Corfu September 2011

Aspects of **F**-theory Unification

George Leontaris

Ioannina University $I\omega\alpha\nu\nu\nu\alpha$ **GREECE**

based on work with: Vlachos, 1105.1858; Phys. Lett. B Tracas & G.Tsamis, 1102.5244; Eur.Phys.J

Road Map for F-UNIFICATION

Indications:

 \blacktriangle Merging of SM gauge couplings at high scales \Longrightarrow

 $\mathbf{G_{SM}} = SU(3) \times SU(2) \times U(1) \in SU(5), SO(10), \dots$

 \blacktriangle "See-Saw" neutrino masses \Longrightarrow

$$m_{\nu}^{eff.} = \frac{m_D^2}{M_N}$$

 $\star m_D \sim m_W \Longrightarrow M_N \sim M_{GUT}.$

 $\blacktriangle \text{ Minimal GUT: } \mathbf{SU(5)}$

 \land SU(5) Chiral and Higgs Representations:

$$10 \rightarrow Q + u^{c} + e^{c}$$

$$\overline{5} \rightarrow d^{c} + \ell$$

$$5 + \overline{5} \rightarrow (T + h_{u}) + (\overline{T} + h_{d})$$

▲ Yukawa Couplings:

 $10 \cdot 10 \cdot 5 \to m_{top}$ $10 \cdot \overline{5} \cdot \overline{5} \to m_b$

A plausible SM scenario... intersecting branes. Shortcomings:

No Unification: $g_3(M_U) \neq g_2(M_U)$ No SU(5)-top coupling 10-10-5!

-9-

 \star for details see talk of E. Dudas

matter resides along a) 'matter curves' and b) in the 'bulk': For each of these massless states ∃ massive KK-modes \downarrow KK-threshold effects posing a threat to Unification

F-SU(5) **THRESHOLDS**

- 1. $U(1)_Y$ Flux Thresholds, Blumenhagen, 0812.0248
- 2. KK-massive Modes, Donagi et al., 0808.222
- 3. D_3 brane probes, Heckman et al., 1103.3287

4. SUSY

I. Flux thresholds

Correction terms through CS-action $S_{CS} \sim \int C_0 \wedge F^4$:

$$\frac{1}{a_3(M_G)} = \frac{1}{a_G}, \ \frac{1}{a_2(M_G)} = \frac{1}{a_G} + x, \ \frac{1}{a_1(M_G)} = \frac{1}{a_G} + \frac{3}{5}x$$

(Blumenhagen, Phys.Rev.Lett.102:071601,2009.)

$$x = -\frac{1}{2} \operatorname{Re} S \int c_1^2(\mathcal{L}_Y)$$

 $S = e^{-\phi} + iC_0 \rightarrow$ axion-dilaton field. **x**: not completely arbitrary:

$$24 \to (8,1)_0 + (1,1)_0 + (3,2)_{-5/6} + (\overline{3},2)_{5/6}$$

elimination of exotics $(3, 2), (\overline{3}, 2) \Rightarrow$

$$\chi(S, \mathcal{L}_{\mathcal{Y}}) = 0 \Rightarrow \int c_1^2(\mathcal{L}_Y) = -2$$

At M_{GUT} :

$$\frac{5}{3} \frac{1}{a_1(M_G)} = \frac{1}{a_2(M_G)} + \frac{2}{3} \frac{1}{a_3(M_G)}$$
(1)

★ $a_i(M_G)$ relation weaker than unification $a_i(M_G) = a_G$. Let M_X : decoupling scale of extra matter

$$\underbrace{[5(b_1^x - b_1) - 2(b_3^x - b_3)]}_{\hookrightarrow \mathcal{B}} \times \ln\left(\frac{M_G}{M_X}\right) = 0$$

a: Minimal case: If extra matter only *color* triplets, $[\cdots] \equiv 0 \Rightarrow$

$$\mathcal{B} = 0 \Rightarrow \forall x \exists M_X$$

⇒ $M_G \sim 2 \times 10^{16}$ GeV is found as the scale where (1) holds. **b: generalization with various states and decoupling scales**: (Callaghan, GKL, King, Ross arXiv:1109.11399) **II**: Threshold effects from heavy **KK**-modes

A: The gauge multiplet

One Loop running of gauge couplings:

$$\frac{16\pi^2}{g_a^2(\mu)} = \frac{16\pi^2}{g_s^2} k_a + b_a \log \frac{\Lambda^2}{\mu^2} + \mathcal{S}_a^{(g)}, \quad a = 3, 2, Y \cdot$$
(2)

 Λ : Cutoff scale.

