Moduli stabilization in early superstring cosmology

Lihui Liu

CPHT, Ecole Polytechnique

In collaboration with

John Estes, Hervé Partouche

Corfu Summer Institute 2011 September 14, 2011

Lihui Liu (CPHT) Moduli stabilization September 14, 2011

Introduction

Moduli stabilization in superstring cosmology

- Giving mass to moduli arising from compactification.
- Cosmological moduli problem: coherent oscillation of moduli dominates the energy of the universe → late time decay may spoil big bang nucleosynthesis
 - Can be solved by fabricating super-heavy moduli (KKLT, racetrack, etc)

In our work:

- We propose an alternative approach to moduli stabilization using thermal superstring models.
- Early universe: before EWSB phase transition.
- Lifting flat directions by non supersymmetric compactification
 - SUSY breaking by T: Scherk-Schwarz reduction on $S^1(R_0)$, $\beta = 2\pi R_0 = T^{-1} \Rightarrow M_{\rm string} \gg T \gg \Lambda_{\rm EW}.$
 - Nontrivial thermal vacuum energy generated at one-loop level.

Lihui Liu (CPHT) Moduli stabilization September 14, 2011 2/1

Effective action approach

• To take into account both quantum effect and thermal effect: quantum effective action Γ under finite T:

$$e^{-\Gamma[\varphi]} = \int_{1\mathrm{PI}} \mathcal{D}\eta \, e^{-S[\varphi + \eta]} \ \Rightarrow \ \Gamma[\varphi] = S[\varphi] + Z_{\text{1-loop}}[\varphi] + \dots$$

- In φ : spacetime metric $ds^2 = -N^2(t)dt^2 + a(t)^2 d\vec{x}^2$; moduli $\vec{\Phi}$.
- $Z_{1\text{-loop}} = \bigcirc$ = thermal string partition function.
- $\mathcal{F} := -\frac{Z_{1\text{-loop}}}{\beta V_{D-1}} = \text{free energy density.}$
- General form of the effective action :

$$\Gamma[g_{\mu\nu}, \vec{\Phi}] = \int d^D x \sqrt{-g} \left[\frac{R}{2} - \frac{1}{2} F_{MN} \partial \Phi^M \partial \Phi^N - \mathcal{F}(\vec{\Phi}, T) \right],$$

• $\mathcal{F} = \mathcal{F}_{\min}$: necessary condition for moduli stabilization.

The free energy density

General form of the thermal free-energy density

$$\begin{split} \mathcal{F}(T, \vec{\Phi}) &= -\int_0^\infty \frac{d\ell}{2\ell} \frac{1}{(2\pi\ell)^{\frac{D}{2}}} \sum_{\text{states}} e^{-\frac{1}{2}M_{\!s}(\vec{\Phi})^2\ell} \sum_{k_0} e^{-\frac{(2k_0+1)^2}{2T^2\ell}} \\ &= -T^D \sum_{\text{s}} \frac{G\left(M_{\!s}(\vec{\Phi})/T\right)} \end{split}$$

- States of $M_s \ll T$ contribute to \mathcal{F} .
- States of $M_s \gg T$ are suppressed by $e^{-M_s/T}$ (Boltzman factor).

- Enhancement of gauge symmetry. [P.Ginsparg, C.Vafa, '87]
- Topology change of the internal CY space.

4/16

Heterotic cosmology

- SO(32) heterotic strings on $S^1(R_0) \times \mathbb{R}^{D-1} \times \prod_{i=D}^9 S^1(R_i)$
- Moduli space: $\{R_D, \dots, R_9; \phi\}$.
- Effective action:

$$\Gamma[g_{\mu\nu}, \phi, R_i] = \int d^D x \sqrt{-g} \frac{1}{2} \left[R - \frac{4}{D-2} \left(\partial \phi \right)^2 - \sum_{i=D}^9 \left(\frac{\partial R_i}{R_i} \right)^2 \right] + Z.$$

$$\bullet \ \ Z = \frac{\hat{\beta}\hat{V}_{D-1}}{2(2\pi)^D} \int_{\mathcal{F}} \frac{d\tau_1 d\tau_2}{\tau_2^{D/2}} \frac{1}{\eta^8 \bar{\eta}^{24}} \sum_{a,b} (-1)^{a+b+ab} \frac{\theta {a\brack b}^4}{\eta^4} \frac{\Gamma {a\brack b}^a (R_0)}{\Gamma {b\brack b}^a} \Gamma (R_i) \bar{\Gamma}_{O(32)/\mathbb{Z}_2}.$$

