h1,1(X) ti

J = tiJi Γ
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Heterotic line bundle models

Line bundles on   : classified by first Chern class,
            denotes line bundle with              . 

X

L = OX(k) c1(L) = kiJi

Bundle   with structure group          :     V S(U(1)5)

V =
5�

a=1

La =
5�

a=1

OX(ka) c1(V ) =
5�

a=1

kiaJi
!
= 0where

CY manifold    with          Kahler parameters   ,
Kahler form           and freely acting symmetry   .    

X h1,1(X) ti

J = tiJi Γ

Note: A model is specified by the integer matrix    .  kia
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Label          representations by integer vectors
with identification        iff                       .    

S(U(1)5) q = (q1, . . . , q5)

q ∼ q̃ q− q̃ ∈ Z (1, 1, 1, 1, 1)

4d matter:                                             for       .  10ea , 1̄0−ea , 5̄ea+eb , 5−ea−eb , 1ea−eb , 1−ea+eb
a < b

Recall: 4d gauge group is SU(5)× S(U(1)5) ∼= SU(5)× U(1)4
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Label          representations by integer vectors
with identification        iff                       .    

S(U(1)5) q = (q1, . . . , q5)

q ∼ q̃ q− q̃ ∈ Z (1, 1, 1, 1, 1)

4d matter:                                             for       .  10ea , 1̄0−ea , 5̄ea+eb , 5−ea−eb , 1ea−eb , 1−ea+eb
a < b

multiplet S(U(1)5) charge associated line bundle L contained in

10ea
ea La V

1̄0−ea
−ea L∗

a V ∗

5̄ea+eb
ea + eb La ⊗ Lb ∧2V

5−ea−eb
−ea − eb L∗

a ⊗ L∗

b ∧2V ∗

1ea−eb
ea − eb La ⊗ L∗

b V ⊗ V ∗

1−ea+eb
−ea + eb L∗

a ⊗ Lb

Table 1: Multiplet content, charges and associated line bundles of the SU(5) × S(U(1)5) GUT

theory. The indices a, b, . . . are in the range 1, . . . , 5 and ea denotes the standard five-dimensional

unit vector in the ath direction. The number of each type of multiplet is obtained from the first

cohomology, H1(X,L), of the associated line bundle L.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant under

the symmetry Γ [39], a property which can be explicitly checked for line bundles using the methods described in

Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups Hi(X,L) form representations

under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge direction then

breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry. Let us consider

a standard model multiplet with Wilson line representation RW which originates from a GUT multiplet with

associated line bundle, L. The number of these multiplets can be computed from the Γ invariant part of

H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing the particle content after

Wilson line breaking is a matter of applying representation theory of the finite group Γ.

3 Additional U(1) symmetries and Green-Schwarz mechanism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [40]

and [26,41–43] for some recent papers on the subject). It is known that Abelian factors in the bundle structure

group give rise to a gauging of certain axion shift symmetries in the four dimensional effective theory. In our

context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners of the Kähler

moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corresponding

to the four U(1) symmetries, are independent. Each such transformation leads to a D-term which schematically

reads

Da =
µ(La)

κ
−
∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijktitjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of X

and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of the line

bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has been

explicitly studied in Ref. [26,42] but will be neglected in the present context as it does not affect our discussion.

5

Recall: 4d gauge group is SU(5)× S(U(1)5) ∼= SU(5)× U(1)4
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cohomology, H1(X,L), of the associated line bundle L.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant under

the symmetry Γ [39], a property which can be explicitly checked for line bundles using the methods described in

Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups Hi(X,L) form representations

under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge direction then

breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry. Let us consider

a standard model multiplet with Wilson line representation RW which originates from a GUT multiplet with

associated line bundle, L. The number of these multiplets can be computed from the Γ invariant part of

H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing the particle content after

Wilson line breaking is a matter of applying representation theory of the finite group Γ.

3 Additional U(1) symmetries and Green-Schwarz mechanism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [40]

and [26,41–43] for some recent papers on the subject). It is known that Abelian factors in the bundle structure

group give rise to a gauging of certain axion shift symmetries in the four dimensional effective theory. In our

context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners of the Kähler

moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corresponding

to the four U(1) symmetries, are independent. Each such transformation leads to a D-term which schematically

reads

Da =
µ(La)

κ
−
∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijktitjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of X

and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of the line

bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has been

explicitly studied in Ref. [26,42] but will be neglected in the present context as it does not affect our discussion.

5

families and
mirror families

Recall: 4d gauge group is SU(5)× S(U(1)5) ∼= SU(5)× U(1)4
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10ea
ea La V

1̄0−ea
−ea L∗

a V ∗

5̄ea+eb
ea + eb La ⊗ Lb ∧2V

5−ea−eb
−ea − eb L∗

a ⊗ L∗

b ∧2V ∗

1ea−eb
ea − eb La ⊗ L∗

b V ⊗ V ∗

1−ea+eb
−ea + eb L∗

a ⊗ Lb

Table 1: Multiplet content, charges and associated line bundles of the SU(5) × S(U(1)5) GUT

theory. The indices a, b, . . . are in the range 1, . . . , 5 and ea denotes the standard five-dimensional

unit vector in the ath direction. The number of each type of multiplet is obtained from the first

cohomology, H1(X,L), of the associated line bundle L.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant under

the symmetry Γ [39], a property which can be explicitly checked for line bundles using the methods described in

Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups Hi(X,L) form representations

under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge direction then

breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry. Let us consider

a standard model multiplet with Wilson line representation RW which originates from a GUT multiplet with

associated line bundle, L. The number of these multiplets can be computed from the Γ invariant part of

H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing the particle content after

Wilson line breaking is a matter of applying representation theory of the finite group Γ.