KK-Thresholds:

$$\mathcal{S}_{a}^{(g)} = 2 \sum_{i} \operatorname{Tr}_{R_{i}} Q_{a}^{2} \operatorname{Str}_{M \neq 0} \left(\frac{1}{12} - \chi^{2} \right) \log \left(\frac{\Lambda^{2}}{M^{2}} \right)$$

 χ : helicity operator

 R_i : representations from the adjoint decomposition $24 = \bigoplus R_i$

$$24 \to (8,1)_0 + (1,3)_0 + (1,1)_0 + (3,2)_{-5/6} + (\bar{3},2)_{5/6}$$

M: mass of KK-mode

 $\cdots \Rightarrow \cdots$

Laplacian $\Delta = \bar{\partial}\bar{\partial}^{\dagger} + \bar{\partial}^{\dagger}\bar{\partial}$ on Riemann surface acting on k-form

$$\Delta_{k,R}\,\psi_n^{(k)} = \lambda_n^{(k)}\,\psi_n^{(k)}$$

In 4-d, eigenvalues \rightarrow mass squared: $\lambda_n^{(k)} \rightarrow M^2$

Thresholds written as (Friedmann & Witten, hep-th/0211269)

$$\mathcal{S}_{a}^{(g)} = 2\sum_{i} \operatorname{Tr}_{R_{i}}(Q_{a}^{2})\mathcal{K}_{i}$$

 \mathcal{K}_i found to be equal twice the Ray-Singer analytic torsion

$$\mathcal{T}_{R_i} = \frac{1}{2} \sum_{k=0}^{2} (-1)^{k+1} \log \det' \frac{\Delta_{k,R_i}}{\Lambda^2}$$

(... more about this ... later on in a specific example...)

Ray-Singer Theorem: (Annals Math. 98 (1973) 154-177)

Torsion \mathcal{T}_R independent of the metric of the Manifold independent of cutoff scale Λ

 \downarrow

 $\mathcal{T}_R = Topological Invariant$

Gauge multiplet thresholds can be cast to the form

$$\mathcal{S}_{a}^{\prime(g)} = 20 \, k_a \mathcal{T}_{5/6} \, + \, \frac{4}{3} \, b_a^{(g)} \left(\mathcal{T}_{5/6} - \mathcal{T}_0 \right) \tag{3}$$

$$k_a \to \{k_3 : k_2 : k_Y\} = \{1 : 1 : \frac{5}{3}\}; \quad b_a^{(g)} = (0, -6, -9)$$

Gauge coupling running becomes:

$$\frac{16\pi^2}{g_a^2(\mu)} = \underbrace{k_a \left(\frac{16\pi^2}{g_s^2} + 20\mathcal{T}_{5/6}\right)}_{k_a \left(\frac{16\pi^2}{g_s^2} + 20\mathcal{T}_{5/6}\right)} + \underbrace{b_a^{(g)} \log \frac{\exp\left[4/3\left(\mathcal{T}_{5/6} - \mathcal{T}_0\right)\right]}{\mu^2 \mathbf{V}^{1/2}}}_{k_a \left(\frac{16\pi^2}{g_U^2}\right)} + \underbrace{b_a^{(g)} \log \frac{M_{GUT}^2}{\mu^2}}_{log \left(\frac{M_{GUT}^2}{\mu^2}\right)}$$
(4)

with the GUT scale defined as:

$$M_{GUT} = e^{2/3 \left(\mathcal{T}_{5/6} - \mathcal{T}_0\right)} \mathbf{M}_{\mathbf{C}}$$

