Applications of AdS/CFT

Kyriakos Papadodimas

Corfu

September 12, 2011

• 't Hooft coupling $\lambda = g_{YM}^2 N$

• $\lambda \gg 1 \Rightarrow$ QFT hard, gravity easy

• $\lambda \ll 1 \Rightarrow$ **QFT** easy, gravity hard

(Holographic) QCD

- \bullet Understanding QCD \rightarrow one of the main motivations for AdS/CFT
- QCD: SU(3) gauge theory with fermions
- Coupling constant runs with energy scale
- Strongly coupled at low energies \Rightarrow CONFINEMENT

 $\mathbf{UV} \Rightarrow \mathsf{quarks} \text{ and gluons}$

IR \Rightarrow gauge singlets (glueballs, mesons, baryons...)

- Understand/prove confinement
- Calculate spectrum of asymptotic states (baryons, mesons etc.) from UV lagrangian
- Confinement/Deconfinement transition equation of state of quark-gluon plasma
- Dynamical processes (scattering, quark-gluon plasma dynamics...)

• The duality between $\mathcal{N} = 4$ SYM and IIB string theory on AdS₅×S⁵ is not the most useful setup to study QCD

• The $\mathcal{N} = 4$ theory has too much supersymmetry and is conformal (i.e. has no scale like Λ_{QCD}) \Rightarrow no "particles"

• Need to consider some variation where the gauge theory is a **confining** gauge theory

• The $\mathcal{N} = 4$ SYM has matter in adjoint of SU(N). Need to include fields in fundamental representation (quarks).

5-dimensional SU(N) supersymmetric gauge theory (not conformal!)

 \Leftrightarrow

supergravity on

$$ds^2 \sim \frac{1}{z} \left(\frac{-dt^2 + d\vec{x}^2 + dz^2}{z^2} + d\Omega_4^2 \right)$$

• The 5d SYM has too much SUSY (too many fields) \Rightarrow need to reduce

- Compactify on circle with antiperiodic b.c. for fermions
- Fermions projected out, scalars get masses from loops
- Theory flows in the IR to 4d pure SU(N) Yang-Mills
- This is a **CONFINING**, **NON-SUSY** gauge theory, qualitatively similar to QCD

The gravitational description

• Performing the same circle reduction on the gravitational solution of the D4 branes we end up with the following solution of IIA supergravity

$$ds^{2} \sim \frac{1}{z} \left(\frac{-dt^{2} + d\vec{x}^{2}}{z^{2}} + \frac{dz^{2}}{z^{2}f(z)} + \frac{f(z)}{z^{2}}d\phi^{2} + d\Omega_{4}^{2} \right), \ f(z) = 1 - \frac{z^{6}}{z_{0}^{6}}$$

• Circle $\phi \sim \phi + 2\pi$ whose size shrinks to zero at some $z = z_0$. The spacetime ends smoothly there.

• This is (almost) the holographic dual of large N SU(N) gauge theory in four dimensions!!!

 In AdS/CFT glueball/hadron masses ⇔ energies of fields propagating in gravitational background.

- Consider scalar field Φ obeying the KG equation $\Box \Phi = m^2 \Phi$
- Look for solutions of the form

$$\Phi(x,z) = e^{ik_{\mu}x^{\mu}}f(z)$$

 k_{μ} is the momentum of the glueball in the gauge theory. And $k^2 = {\rm mass~of~glueball}$

Computing the mass spectrum

 \bullet Plug ansatz into KG equation get a 2nd order ordinary differential equation for f(z)

$$z^5 \frac{d}{dz} \left(z \left(\frac{1}{z^6} - \frac{1}{z_0^6} \right) \frac{df(z)}{dz} \right) + M^2 f(z) = 0$$

where $M^2 = k^2$.

We need to impose boundary conditions:

- 1. f(z) should not blow-up at infinity
- 2. f(z) should be smooth in interior $z = z_0$

• 2-boundary conditions for 2nd order ODE \Rightarrow there is a solution only for a discrete set of M^2

Spectrum of allowed M^2

\Leftrightarrow

Masses of glueballs/hadrons in gauge theory!!!