3 Additional U(1) symmetries and Green-Schwarz mechanism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [40]

and [26,41–43] for some recent papers on the subject). It is known that Abelian factors in the bundle structure

group give rise to a gauging of certain axion shift symmetries in the four dimensional effective theory. In our

context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners of the Kähler

moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corresponding

to the four U(1) symmetries, are independent. Each such transformation leads to a D-term which schematically

reads

Da =
µ(La)

κ
−
∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijktitjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of X

and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of the line

bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has been

explicitly studied in Ref. [26,42] but will be neglected in the present context as it does not affect our discussion.

5

families and
mirror families

bundle
moduli

C+
ab

C−
ab

Recall: 4d gauge group is SU(5)× S(U(1)5) ∼= SU(5)× U(1)4
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theory. The indices a, b, . . . are in the range 1, . . . , 5 and ea denotes the standard five-dimensional

unit vector in the ath direction. The number of each type of multiplet is obtained from the first

cohomology, H1(X,L), of the associated line bundle L.

The further breaking of the GUT theory to the standard model proceeds in the standard way via Wilson

lines. For the bundle V to descend to the quotient Calabi-Yau manifold, X/Γ, it has to be equivariant under

the symmetry Γ [39], a property which can be explicitly checked for line bundles using the methods described in

Ref. [12]. Note that for an equivariant line bundle, L, the cohomology groups Hi(X,L) form representations

under the group Γ. A Wilson line on the quotient, pointing into the standard hypercharge direction then

breaks the GUT group into the standard model group times the massive S(U(1)5) symmetry. Let us consider

a standard model multiplet with Wilson line representation RW which originates from a GUT multiplet with

associated line bundle, L. The number of these multiplets can be computed from the Γ invariant part of

H1(X,L)⊗RW . In essence, once the GUT multiplet content is known, computing the particle content after

Wilson line breaking is a matter of applying representation theory of the finite group Γ.

3 Additional U(1) symmetries and Green-Schwarz mechanism

We turn now to the fate of the four additional U(1) symmetries in S(U(1)5) ∼= U(1)4 which arise in our

models. The Green-Schwarz mechanism in heterotic theories has been understood for many years (see [40]

and [26,41–43] for some recent papers on the subject). It is known that Abelian factors in the bundle structure

group give rise to a gauging of certain axion shift symmetries in the four dimensional effective theory. In our

context, for each line bundle, La, in V , the Kähler axions, χi, the supersymmetric partners of the Kähler

moduli, ti, acquire the following transformation4

δχi = −ci1(La)ηa , (3.5)

with transformation parameter ηa. Note that, from Eq. (2.2), only four of these transformation, corresponding

to the four U(1) symmetries, are independent. Each such transformation leads to a D-term which schematically

reads

Da =
µ(La)

κ
−
∑

I

QaI |CI |
2 . (3.6)

Here, κ = dijktitjtk is the Kähler moduli space pre-potential with the triple intersection numbers dijk of X

and CI are matter fields and bundle moduli with charges QaI under S(U(1)5). The slope, µ(La), of the line

bundle La is defined as

µ(La) = ci1(La)κi with κi = dijkt
jtk . (3.7)

4The equations below receive a one loop correction due to a non-trivial shift of the dilatonic and M5-brane axions. This has been

explicitly studied in Ref. [26,42] but will be neglected in the present context as it does not affect our discussion.

5

families and
mirror families

Number of each multiplet type obtained from           . H
1(X,L)

bundle
moduli

C+
ab

C−
ab

Recall: 4d gauge group is SU(5)× S(U(1)5) ∼= SU(5)× U(1)4
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bundle supersymmetry: Da = kiati −
�

b>a

�
|C+

ab|
2 − |C−

ab|
2
� !
= 0

At Abelian locus           , so slopes                   .   �C±
ab� = 0 µ(La) = kiati

!
= 0

   (# linearly independent    ) < ka h1,1(X)
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bundle supersymmetry: Da = kiati −
�

b>a

�
|C+

ab|
2 − |C−

ab|
2
� !
= 0

At Abelian locus           , so slopes                   .   �C±
ab� = 0 µ(La) = kiati

!
= 0

   (# linearly independent    ) < ka h1,1(X)

Bundle moduli and moving away from Abelian locus:

0 → La → U → Lb → 0, Ext1(Lb, La) ∼= H
1(X,La ⊗ L

∗
b) � C

+
ab

0 → Lb → U → La → 0, Ext1(La, Lb) ∼= H
1(X,Lb ⊗ L

∗
a) � C

−
ab
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bundle supersymmetry: Da = kiati −
�

b>a

�
|C+

ab|
2 − |C−

ab|
2
� !
= 0

At Abelian locus           , so slopes                   .   �C±
ab� = 0 µ(La) = kiati

!
= 0

   (# linearly independent    ) < ka h1,1(X)

Bundle moduli and moving away from Abelian locus:

0 → La → U → Lb → 0, Ext1(Lb, La) ∼= H
1(X,La ⊗ L

∗
b) � C

+
ab

0 → Lb → U → La → 0, Ext1(La, Lb) ∼= H
1(X,Lb ⊗ L

∗
a) � C

−
ab

�C±
ab� = 0 =⇒ U = La ⊕ Lb

�C±
ab� �= 0 =⇒ U is U(2) bundle

La ⊕ Lb is replaced by U

Wednesday, September 14, 2011



What happens with additional U(1) symmetries?