 $(\mathbf{M_C} = \mathbf{V^{-1/4}})$

B: The Chiral and Higgs Fields

1) Bulk fields

$$(3,2)_{-5/6} + (\bar{3},2)_{5/6}; \quad \chi(S,L_Y) = 0 \to \delta \mathcal{S} = 0$$

2) $10, \overline{10} \in \Sigma_{10}, 5, \overline{5} \in \Sigma_5$

(quarks and leptons + possible exotic matter...)

light modes KK-massive modes 2a)Chiral spectrum:

For complete SU(5) multiplets:

$$b_a \propto k_a \rightarrow (b_3:b_2:b_Y) \propto \left\{1:1:\frac{5}{3}\right\}$$

cutoff Λ' can be absorbed in g_U redefinition:

$$\frac{16\pi^2}{g_U^2}k_a + b_a \log\left(\frac{{\Lambda'}^2}{\mu^2}\right) = k_a \left(\frac{16\pi^2}{g_U^2} + b_0 \log\left(\frac{{\Lambda'}^2}{M_{GUT}^2}\right)\right) + b_a \log\left(\frac{M_{GUT}^2}{\mu^2}\right)$$

$$\Rightarrow \frac{16\pi^2}{g_{GUT}^2} = \frac{16\pi^2}{g_U^2} + b_0 \log\left(\frac{{\Lambda'}^2}{M_{GUT}^2}\right)$$
(5)

Refinements:

▲ Color triplets should become massive at $M_X \leq M_{GUT}$

$$5_H \to \mathcal{P} + h_u \ \bar{5}_H \to \bar{\mathcal{P}} + h_d$$

$$b_a \log\left(\frac{M_{GUT}^2}{\mu^2}\right) \to b_a^{MSSM} \log\left(\frac{M_{GUT}^2}{\mu^2}\right) + b_a^T \log\left(\frac{M_{GUT}^2}{M_X^2}\right)$$

▲ $U(1)_Y$ Flux (breaking SU(5)) splits 10,5 multiplets restrictions on $b_{Y,2,3} = (5/3, 1, 1)$ imply

$$\sum_{j} |M_{10}^{j}| - \sum_{i} |M_{5}^{i}| = \sum_{j} |M_{10}^{j} - N_{10Y}^{j}| - \sum_{i} |M_{5}^{i} + N_{5Y}^{i}| \quad (6)$$
$$2\sum_{j} |M_{10}^{j}| = \sum_{j} |M_{10}^{j} + N_{10Y}^{j}| + \sum_{j} |M_{10}^{j} - N_{10Y}^{j}| \quad (7)$$

(GKL, N.D. Tracas, G. Tsamis, arXiv:1102.5244)

2b)KK massive spectrum:

 $\Delta_{i,Y}^{R}$: Laplacian acting on chiral/antichiral representations:

$$\mathcal{K}_{\Sigma_R} = -\frac{1}{2} \log \det' \frac{\Delta_{0,Y}^R}{{\Lambda'}^2} - \frac{1}{2} \log \det' \frac{\Delta_{1,Y}^R}{{\Lambda'}^2}, \ R = \bar{5}, \ 10$$

For a representation r

$$S_a^r = \sum_i 2 \operatorname{Tr}(Q_{a,r}^2) \mathcal{K}_i \cdot$$

Recall that r refers to

$$10 \to (3,2)_{\frac{1}{6}} + (\bar{3},1)_{-\frac{2}{3}} + (1,1)_1, \quad \bar{5} \to (\bar{3},1)_{\frac{1}{3}} + (1,2)_{-\frac{1}{2}}.$$

Thresholds	SU(3)	SU(2)	U(1)
$S_a^{ar{5}}$	$\mathcal{K}_{1/3}$	$\mathcal{K}_{-1/2}$	$\mathcal{K}_{-1/2} + 2/3 \mathcal{K}_{1/3}$
S^{10}_a	$2\mathcal{K}_{1/6} + \mathcal{K}_{-2/3}$	$3\mathcal{K}_{1/6}$	$1/3\mathcal{K}_{1/6} + 2\mathcal{K}_1 + 8/3\mathcal{K}_{-2/3}$