•
$$\Gamma^{[a]}_{[b]}(R_0) = \frac{R_0}{\sqrt{\tau_2}} \sum_{\tilde{m},n} e^{-\frac{\pi R_0^2}{\tau_2} |\tilde{m} + \tau n|^2} (-1)^{a\tilde{m} + bn + \tilde{m}n}$$

$$\bullet \ \Gamma(R_i) = \frac{R_i}{\sqrt{\tau_2}} \sum_{\tilde{m},n} e^{-\frac{\pi R_i^2}{\tau_2} |\tilde{m} + \tau n|^2}$$

Lihui Liu (CPHT) Moduli stabilization September 14, 2011 5 / 16

Heterotic cosmology

• Focusing on one radius R_m , fixing all other radii, $\mathcal{F} = -\frac{Z}{\beta V_{D-1}}$:

$$\mathcal{F} = -T^{D} \left[c_{D} n_{0} + n_{0} \sum_{m \neq 0} G(|m|e^{-|\ln R_{m}|}/\hat{T}) + n_{1} G(|R_{m} - R_{m}^{-1}|/\hat{T}) + \dots \right].$$

- $\hat{T} = e^{-\frac{2\phi}{D-2}}T$: string frame temperature
- Local minimum of $\mathcal F$ due to the states of mass $|R_m-R_m^{-1}|$, vanishing at $R_m=1$.
 - Strings wrapping once $S^1(R_m)$, carrying one unit of momentum.
 - \bullet Non Cartan states of the gauge symmetry enhancement $U(1) \to SU(2)$.

Heterotic cosmology

Let $\Phi_m := \ln R_m$, solving equations of motion near $\Phi_m = 0$:

- $a \propto T^{-1} \propto t^{2/D}$, $\rho_{\rm tot} = H^2 \propto a^{-D}$
- $\ddot{\Phi}_m + (D-1)H\dot{\Phi}_m + M_m^2\Phi_m = 0$, dynamical mass $M_m \propto T^{\frac{D-2}{2}}$.
 - $\Phi_m \sim t^{-1/2} \sin \left(\lambda_m t^{2/D} + \text{phase} \right)$ $\Phi_m \sim t^{-1/2} \sin \left(M_m t + \ldots \right)$ for $M_m = \text{const.}$
 - $\rho_m \propto \dot{\Phi}_m^2 \sim a^{2-\frac{3D}{2}}$ $\rho_m \propto \dot{\Phi}_m^2 \sim 1/a^{D-1}$ for $M_m = {\rm const.}$

Cosmological moduli problem:

- D > 4: $\rho_m \ll \rho_{\rm tot}$: radiation dominated universe. \checkmark
- D=4: $ho_m \propto
 ho_{
 m tot} \propto a^{-4}$. Other SUSY breaking mechanism required [F.Bourliot, J.Estes, C.Kounnas, H.Partouche '08].

Extension: including all moduli ϕ , G_{ij} , B_{ij} , Y_i^I

- All moduli except ϕ can be stabilized.
- Moduli attractor: gauge symmetry enhancement points.

Lihui Liu (CPHT) Moduli stabilization September 14, 2011 7/16

Type I cosmology by duality

- Type I strings on $S^1(R_0) \times \mathbb{R}^{D-1} \times \prod_{i=D}^9 S^1(R_i)$
- Dictionary of type I/heterotic duality:
 - $\lambda_{\rm h}=\frac{1}{\lambda_{\rm I}}, R_{\rm h}=\frac{R_{\rm I}}{\sqrt{\lambda_{\rm I}}}$, where $\lambda_{\rm h(I)}$ is heterotic (type I) string coupling in 10D
 - $Z_{\rm TI} \big(T, \lambda_{\rm I} \big) = Z_{\rm het} \big(T, 1/\lambda_{\rm I} \big)$ for $\lambda_{\rm h} \ll 1$.
- Type I free energy density by duality, near heterotic self-dual point $R_{\rm h}\sim 1$, or $R_{\rm I}\sim \sqrt{\lambda_{\rm I}}$

$$egin{split} \mathcal{F}_{
m het} = -T^D \Big[c_D n_0 + n_1 G \Big(rac{1}{\hat{T}_{
m h}} \Big| R_{
m h} - rac{1}{R_{
m h}} \Big| \Big) + \dots \Big] \Longrightarrow \ \mathcal{F}_{
m TI} = -T^D \Big[c_D n_0 + n_1 G \Big(rac{1}{\hat{T}_{
m f}} \Big| rac{R_{
m I}}{\lambda_{
m I}} - rac{1}{R_{
m I}} \Big| \Big) + \dots \Big] \end{split}$$

- $R_{
 m I}$ stabilized at $\sqrt{\lambda_{
 m I}}$ by non perturbative states of mass $\left|rac{R_{
 m I}}{\lambda_{
 m I}}-rac{1}{R_{
 m I}}
 ight|$
 - \bullet From D1 branes wrapping once the internal circle with one unit of momentum
 - Enhanced gauge symmetry $U(1) \rightarrow SU(2)$
 - Also true for $\lambda_{\rm h}\gg 1$: BPS states, will survive strong-coupling extrapolation