Basically Green-Schwarz anomalous and massive!
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What happens with additional U(1) symmetries?

Basically Green-Schwarz anomalous and massive!

Mab = Gijk
i
ak

j
bMore precisely, U(1) mass matrix is                 , hence

number of massless U(1)s at Abelian locus is given by

(number of massless U(1)) = 4− rank(kia)

For all four U(1)s to be massive we need              . h1,1(X) ≥ 5
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What happens with additional U(1) symmetries?

Basically Green-Schwarz anomalous and massive!

Mab = Gijk
i
ak

j
bMore precisely, U(1) mass matrix is                 , hence

number of massless U(1)s at Abelian locus is given by

(number of massless U(1)) = 4− rank(kia)

For all four U(1)s to be massive we need              . h1,1(X) ≥ 5

Models with massless U(1)s are still included. Such U(1)s
can be broken spontaneously when moving away from the 
Abelian locus by switching on VEVs      . �C±

ab�
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A standard model data base

CICYs defined as common zero locus                       of               
homogeneous polynomials     in ambient space                  .  A =

�m
r=1 Pnr

X = {pi = 0} ⊂A
pi

Arena: complete intersection CY manifolds (CICYs)
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A standard model data base

for example: quintic               or bi-cubic  X ∼
�
P4|5

�
X ∼

�
P2

P2

����
3
3

�

CICYs defined as common zero locus                       of               
homogeneous polynomials     in ambient space                  .  A =

�m
r=1 Pnr

X = {pi = 0} ⊂A
pi

Arena: complete intersection CY manifolds (CICYs)
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A standard model data base

for example: quintic               or bi-cubic  X ∼
�
P4|5

�
X ∼

�
P2

P2

����
3
3

�

CICYs defined as common zero locus                       of               
homogeneous polynomials     in ambient space                  .  A =

�m
r=1 Pnr

X = {pi = 0} ⊂A
pi

Arena: complete intersection CY manifolds (CICYs)

(Hubsch, Green, Lutken, Candelas 1987)
Complete classification of about 8000 spaces

Classification of freely-acting discrete symmetries
(Braun, 2010)

Line bundle cohomology can be computed.
(Anderson, He, Lukas, 2008)
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The search for heterotic line bundle standard models:

 For a given CICY    with symmetry    generate many integer
   matrices       representing bundles                                   . 

X Γ
(kia) V = ⊕5

a=1La , La = OX(ka)

 Check that              (bundle supersymmetric) and that    
   is equivariant under    (   descends to       ).  

µ(La) = 0 V
Γ V X/Γ

 Verify anomaly condition                     (“global” model exists).        c2(V ) ≤ c2(TX)
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The search for heterotic line bundle standard models:

 For a given CICY    with symmetry    generate many integer
   matrices       representing bundles                                   . 

X Γ
(kia) V = ⊕5

a=1La , La = OX(ka)

 Check that              (bundle supersymmetric) and that    
   is equivariant under    (   descends to       ).  

µ(La) = 0 V
Γ V X/Γ

 Require                  (no     mirror families) and
   (three     families).  

h1(X,V ∗) = 0 1̄0 h1(X,V ) = 3|Γ|
10

=⇒ ind(∧2V ) = ind(V ) = −3|Γ| (   chiral asymmetry is three)5̄

 Verify anomaly condition                     (“global” model exists).        c2(V ) ≤ c2(TX)
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The search for heterotic line bundle standard models:

 For a given CICY    with symmetry    generate many integer
   matrices       representing bundles                                   . 

X Γ
(kia) V = ⊕5

a=1La , La = OX(ka)

 Check that              (bundle supersymmetric) and that    
   is equivariant under    (   descends to       ).  

µ(La) = 0 V
Γ V X/Γ

 Require                  (no     mirror families) and
   (three     families).  

h1(X,V ∗) = 0 1̄0 h1(X,V ) = 3|Γ|
10

=⇒ ind(∧2V ) = ind(V ) = −3|Γ| (   chiral asymmetry is three)5̄

 Verify anomaly condition                     (“global” model exists).        c2(V ) ≤ c2(TX)

 Require                      (no chiral   ) and
   (Higgs triplets can be projected out).      

ind(La ⊗ Lb) ≤ 0 5 h1(X,L∗
a ⊗ L∗

b) < |Γ|
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The search for heterotic line bundle standard models:

 For a given CICY    with symmetry    generate many integer
   matrices       representing bundles                                   . 

X Γ
(kia) V = ⊕5

a=1La , La = OX(ka)

 Check that              (bundle supersymmetric) and that    
   is equivariant under    (   descends to       ).  

µ(La) = 0 V
Γ V X/Γ

 Require                  (no     mirror families) and
   (three     families).  

h1(X,V ∗) = 0 1̄0 h1(X,V ) = 3|Γ|
10

=⇒ ind(∧2V ) = ind(V ) = −3|Γ| (   chiral asymmetry is three)5̄

 Verify anomaly condition                     (“global” model exists).        c2(V ) ≤ c2(TX)

 Require                      (no chiral   ) and
   (Higgs triplets can be projected out).      

ind(La ⊗ Lb) ≤ 0 5 h1(X,L∗
a ⊗ L∗

b) < |Γ|

“heterotic standard model”: SM gauge group (plus U(1)’s, massive
or massless), three MSSM families, one or more Higgs doublets,
bundle moduli (SM singlets), no exotics.
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Have scanned CICYs with symmetries and               (60 spaces). h1,1(X) ≤ 5

No viable models for                    (due to bundle supersymmetry) h1,1(X) = 1, 2, 3