 Σ_{10} -matter curve: Take first a = Y:

$$S_Y^{10} = \frac{1}{3} \mathcal{K}_{1/6} + \frac{8}{3} \mathcal{K}_{-2/3} + 2\mathcal{K}_1$$
$$= \frac{8}{3} \left(\mathcal{K}_{-2/3} - \mathcal{K}_{1/6} \right) - 2 \left(\mathcal{K}_{1/6} - \mathcal{K}_1 \right) + 3 \cdot \frac{5}{3} \mathcal{K}_{1/6} \cdot \quad (8)$$

-22-

+POSTULATE:

$$\mathcal{K}_{q_i} - \mathcal{K}_{q_j} = f(q_i - q_j)$$

Then:

$$S_a^{10} = +\frac{4}{3} \,\beta_a^{10} \left(\mathcal{T}_{-2/3} - \mathcal{T}_{1/6}\right) + \frac{k_a}{k_a} \cdot \left(6 \,\mathcal{T}_{1/6}\right)$$

 $\Sigma_{\overline{5}}$ -matter curve:

$$S_{a}^{\bar{5}} = -\frac{4}{3} \beta_{a}^{\bar{5}} \left(\mathcal{T}_{-1/2} - \mathcal{T}_{1/3} \right) + k_{a} \cdot \left(2 \, \mathcal{T}_{1/3} \right) \tag{9}$$

 \Rightarrow Because of:

$$\begin{array}{ccc} \mathcal{A} : & \mathcal{K}_{-1/2} - \mathcal{K}_{1/3} &= \mathcal{T}_{-2/3} - \mathcal{T}_{1/6} \\ \mathcal{B} : & \beta_a^{10} = \beta_a^{\overline{5}} &= \left\{ \frac{3}{2}, 0, 1 \right\} \end{array}$$
 (10)

 \Rightarrow Total correction from KK-massive modes on matter curves:

$$S_a^5 + S_a^{10} = k_a \cdot (2 \mathcal{T}_{1/3} + 6 \mathcal{T}_{1/6}) \propto k_a$$

 \Rightarrow Only effect:

SHIFT of gauge coupling value at M_{GUT}

$$k_a \, \frac{16\pi^2}{g_{GUT}^2} = k_a \, \left(\frac{16\pi^2}{g_U^2} + 2\,\mathcal{T}_{1/3} + 6\,\mathcal{T}_{1/6}\right)$$

Implementation

Postulate \Leftrightarrow existence of non-trivial line bundle with appropriate structure.

Is there such a thing?

YES!

Example:

g = 1 Riemann Surfaces

Thresholds (functions of \mathcal{T}) expressed in terms of Laplacian Δ_k eigenvalues

$$\begin{split} \Delta_{k,R(V)} &= (\bar{\partial} + \bar{\partial}^{\dagger})^2 = \bar{\partial}\bar{\partial}^{\dagger} + \bar{\partial}^{\dagger}\bar{\partial} \cdot \\ \Delta_{k,R(V)}\psi_k^n &= \lambda_n^k\psi_k^n \end{split}$$

To compute thresholds we need the associated zeta-function

$$\zeta_{\Delta_k}(s) = \sum_n \frac{1}{\lambda_n^s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \operatorname{Tr}\left(e^{-\Delta_k t}\right) t \qquad (11)$$

Torsion written as

$$\mathcal{T} = \sum_{k} (-1)^{k+1} k \left. \frac{d\zeta_{\Delta_k}(s)}{ds} \right|_{s=0}$$
(12)

A laborious calculation gives (Ray & Singer 1973):

$$\mathcal{T}_{z} = \ln \left| \frac{e^{\pi i v^{2} \tau} \vartheta_{1}(z, \tau)}{\eta(\tau)} \right|, \ z = u - \tau v$$
(13)

 \star Observe that under $v \to v - 1$:

$$\mathcal{T}_{z=u-\tau(v-1)} = \ln \left| \frac{e^{\pi i \tau (v-1)^2} \vartheta_1(u-\tau(v-1),\tau)}{\eta(\tau)} \right| = \dots = \mathcal{T}_{z=u-\tau v} (14)$$

 \bigstar Assume the hypercharge embedding :

$$v_i = \frac{q_i}{|q_i - q_j|}, \ q_i = hypercharge$$

then:

$$\mathcal{T}_{-2/3} - \mathcal{T}_{1/6} = \mathcal{T}_{-1/2} - \mathcal{T}_{1/3} = 0!$$

$$\Downarrow$$

In agreement with our POSTULATE !