Type I cosmology by duality

Extension:

- Direct computation in type I picture?
 - D1 brane contribution cannot be inferred from direct perturbative computation in type I picture.
 - However $Z_{\rm TI}$ can be rewritten into the form of E1-instanton sum. Technique of first-principle computation of instantonic contribution may be applied.
- Switching on all type I moduli ϕ , G_{ij} , C_{ij} , Y_i^I .
 - ullet All moduli except the dilaton can be stabilized at enhanced gauge symmetry points by either open string perturbative states or non perturbative D1 brane states.

Stabilization of dilaton:

- Maybe 5-brane states can stabilize dilaton when $D \le 5$.
- Examine type II strings on CY
 - Contains NS5-brane contribution by type II/heterotic duality.

Type II cosmology

- Type II strings compactified on Calabi-Yau (CY) three-folds.
 - Type IIA on CY space M or type IIB on mirror W.
 - Low energy effective theory: $\mathcal{N}_4=2$ SUGRA.
- Moduli space: M = M_V × M_H.
 - \mathcal{M}_V : scalar components of $h^{1,1}(M)$ vector multiplets
 - \mathcal{M}_H : scalar components of $h^{1,2}(M)+1$ hyper multiplets
- Look for possibility of moduli stabilization: anywhere in M where extra massless states emerge to minimize F?
- Non perturbative massive states becoming massless when the CY undergoes topology change by extremal transition:
 - Conifold transition [A.Strominger '95]
 - Gauge symmetry enhancement [A.Klemm, P.Mayr '96], [S.H.Katz, D.R.Morrison, M.Ronen Plesser '96]

10 / 16

Lihui Liu (CPHT) Moduli stabilization September 14, 2011

Type II cosmology — conifold transition

Fields relevant to conifold transition:

- The S vector multiplets $\{Z^i\}$: related to the S independent shrinking S^2 .
- The R hypermultiplets $\{c^{Au}\}$: from the R shrinking S^2 .
- Z^i and $c^{\mathcal{A}u}$ vanish at conifold loci.

Lihui Liu (CPHT) Moduli stabilization September 14, 2011 11 / 16

Type II cosmology — conifold transition

• Resulting $\mathcal{N}_4 = 2$ SUGRA:

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R - g_{I\bar{J}} \, \partial X^I \partial \bar{X}^J - h_{\Lambda\Sigma} \, \nabla q^{\Lambda} \nabla q^{\Sigma} - V_s(X,q) + \dots \right].$$

• Expanding $g_{L\bar{l}}$, $h_{\Lambda\Sigma}$ and $V_s(X,q)$ about conifold loci, demanding that the zero-th order metrics have $U(1)^S$ isometry:

$$\begin{split} S &= \int d^4x \sqrt{-g} \left[\frac{1}{2} R + \mathcal{L}_{\mathbf{gauge}}^{\mathcal{N}=2} \left(\boldsymbol{Z}^i, \boldsymbol{c}^{\mathcal{A}u} \right) + \mathcal{L}_{\mathbf{R}} + \ldots \right]. \\ \mathcal{L}_{\mathbf{gauge}}^{\mathcal{N}=2} &= -g_{i\bar{j}} \, \partial \boldsymbol{Z}^i \partial \bar{\boldsymbol{Z}}^j - \nabla \boldsymbol{c}^{\mathcal{A}u} \nabla \boldsymbol{c}^{\mathcal{A}v} - V_s(\boldsymbol{X}, \boldsymbol{c}), \\ V_s &= g_c^2 \, e^{\mathcal{K}} \, \sum_{i,j} \left(4 \, \sum_{\mathcal{A},u} \, Q_i^{\mathcal{A}} Q_j^{\mathcal{A}} \, \bar{\boldsymbol{Z}}^i \boldsymbol{Z}^j \, \boldsymbol{c}^{\mathcal{A}u} \boldsymbol{c}^{\mathcal{A}u} + g^{i\bar{j}} \, \vec{\boldsymbol{D}}_i \cdot \vec{\boldsymbol{D}}_j \right), \\ \vec{\boldsymbol{D}}_i &= \sum_{\mathcal{A}} \, Q_i^{\mathcal{A}} \, \mathcal{C}^{\mathcal{A}\dagger} \, \vec{\boldsymbol{\sigma}} \, \mathcal{C}^{\mathcal{A}}, \quad \mathcal{C}^{\mathcal{A}\dagger} := \left(\frac{-c^{\mathcal{A}^2 + i \, c^{\mathcal{A}^1}}}{c^{\mathcal{A}^3 - i \, c^{\mathcal{A}^4}}} \right), \\ \nabla_{\mu} \boldsymbol{c}^{\mathcal{A}u} &= \partial_{\mu} \boldsymbol{c}^{\mathcal{A}u} + g_c Q_i^{\mathcal{A}} \, V_{\mu}^i \, t_v^u \, \boldsymbol{c}^{\mathcal{A}v}. \end{split}$$

• A sum of gravity action with a rigid $\mathcal{N}=2$ $U(1)^S$ supersymmetry gauge field action formally coupled to gravity.