�
−9 + h1,1 ≤ kia ≤ 9− h1,1

�
(Anderson, Constantin, Gray, Lukas, Palti, in prep.)
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Have scanned CICYs with symmetries and               (60 spaces). h1,1(X) ≤ 5

No viable models for                    (due to bundle supersymmetry) h1,1(X) = 1, 2, 3

Find het. standard models on 15 CICYs with                : h1,1(X) = 4, 5

total number 1012
no massless U(1) 283
exact MSSM spectrum 217+

�
−9 + h1,1 ≤ kia ≤ 9− h1,1

�
(Anderson, Constantin, Gray, Lukas, Palti, in prep.)
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Have scanned CICYs with symmetries and               (60 spaces). h1,1(X) ≤ 5

No viable models for                    (due to bundle supersymmetry) h1,1(X) = 1, 2, 3

Find het. standard models on 15 CICYs with                : h1,1(X) = 4, 5

total number 1012
no massless U(1) 283
exact MSSM spectrum 217+

Note: This is counting “upstairs” models. One upstairs model is often 
valid for more than one symmetry and one choice of Wilson line. 

Total number of downstairs SMs is O(10000).

�
−9 + h1,1 ≤ kia ≤ 9− h1,1

�
(Anderson, Constantin, Gray, Lukas, Palti, in prep.)
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CICY 6777:















P
1

P
1

P
1

P
1

P
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0

0 0 0 2

0 0 2 0

2 0 0 0

1 1 1 1















5,37

−64

Z2

(1,1,1,0,-1)(1,0,-2,-1,1)(1,-2,0,-1,1)(-1,1,1,1,-1)(-2,0,0,1,0) (1,1,0,1,-1)(1,0,-1,0,0)(0,0,1,-1,0)(0,-2,-1,0,1)(-2,1,1,0,0)

(1,0,1,1,-1)(1,-1,0,0,0)(0,1,0,-1,0)(0,-1,-2,0,1)(-2,1,1,0,0) (1,0,0,-1,0)(1,-1,-2,0,1)(0,1,1,1,-1)(0,-1,1,0,0)(-2,1,0,0,0)

(1,0,0,-1,0)(1,-2,-1,0,1)(0,1,1,1,-1)(0,1,-1,0,0)(-2,0,1,0,0) (1,1,1,0,-1)(0,1,-1,0,0)(0,0,1,-2,0)(0,-2,-1,1,1)(-1,0,0,1,0)

(1,1,0,1,-1)(0,1,1,-2,0)(0,0,-1,1,0)(0,-2,-1,0,1)(-1,0,1,0,0) (1,1,-1,-1,0)(0,1,1,1,-1)(0,0,-1,-2,1)(0,-2,1,1,0)(-1,0,0,1,0)

(1,1,1,0,-1)(0,1,0,-2,0)(0,-1,1,0,0)(0,-1,-2,1,1)(-1,0,0,1,0) (1,0,1,1,-1)(0,1,1,-2,0)(0,-1,0,1,0)(0,-1,-2,0,1)(-1,1,0,0,0)

(1,-1,1,-1,0)(0,1,1,1,-1)(0,1,-2,1,0)(0,-1,0,-2,1)(-1,0,0,1,0)

CICY 6890:















P
1

P
1

P
1

P
1

P
4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 0 0

0 0 1 1 0

0 0 0 0 2

0 0 2 0 0

1 1 1 1 1















5,37

−64

Z2

(1,1,1,0,-1)(1,0,-1,0,0)(1,-2,0,1,0)(-1,1,1,-1,0)(-2,0,-1,0,1) (1,1,1,0,-1)(1,0,-1,0,0)(0,0,1,-2,0)(0,-1,0,1,0)(-2,0,-1,1,1)

(1,1,0,1,-1)(1,0,1,-2,0)(0,0,-1,1,0)(0,-1,1,0,0)(-2,0,-1,0,1) (1,1,-1,-1,0)(1,0,1,1,-1)(0,0,-1,-2,1)(0,-1,0,1,0)(-2,0,1,1,0)

(1,1,1,0,-1)(1,-1,1,1,-1)(0,1,-2,-1,1)(0,-2,0,1,0)(-2,1,0,-1,1) (1,1,0,1,-1)(1,-2,1,0,0)(0,1,-1,0,0)(0,0,1,-1,0)(-2,0,-1,0,1)

(1,0,1,1,-1)(1,0,-1,0,0)(0,1,0,-1,0)(0,-2,1,0,0)(-2,1,-1,0,1) (1,1,1,0,-1)(1,0,0,-2,0)(0,-1,0,1,0)(-1,0,1,0,0)(-1,0,-2,1,1)

(1,1,1,0,-1)(1,0,-2,1,0)(0,-2,-1,0,1)(-1,1,1,-1,0)(-1,0,1,0,0) (1,1,1,0,-1)(1,-2,0,1,0)(0,1,0,-1,0)(-1,0,1,0,0)(-1,0,-2,0,1)

(1,0,1,1,-1)(1,0,-2,1,0)(0,-1,0,1,0)(-1,1,1,-1,0)(-1,0,0,-2,1) (1,0,1,-2,0)(1,-1,0,0,0)(0,1,1,1,-1)(-1,0,0,1,0)(-1,0,-2,0,1)

(1,0,1,1,-1)(1,-2,0,1,0)(0,1,0,-1,0)(-1,1,1,-1,0)(-1,0,-2,0,1) (1,0,1,1,-1)(1,-2,0,0,0)(0,1,0,-1,0)(-1,1,-2,0,1)(-1,0,1,0,0)