OUTCOME

 \star KK-thresholds \propto Analytic Torsion \mathcal{T} .

 \star GUT-scale intimately related to KK-massive modes scale

 \star These imply topologically invariant ratio:

$$\frac{M_{GUT}}{M_C} = e^{\frac{2}{3}(\mathcal{T}_{5/6} - \mathcal{T}_0)}$$

★ cutoff scale independence $(\Lambda) \rightarrow \text{constraints}$ on spectrum ★ SHIFT of the GUT value of gauge coupling

$$\frac{16\pi^2}{g_{GUT}^2} = \frac{16\pi^2}{g_s^2} + \sum_i c_i \mathcal{T}_i$$

ADDITIONAL MATERIAL

F-theory described by 8-d YM Compactified on $R^{7,1} = R^{3,1} \times S$. $SO(7,1) \times U(1)_R \to SO(3,1) \times SO(4) \times U(1)_R$ The 8-d spinor Ψ_+ decomposes $(O(4) \sim SU(2) \times SU(2))$ $\left(S_+, \frac{1}{2}\right) \to \left((2,1), (2,1), \frac{1}{2}\right) \oplus \left((1,2), (1,2), -\frac{1}{2}\right)$ \Rightarrow globally, NOT well defined!

TWIST:

$$J \sim U(1) \in U(2), \quad J_R \sim U(1)_R \rightarrow J_{\pm} = J \pm 2J_R$$

$$\Rightarrow \qquad \left(S_+, \frac{1}{2}\right) \rightarrow \{(2, 1) \otimes 2_1\} \oplus \{(1, 2) \otimes (1_2 \oplus 1_0)\}$$

preserving $\mathcal{N} = 1$ SUSY.
(Beasley, Heckmann, Vafa, 0802.3391)

• Under twisting, scalars & fermions become forms:

scalars:
$$\varphi = \varphi_{mn} dz^m \wedge dz^n$$

$$\begin{pmatrix} \eta_{\alpha} & (0,0) \end{pmatrix}$$

fermions: =
$$\langle \psi_{\dot{\alpha}} = \psi_{\dot{\alpha}m} dz^m$$
 (1,0)

$$\chi_{\alpha} = \chi_{\dot{\alpha}mn} \, dz^m \wedge dz^n \quad (2,0)$$

The above can be organised in $\mathcal{N} = 1$ multiplets

 $(\mathbf{A}_{\mu},\eta), \ (\mathbf{A}_{\bar{\mathbf{m}}},\psi_{\bar{\mathbf{m}}}), \ (\phi_{12},\chi_{12})$

An F –	SU(5) fulfilling the requirements	2
(GKL,	GG Ross JHEP 1102:108,2011.)	

Chiral Matter											
	M	N	Q	u^c	e^c		M	N	d^c	L	
$10^{(1)} (F_3)$	1	0	1	1	1	$5^{(4)}(\bar{f}_1)$	-1	0	-1	-1	
$10^{(2)} (F_{2,1})$	1	-1	1	2	0	$5^{(1)}(\bar{f}_2)$	-1	0	-1	-1	
$10^{(3)} (F_{1,2})$	1	1	1	0	2	$5^{(2)}(\bar{f}_3)$	-1	0	-1	-1	
$10^{(4)}(-)$	0	0	0	0	0	$5^{(3)}(-)$	0	0	0	0	
Higgs and Colour Triplets											
				M	N	$T h_{u,}$	d				
	5	$5^{(0)}\left(h_{u},T\right)$		1	0	1	1				
	5	$5^{(5)}(h_d)$		0	-1	0 -	1				
	5	$(6)(\bar{1})$		-1	1	-1	0				