Moduli irrelevant to conifold transition are decoupled, no potential generated.

Lihui Liu (CPHT)

Moduli stabilization

September 14, 2011 12/16

Type II cosmology — conifold transition

• Focus on relevant fields Z^i and c^{Au} , and compute $\Gamma[\langle Z \rangle, \langle c \rangle]$

Branch	$\langle Z^i angle$	$\langle c^{\mathcal{A}u} \rangle$
	eq 0, moduli	$=0, ext{ non pert. states}$ of mass $\propto \langle Z^i angle$
Coulomb	$\Gamma = \int d^4x \sqrt{-g} \left\{ \frac{R}{2} - (\partial \langle Z \rangle)^2 - T^4 \left[c_4 n_0 + \sum G(\langle Z \rangle/T) \right] + \dots \right\}$	
		$\implies \langle Z \rangle$ attracted to 0
	$=0, ext{ non pert. states}$ of mass $\propto \langle c^{\mathcal{A}u} angle$	eq 0, moduli
Higgs	$\Gamma = \int d^4x \sqrt{-g} \left\{ \frac{R}{2} - (\partial \langle c \rangle)^2 - T^4 \left[c_4 n_0 + \sum G(\langle c \rangle/T) \right] + \dots \right\}$	
	`	$\implies \langle c \rangle$ attracted to 0

• All moduli relevant to conifold transition are stabilized at conifold loci, internal CY attracted to $\hat{M}_{\rm con}$

Type II cosmology — Gauge symmetry enhancement

• Gauge symmetry enhancement $M \to \hat{M}_{\mathrm{enh}} \leftarrow \tilde{M}$:

$$N-1$$
 shrinking S^2 Shrinking S^2 along a curve of genus g deformed to S^3 $M \longrightarrow \hat{M}_{\mathrm{enh}} \longrightarrow \tilde{M}_{\mathrm{enh}}$ SU(N) with g hypers in the adj

• All moduli relevant to gauge symmetry enhancement are stabilized, the internal CY attracted to $\hat{M}_{\rm enh}$, where we have SU(N) with g hypers in the adjoint.

	M	$\hat{M}_{ m enh}$	\tilde{M}
\longrightarrow	$(h^{1,1}, h^{1,2})$	$\left[h^{1,1} - (N-1), h^{1,2} - g(N-1)\right]$	$(h^{1,1} - (N-1), h^{1,2} + g(N^2 - N) - (N^2 - 1))$
←	$(\tilde{h}^{1,1} + (N-1), \tilde{h}^{1,2})$	$\left[\tilde{h}^{1,1},\tilde{h}^{1,2}-(g-1)(N^2-1)\right]$	$\left(ilde{h}^{1,1}, ilde{h}^{1,2} ight)$

Example: a model with heterotic dual

- Type IIA strings compactified on $M \in \mathbf{P}^4_{(1,1,2,2,6)}[12](2,128).$
 - Conifold: $\Delta_c = (1-z_1)^2 z_1^2 z_s = 0$, no Higgs branch.
 - Gauge symmetry enhancement: $\Delta_s = 1 4z_s = 0$, with $U(1) \to SU(2)$, g = 2 hypers in the adjoint. Higgs branch: $\tilde{M} \in P^4_{(1,1,1,1,4)}[8](1,129)$

- Moduli attracted to the crossing points of $\Delta_c=0$ and $\Delta_s=0$.
 - Both of the vector multiplet moduli are stabilized.

$$(2,128) \rightarrow [0,126] \leftarrow (1,129)$$

- Heterotic dual on $K3 \times T^2$ exists

 (S.Kachru, C.Vafa 961)
 - Stabilization of all vec. moduli in the heterotic dual.
 - Stabilization of heterotic dilaton.

Lihui Liu (CPHT) Moduli stabilization September 14, 2011 15 / 16

Type II cosmology

Perspective

Possibility of stabilize also all hypermultiplet moduli in the web of CYs.

- Move in the web of Calabi-Yau spaces to reach smaller Hodge number $h^{1,2}$.
- Expect to stabilize all the hypers except the universal hypermultiplet.
- Consider generalized CY with flux to stabilize the universal hypermultiplet.