(1,0,0,-1,0)(1,-2,1,0,0)(0,1,1,1,-1)(-1,1,0,0,0)(-1,0,-2,0,1) (1,1,1,0,-1)(0,1,0,-2,0)(0,0,-1,1,0)(0,-2,-1,1,1)(-1,0,1,0,0)

CICY 7447:














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P
1

P
1

P
1

P
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1

1 1

1 1

1 1

1 1















5,45

−80

Z2 × Z2

(0,1,0,-2,1)(0,1,-2,1,0)(0,0,1,1,-2)(0,-1,1,0,0)(0,-1,0,0,1) (1,-2,0,0,1)(0,1,-2,0,1)(0,0,1,1,-2)(0,0,1,-1,0)(-1,1,0,0,0)

(1,-2,0,0,1)(0,1,0,1,-2)(0,0,1,-2,1)(0,0,-1,0,1)(-1,1,0,1,-1) (1,-2,-1,1,1)(0,1,1,-2,0)(0,1,-1,0,0)(0,0,1,1,-2)(-1,0,0,0,1)

CICY 7487:












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1
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0 2

1 1

1 1

1 1

1 1















5,45

−80

Z2 × Z2

(1,-2,0,0,1)(0,1,-2,0,1)(0,0,1,1,-2)(0,0,1,-1,0)(-1,1,0,0,0) (1,-2,0,0,1)(0,1,0,1,-2)(0,0,1,-2,1)(0,0,-1,0,1)(-1,1,0,1,-1)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,1,0,-2)(-1,1,0,0,0)(-1,0,0,0,1) (1,-1,-1,0,1)(1,-2,0,0,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,1,1,0,0)

(1,-1,-1,1,0)(1,-1,-1,0,1)(0,1,0,-2,1)(0,0,1,1,-2)(-2,1,1,0,0) (1,-1,0,0,0)(1,-1,-1,0,1)(0,1,0,-2,1)(0,0,1,1,-2)(-2,1,0,1,0)

(1,-1,1,-1,0)(1,-1,-2,1,1)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,0,1,0) (1,-1,1,-1,0)(1,-1,-2,1,1)(0,1,1,0,-2)(0,0,0,-1,1)(-2,1,0,1,0)

(1,0,-2,0,1)(1,-2,0,1,0)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,1,0,0) (1,0,-2,0,1)(1,-2,0,1,0)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,1,0,0)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,0,1,0) (1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,0,1,0)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,0,-1)(0,0,1,0,-1)(-2,1,0,0,1) (1,0,-2,0,1)(1,-2,1,1,-1)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,0,0,1)

(1,0,-2,0,1)(1,-2,1,1,-1)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,0,0,1) (1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,0,-2)(0,0,0,-1,1)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,1,0,0)(0,1,0,-2,1)(0,0,0,1,-1)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,-1,1,0)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,-1,1,1)

(1,0,-1,0,0)(1,-2,0,0,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,0,1,0,1) (1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,0,-2)(0,1,-1,0,0)(-2,0,1,0,1)

(1,0,-1,0,0)(1,-2,1,-1,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,0,0,1,1) (1,0,0,-1,0)(1,0,-2,0,1)(1,-2,0,1,0)(-1,1,1,0,-1)(-2,1,1,0,0)

CICY 6828:











P
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P
1

P
1

P
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 2

1 1 0

1 1 0

1 1 2











4,36

−64

Z2 × Z2

(1,0,2,-1)(1,-3,0,0)(0,1,-1,0)(0,1,-1,0)(-2,1,0,1) (1,2,0,-1)(1,-3,2,0)(0,1,-1,0)(0,1,-1,0)(-2,-1,0,1)

(2,-2,3,-1)(0,1,-1,0)(0,1,-1,0)(-1,0,1,0)(-1,0,-2,1) (2,1,2,-1)(0,1,-3,0)(0,-2,-1,1)(-1,0,1,0)(-1,0,1,0)
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CICY 6777:




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
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


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∣

∣

∣

∣

∣
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∣

∣

1 1 0 0

0 0 0 2

0 0 2 0

2 0 0 0

1 1 1 1















5,37

−64

Z2

(1,1,1,0,-1)(1,0,-2,-1,1)(1,-2,0,-1,1)(-1,1,1,1,-1)(-2,0,0,1,0) (1,1,0,1,-1)(1,0,-1,0,0)(0,0,1,-1,0)(0,-2,-1,0,1)(-2,1,1,0,0)

(1,0,1,1,-1)(1,-1,0,0,0)(0,1,0,-1,0)(0,-1,-2,0,1)(-2,1,1,0,0) (1,0,0,-1,0)(1,-1,-2,0,1)(0,1,1,1,-1)(0,-1,1,0,0)(-2,1,0,0,0)

(1,0,0,-1,0)(1,-2,-1,0,1)(0,1,1,1,-1)(0,1,-1,0,0)(-2,0,1,0,0) (1,1,1,0,-1)(0,1,-1,0,0)(0,0,1,-2,0)(0,-2,-1,1,1)(-1,0,0,1,0)

(1,1,0,1,-1)(0,1,1,-2,0)(0,0,-1,1,0)(0,-2,-1,0,1)(-1,0,1,0,0) (1,1,-1,-1,0)(0,1,1,1,-1)(0,0,-1,-2,1)(0,-2,1,1,0)(-1,0,0,1,0)

(1,1,1,0,-1)(0,1,0,-2,0)(0,-1,1,0,0)(0,-1,-2,1,1)(-1,0,0,1,0) (1,0,1,1,-1)(0,1,1,-2,0)(0,-1,0,1,0)(0,-1,-2,0,1)(-1,1,0,0,0)