• Comparison (ratio of lightest glueballs)

$$\left(\frac{M_2}{M_1}\right)_{AdS/CFT} = 1.20$$

$$\left(\frac{M_2}{M_1}\right)_{lattice} = 1.36 \pm 0.32$$

• This is impressive! We got a reasonable answer for the **non-perturbative** bound states of a **strongly coupled** gauge theory by solving a 2nd order classical ODE! (for lattice we would need lots of computer power).

• Many improvements, including flavor quarks, etc.

(1)

- What is a direct way to see confinement in AdS/CFT ?
- Consider a $q\overline{q}$ pair at distance L. The theory is confining if energy goes like $V(L) \sim kL$ for large L.

 \bullet Consider propagation of state for time T. We expect the following dependence

$$e^{-HT} \sim e^{-kLT} \sim e^{-k \cdot \text{Area}}$$

This amplitude can be related to the holonomy of the gauge field around the loop (called Wilson loop)

$$\mathcal{W} = \langle \mathrm{Tr} \mathcal{P} e^{i \oint_{\mathcal{C}} A_{\mu} dx^{\mu}} \rangle$$

Confinement $\Leftrightarrow \mathcal{W} \sim e^{-k \cdot \text{Area}}$

 A quark in the gauge theory ⇔ string in AdS ending on boundary

ullet Wilson loop \sim string surface ending on boundary loop

Prescription: find **minimal area** surface ending on boundary loop. Calculate its area A^* and then

$$\mathcal{W} = \exp\left(-A^*\right)$$

for confining gauge theories this leads to area law in boundary theory

• So far \Rightarrow "static" questions. Can also be addressed by lattice

• For dynamical processes (time-dependent) lattice/numerical computations are very difficult

 \bullet AdS/CFT can sometimes be used to study such questions

For example

Experiments at RHIC and LHC

Extremely complicated, numerics difficult

Many interesting questions about various stages of the process and about the physics of the (strongly coupled) fluid (QGP) $\mathsf{Quark-gluon}\ \mathsf{Fireball} \Leftrightarrow \mathsf{Black}\ \mathsf{Hole}$

Collision of particles \Rightarrow

Black Hole formation \Rightarrow

Hawking evaporation into particles

Many other computations

- Adding flavor quarks
- Quark energy loss
- Equation of state of plasma
- Phase diagram of QCD

. . .

Hydrodynamics and condensed matter

• Static, Uniform black hole \Leftrightarrow uniform fluid (QGP) in gauge theory

 \bullet In gravity, fluctuations of black hole horizon \Rightarrow solutions of Einstein equations

• In gauge theory, fluctuations of fluid are described by hydrodynamics (Navier Stokes)

$$\nabla \vec{v} = 0$$
$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} - \eta \nabla^2 \vec{v} = -\nabla P$$

gives

- \bullet Any fluid \Rightarrow "viscosity coefficient" η
- Measured by thermal 2-point function

 $\langle T_{\mu\nu}(x) T_{\rho\sigma}(0) \rangle$

• Hard to calculate in strongly interacting theories (for example for QGP)

in AdS/CFT: $T_{\mu\nu} \Leftrightarrow g_{\mu\nu}$ (graviton)

 \bullet Hence viscosity related to graviton scattering amplitude off a black hole horizon \Rightarrow

EASY
$$\frac{\eta}{s} = \frac{1}{4\pi}$$

All known materials obey the bound

Holographic superconductors

Holographic superconductors

Strongly Coupled Fermions

Quantum criticality, non-fermi liquids, strange metals

Gravity and Cosmology

Quantum aspects of Black Holes

- $\blacksquare \quad \mathsf{Black hole in AdS} \Leftrightarrow \mathsf{QGP at finite temperature}$
- Estimate black hole entropy from weakly coupled gauge theory

• Correct entropy up to a factor of 3/4 !

■ Numerical simulation of gauge theory ⇒ exact agreement

- \bullet Information paradox: dual gauge theory is manifestly unitary \Rightarrow No information loss
- Resolution of singularity

 \bullet AdS/CFT provides us with many examples of strongly coupled QFTs

• What if BSM physics is strongly coupled (for example technicolor etc.)?

- Randall-Sundrum models (warped extra dimensions)
- Inflation, power spectrum
- Holography for de-Sitter $(\Lambda > 0)$

More work on applications

Decode the AdS hologram

■ Holography for flat space/de Sitter

Observational predictions of holography?

■ Is time emergent?