(1,-1,1,-1,0)(0,1,1,1,-1)(0,1,-2,1,0)(0,-1,0,-2,1)(-1,0,0,1,0)

CICY 6890:


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1 1 0 0 0

0 0 1 1 0

0 0 0 0 2

0 0 2 0 0

1 1 1 1 1















5,37

−64

Z2

(1,1,1,0,-1)(1,0,-1,0,0)(1,-2,0,1,0)(-1,1,1,-1,0)(-2,0,-1,0,1) (1,1,1,0,-1)(1,0,-1,0,0)(0,0,1,-2,0)(0,-1,0,1,0)(-2,0,-1,1,1)

(1,1,0,1,-1)(1,0,1,-2,0)(0,0,-1,1,0)(0,-1,1,0,0)(-2,0,-1,0,1) (1,1,-1,-1,0)(1,0,1,1,-1)(0,0,-1,-2,1)(0,-1,0,1,0)(-2,0,1,1,0)

(1,1,1,0,-1)(1,-1,1,1,-1)(0,1,-2,-1,1)(0,-2,0,1,0)(-2,1,0,-1,1) (1,1,0,1,-1)(1,-2,1,0,0)(0,1,-1,0,0)(0,0,1,-1,0)(-2,0,-1,0,1)

(1,0,1,1,-1)(1,0,-1,0,0)(0,1,0,-1,0)(0,-2,1,0,0)(-2,1,-1,0,1) (1,1,1,0,-1)(1,0,0,-2,0)(0,-1,0,1,0)(-1,0,1,0,0)(-1,0,-2,1,1)

(1,1,1,0,-1)(1,0,-2,1,0)(0,-2,-1,0,1)(-1,1,1,-1,0)(-1,0,1,0,0) (1,1,1,0,-1)(1,-2,0,1,0)(0,1,0,-1,0)(-1,0,1,0,0)(-1,0,-2,0,1)

(1,0,1,1,-1)(1,0,-2,1,0)(0,-1,0,1,0)(-1,1,1,-1,0)(-1,0,0,-2,1) (1,0,1,-2,0)(1,-1,0,0,0)(0,1,1,1,-1)(-1,0,0,1,0)(-1,0,-2,0,1)

(1,0,1,1,-1)(1,-2,0,1,0)(0,1,0,-1,0)(-1,1,1,-1,0)(-1,0,-2,0,1) (1,0,1,1,-1)(1,-2,0,0,0)(0,1,0,-1,0)(-1,1,-2,0,1)(-1,0,1,0,0)

(1,0,0,-1,0)(1,-2,1,0,0)(0,1,1,1,-1)(-1,1,0,0,0)(-1,0,-2,0,1) (1,1,1,0,-1)(0,1,0,-2,0)(0,0,-1,1,0)(0,-2,-1,1,1)(-1,0,1,0,0)

CICY 7447:
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1 1

1 1

1 1

1 1















5,45

−80

Z2 × Z2

(0,1,0,-2,1)(0,1,-2,1,0)(0,0,1,1,-2)(0,-1,1,0,0)(0,-1,0,0,1) (1,-2,0,0,1)(0,1,-2,0,1)(0,0,1,1,-2)(0,0,1,-1,0)(-1,1,0,0,0)

(1,-2,0,0,1)(0,1,0,1,-2)(0,0,1,-2,1)(0,0,-1,0,1)(-1,1,0,1,-1) (1,-2,-1,1,1)(0,1,1,-2,0)(0,1,-1,0,0)(0,0,1,1,-2)(-1,0,0,0,1)

CICY 7487:















P
1

P
1

P
1

P
1

P
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2

1 1

1 1

1 1

1 1















5,45

−80

Z2 × Z2

(1,-2,0,0,1)(0,1,-2,0,1)(0,0,1,1,-2)(0,0,1,-1,0)(-1,1,0,0,0) (1,-2,0,0,1)(0,1,0,1,-2)(0,0,1,-2,1)(0,0,-1,0,1)(-1,1,0,1,-1)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,1,0,-2)(-1,1,0,0,0)(-1,0,0,0,1) (1,-1,-1,0,1)(1,-2,0,0,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,1,1,0,0)

(1,-1,-1,1,0)(1,-1,-1,0,1)(0,1,0,-2,1)(0,0,1,1,-2)(-2,1,1,0,0) (1,-1,0,0,0)(1,-1,-1,0,1)(0,1,0,-2,1)(0,0,1,1,-2)(-2,1,0,1,0)

(1,-1,1,-1,0)(1,-1,-2,1,1)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,0,1,0) (1,-1,1,-1,0)(1,-1,-2,1,1)(0,1,1,0,-2)(0,0,0,-1,1)(-2,1,0,1,0)

(1,0,-2,0,1)(1,-2,0,1,0)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,1,0,0) (1,0,-2,0,1)(1,-2,0,1,0)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,1,0,0)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,0,1,0) (1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,0,1,0)

(1,0,-2,0,1)(1,-2,1,0,0)(0,1,0,0,-1)(0,0,1,0,-1)(-2,1,0,0,1) (1,0,-2,0,1)(1,-2,1,1,-1)(0,1,0,-1,0)(0,0,1,0,-1)(-2,1,0,0,1)

(1,0,-2,0,1)(1,-2,1,1,-1)(0,1,0,0,-1)(0,0,1,-1,0)(-2,1,0,0,1) (1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,0,-2)(0,0,0,-1,1)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,1,0,0)(0,1,0,-2,1)(0,0,0,1,-1)(-2,1,0,1,0)

(1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,-1,1,0)(-2,1,0,1,0) (1,0,-1,0,0)(1,-2,1,0,0)(0,1,1,-2,0)(0,0,0,1,-1)(-2,1,-1,1,1)

(1,0,-1,0,0)(1,-2,0,0,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,0,1,0,1) (1,0,-1,0,0)(1,-2,0,0,1)(0,1,1,0,-2)(0,1,-1,0,0)(-2,0,1,0,1)

(1,0,-1,0,0)(1,-2,1,-1,1)(0,1,0,1,-2)(0,1,0,-1,0)(-2,0,0,1,1) (1,0,0,-1,0)(1,0,-2,0,1)(1,-2,0,1,0)(-1,1,1,0,-1)(-2,1,1,0,0)

CICY 6828:











P
1

P
1

P
1

P
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 2

1 1 0

1 1 0

1 1 2











4,36

−64

Z2 × Z2

(1,0,2,-1)(1,-3,0,0)(0,1,-1,0)(0,1,-1,0)(-2,1,0,1) (1,2,0,-1)(1,-3,2,0)(0,1,-1,0)(0,1,-1,0)(-2,-1,0,1)

(2,-2,3,-1)(0,1,-1,0)(0,1,-1,0)(-1,0,1,0)(-1,0,-2,1) (2,1,2,-1)(0,1,-3,0)(0,-2,-1,1)(-1,0,1,0)(-1,0,1,0)
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0) all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

10e2 , 10e2

10e5

all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

h•(X,L2 ⊗ L4) = (0, 4, 0, 0)

h•(X,L4 ⊗ L5) = (0, 2, 0, 0)

h•(X,L2 ⊗ L5) = (0, 1, 1, 0)

5̄− 5 :

10e2 , 10e2

10e5

all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

h•(X,L2 ⊗ L4) = (0, 4, 0, 0)

h•(X,L4 ⊗ L5) = (0, 2, 0, 0)

h•(X,L2 ⊗ L5) = (0, 1, 1, 0)

5̄− 5 :

10e2 , 10e2

10e5

5̄e2+e4 , 5̄e2+e4

5̄e4+e5

5̄Hd
e2+e5

, 5Hu
−e2−e5

all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

h•(X,L2 ⊗ L4) = (0, 4, 0, 0)

h•(X,L4 ⊗ L5) = (0, 2, 0, 0)

h•(X,L2 ⊗ L5) = (0, 1, 1, 0)

5̄− 5 :

h•(X,L1 ⊗ L∗
2) = (0, 0, 4, 0)

h•(X,L1 ⊗ L∗
5) = (0, 0, 8, 0)

h•(X,L2 ⊗ L∗
3) = (0, 4, 0, 0)

h•(X,L2 ⊗ L∗
4) = (0, 12, 0, 0)

h•(X,L2 ⊗ L∗
5) = (0, 11, 3, 0)

h•(X,L4 ⊗ L∗
5) = (0, 6, 0, 0)

1 :

10e2 , 10e2

10e5

5̄e2+e4 , 5̄e2+e4

5̄e4+e5

5̄Hd
e2+e5

, 5Hu
−e2−e5

all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

h•(X,L2 ⊗ L4) = (0, 4, 0, 0)

h•(X,L4 ⊗ L5) = (0, 2, 0, 0)

h•(X,L2 ⊗ L5) = (0, 1, 1, 0)

5̄− 5 :

h•(X,L1 ⊗ L∗
2) = (0, 0, 4, 0)

h•(X,L1 ⊗ L∗
5) = (0, 0, 8, 0)

h•(X,L2 ⊗ L∗
3) = (0, 4, 0, 0)

h•(X,L2 ⊗ L∗
4) = (0, 12, 0, 0)

h•(X,L2 ⊗ L∗
5) = (0, 11, 3, 0)

h•(X,L4 ⊗ L∗
5) = (0, 6, 0, 0)

1 :

10e2 , 10e2

10e5

5̄e2+e4 , 5̄e2+e4

5̄e4+e5

5̄Hd
e2+e5

, 5Hu
−e2−e5

C1,e2−e1

C2,e5−e1

C3,e2−e3

C4,e2−e4

C5,e2−e5 , C6,e5−e2

C7,e4−e5

all U(1)s massive
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A standard model example
L1 = OX(1, 0, 0,−1, 0), L2 = OX(1,−1,−2, 0, 1), L3 = OX(0, 1, 1, 1,−1)

L4 = OX(0,−1, 1, 0, 0), L5 = OX(−2, 1, 0, 0, 0)

Non-zero cohomologies:
h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 2, 0, 0)
10 :

h•(X,L2 ⊗ L4) = (0, 4, 0, 0)

h•(X,L4 ⊗ L5) = (0, 2, 0, 0)

h•(X,L2 ⊗ L5) = (0, 1, 1, 0)

5̄− 5 :

h•(X,L1 ⊗ L∗
2) = (0, 0, 4, 0)

h•(X,L1 ⊗ L∗
5) = (0, 0, 8, 0)

h•(X,L2 ⊗ L∗
3) = (0, 4, 0, 0)

h•(X,L2 ⊗ L∗
4) = (0, 12, 0, 0)

h•(X,L2 ⊗ L∗
5) = (0, 11, 3, 0)

h•(X,L4 ⊗ L∗
5) = (0, 6, 0, 0)

1 :

10e2 , 10e2

10e5

5̄e2+e4 , 5̄e2+e4

5̄e4+e5

5̄Hd
e2+e5

, 5Hu
−e2−e5

C1,e2−e1

C2,e5−e1

C3,e2−e3

C4,e2−e4

C5,e2−e5 , C6,e5−e2

C7,e4−e5

�I = �CI�

all U(1)s massive
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Phenomenological issues

Note:            non-invariant operators are perturbatively forbidden,
       but allowed operators are not necessarily present.

S(U(1)5)

symmetry restricts operators in 4d theory.S(U(1)5)
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Phenomenological issues

Note:            non-invariant operators are perturbatively forbidden,
       but allowed operators are not necessarily present.

S(U(1)5)

symmetry restricts operators in 4d theory.S(U(1)5)

 Dimension four proton decay at Abelian locus
5̄ea+eb 5̄ec+ed10ef allowed if ea + eb + ec + ed + ef = (1, 1, 1, 1, 1)

Forbidden for example.
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Phenomenological issues

Note:            non-invariant operators are perturbatively forbidden,
       but allowed operators are not necessarily present.

S(U(1)5)

symmetry restricts operators in 4d theory.S(U(1)5)

 Dimension four proton decay at Abelian locus
5̄ea+eb 5̄ec+ed10ef allowed if ea + eb + ec + ed + ef = (1, 1, 1, 1, 1)

Forbidden for example.

 Dimension four proton decay away from Abelian locus
p(CI) 5̄ 5̄ 10 can be checked explicitly, since all charges known

Again, forbidden for example.
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Phenomenological issues

Note:            non-invariant operators are perturbatively forbidden,
       but allowed operators are not necessarily present.

S(U(1)5)

symmetry restricts operators in 4d theory.S(U(1)5)

 Dimension four proton decay at Abelian locus
5̄ea+eb 5̄ec+ed10ef allowed if ea + eb + ec + ed + ef = (1, 1, 1, 1, 1)

Forbidden for example.

 Dimension four proton decay away from Abelian locus
p(CI) 5̄ 5̄ 10 can be checked explicitly, since all charges known

Again, forbidden for example.

 Dimension five proton decay
5̄ea+eb10ec10ed10ef allowed if ea + eb + ec + ed + ef = (1, 1, 1, 1, 1)

Ok for example (also with singlet insertions).
Wednesday, September 14, 2011



   - term µ

is singlet, but term absent at Abelian locus. HuHd

Away from Abelian locus:           forbidden
                                            may be allowed

CIHuHd

CICJHuHd

For example:              allowed, so we need          .  C5C6HuHd �5�6 � 1

Wednesday, September 14, 2011



   - term µ

is singlet, but term absent at Abelian locus. HuHd

Away from Abelian locus:           forbidden
                                            may be allowed

CIHuHd

CICJHuHd

For example:              allowed, so we need          .  C5C6HuHd �5�6 � 1

 Yukawa couplings 
5Hu
−ea−eb

10ec10ed allowed if ea + eb = ec + ed

5̄
Hd

ea+eb
5̄ec+ed10ef allowed if ea + eb + ec + ed + ef = (1, 1, 1, 1, 1)

Away from Abelian locus add singlets -> Froggatt-Nielson
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   - term µ

is singlet, but term absent at Abelian locus. HuHd

Away from Abelian locus:           forbidden
                                            may be allowed

CIHuHd

CICJHuHd

For example:              allowed, so we need          .  C5C6HuHd �5�6 � 1

 Yukawa couplings 
5Hu
−ea−eb

10ec10ed allowed if ea + eb = ec + ed

5̄
Hd

ea+eb
5̄ec+ed10ef allowed if ea + eb + ec + ed + ef = (1, 1, 1, 1, 1)

Away from Abelian locus add singlets -> Froggatt-Nielson

For example: Y u =




�5 1 1
1 �6 �6
1 �6 �6



 , Y d =




0 0 0
0 0 0
0 0 0





(needs non-perturbative effects)
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Conclusion and outlook

 Heterotic line bundle models on CY manifolds are a useful and
   technically accessible arena for string model building.

 We have found 1000+ (upstairs) heterotic standard models on
   CICYs with               .  h1,1(X) ≤ 5

 The            symmetry restricts the 4d theory and facilitates
   phenomenological analysis beyond the computation of the spectrum.

S(U(1)5)
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Conclusion and outlook

 Heterotic line bundle models on CY manifolds are a useful and
   technically accessible arena for string model building.

 We have found 1000+ (upstairs) heterotic standard models on
   CICYs with               .  h1,1(X) ≤ 5

 The            symmetry restricts the 4d theory and facilitates
   phenomenological analysis beyond the computation of the spectrum.

S(U(1)5)

 Better scans (also for toric CYs) will provide even larger sets 
   of models with the right spectrum: needs detailed analysis of
   phenomenology and identification of fully realistic models.

 Need a better understanding of full, non-Abelian moduli space.

 Combination with moduli stabilization via bundles. 
(Anderson, Gray, Lukas, Ovrut, 2010)
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Conclusion and outlook

 Heterotic line bundle models on CY manifolds are a useful and
   technically accessible arena for string model building.

 We have found 1000+ (upstairs) heterotic standard models on
   CICYs with               .  h1,1(X) ≤ 5

 The            symmetry restricts the 4d theory and facilitates
   phenomenological analysis beyond the computation of the spectrum.

S(U(1)5)

 Better scans (also for toric CYs) will provide even larger sets 
   of models with the right spectrum: needs detailed analysis of
   phenomenology and identification of fully realistic models.

 Need a better understanding of full, non-Abelian moduli space.

 Combination with moduli stabilization via bundles. 
(Anderson, Gray, Lukas, Ovrut, 2010)

Thanks
Wednesday, September 14, 2011


