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AdS/CFT and motivation

» The AdS/CFT correspondence is a tool to extract information
for gauge theories at strong coupling from gravity. Prototype
was the AdSs x S° dual to A'=4 SYM [Maldacena 99].
Extensions: temperature, velocity, Coulomp branch, marginally
deformed backgrounds. . .

» AdS,/CFTs: Type IIA string theory on AdSs; x CP3? with an
N = 6 quiver CS matter theory with gauge group
U(N)g x U(N)_x and marginal superpotential [ABJM
Model]. The superpotential coupling proportional to k~2,
N'/5 < k and allows for a weak coupling regime (A = N/k).
The Type lIA theory is then weakly curved when k < N.

» Bound states of quarks are dual to classical string/brane probe
solutions. Discrepancies arise in many examples between field
theory /experimental expectations and their gravitational
description,



Plan of the talk:

» Construction of baryons within the gravity/gauge theory
duality.

v

Macroscopical calculation of binding energy and charges.

v

Stability analysis:

» Based on general statements concerning the perturbative
stability of such string solutions (transcendental equation),
rather than (heavy) numerics.

» Applications and resolutions of the discrepancies,

v

Microscopical calculation of binding energy and charges.

Conclusions and future directions.

v



Baryon potential within AdS/CFT

» Heavy baryon potential E(L) is extracted from Wilson loop
expectation values (W(C)).

» Within AdS/CFT the interaction potential energy of the
baryon is given by [prototype by Witten 1998]

e ET = (W(C)) ~ exp (iS[C]) .
S[C] = Snc + Spsr + Scs, Note: Quarks are external.
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Figure: Baryon Configuration.



Dp-Brane energy

The DBI action of a Dp-brane in string units reads

1

S, = _Tp/dp+1§€_¢\/| det(Plg +2nF])|, Tp= ()P’

where g is the induced metric and F = F + %Bg is the magnetic
flux. The metric of a Dp-brane wrapping on CPP/2 cycles (gauge
choice is time and the angles of the CPP/2 cycles) reads

16p2
ds2 | = —ng# +12ds2

where F = N'J and B, = —27tJ, J is the Kahler form (equations
of motion are satisfied) and N' € 2Z. The energy of the Dp-brane
is [Lozano et. al. 2010].

D, 4 T » b
Epgi = Q" Qo= Vol(CPE) (L4 2m’(W = 2p))" .

are =1, ag = 0, due Freed-Witten anomaly of CP?, not spin-manifold.

Note: N2 is comparable to [* > 1.



Dp-brane Charges
The CS action for a Dp-brane reads

Ses=Tp [ d*1¢ [P (Z Cy B ) e2”F]
q

Both the D4 and D6-branes have CP! D2-branes dissolved.
Therefore in the presence of a magnetic flux they capture the F;

p+1

flux and develop a tadpole with charge g = k ? [Lozano
et al 2010].
There are three more couplings for D6:
> The fD6 F2 A By A\ By A\ A which cancels [Aharony et al 09]
from higher curvature terms [Green et al 96, Cheung et al 97,
Bachas et al 99].
» The fD6 F> A F A By A A which contributes to its k charge,
gpe = N + k W, where the N units induced by the Fg
flux SCD-S6 =2 Tg fRX]lﬁ P[F@] NA=NTH f dtA; .



Classical solution

Solving the e.o.m. and imposing the b.c. at the boundary and the
baryon vertex (Figure) we find that the length and the energy of
the distribution reads

2
— 1
¢ = Mzﬁ ,Y§,Z;4X(1,X> ,
600 2'4'4
Epin = Epp+EF1+Eq-nF1=

3
= g _ R2) — _p2 — 2Qp
X = hnin/ 1,1 2 2(14’”) mm:\/l ps = LqTFl.

Thus, the binding energy reads
Euin = —f () &2 <0, £(x) >

[ non- Iogarlthmlc
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Stability analysis
Instabilities can emerge only from the longitudinal fluctuations of
the / strings [Sfetsos, K.S. 2008]. Perturbing the embedding
according to r = rq + 6r(p) and expanding the Nambu-Goto action
to quadratic order in the fluctuations, the zero mode solution
vanishing in the UV reads
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imposing the boundary condition at the baryon vertex pg we find
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The solution of the transcedental equation is . ~ 0.538, thus the
bound of F-strings coming from the stability is more restrictive

I > T"%(l + /1 — B?). As for the brane fluctuations they prove
to be stable. Note that there are no boundary conditions for these
fluctuations, the reason being that the R x CP?Z space has no
boundary.



Microscopical energy

DO-brane charge on the Dp-branes wrapped on (fuzzy) CP?
suggests a close analogy with the dielectric effect dielectric
[Emparan 97, Myers 99]. The DBI action describing the dynamics

of n coincident DO-branes expanded into fuzzy CPP/?
174 i i I ryi
SHy =~ [ dvF stevdetQ @y = o+ 51X XMIEg
E =g+ B,. Thus, Qij = (5ij + /\/Iij with /\/Iij given by

' 1 1 (PL
M'j = =57 MmfX (ng i—

p
s fiimX™) |
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We shall compute det(Q) by computing traces of powers of M for
the fuzzy CPP/2 space.



However, for B, = 0 in the limit

4
L>1, m>>l—>r:L—2:ﬁnite,

m

n
Tr(l\/lzn)zp(—l)”(lﬁrnz) I, Tr(M2l)~o0.

Thus the energy of n DO-branes expanding into a fuzzy CP?Z is
then given to leading order in m by

n L4 24 0
Eno =~ (14 jaa) (- (L1 1P <),
where n = dim(m, 0). For m ~ %/ the leading order in m coincides

with the macroscopical result.
» For By # 0 the discussion is more technical and would not be

presented here. It turns out, that redefinition of m gets
corrected: N =2m+2 ,p=24and N =2m+4 ,p=6.



Microscopical charges

We shall next show how fundamental strings that stretch from the
Dp-brane to the boundary of AdS, strings arise in the microscopic
setup. The relevant CS terms for n coincident DO-branes in the
AdSs x CP3 are

i

Scs = /dT STY{ [(ixix)Fz - (ixix)3Fe + 27T(/xix)2F2 A By —

_1
(2m)2
11
=5 G2 i) FzAszAsz}AT}.

Where we have expanded the background potentials on the
non-Abelian scalars occurs through the Taylor expansion [Garousi et
al 1998] and the pull-backs into the worldline are given in terms of
gauge covariant derivatives, D X# = 0 X" + i[A¢, X].



In the large m limit we find:

2 NE2
> Scs = qfdtAc a =Lkt
the number of fundamental string charge in each CP!, in

agreement with the macroscopical result.
> 5C52 ~ NdeAT,

pP_ P _
> Scs, = —k Py [ dTAc , Scs, = ¥k [ drAc

To find the total k charge we add the subleading contributions in
the large m expansion of Scs,. Next we use the corrected
redefinition of m we recover precicely the units of F-charge for D2,
D4 and D6 brane plus a k/8 contribution for the D6, coming from
Scs,- Stability analysis goes along the same lines than in the
macroscopical set-up; non-singlet classical stable solutions.



Dielectric higher-curvature terms

Generalizing the Chern—Simons action for multiple Dp-branes

[Myers 1999] to include higher curvature terms we find for our
background

She. =~ Gy STlixix) (P2 Q)4

where )4 is given in term of the Pontryagin classes of the normal
and the tangent bundle of the three CP? circles of the CP3

manifold [Eguchi et al 1980, Bergman et al 2009].
Substituting F>» and Q4 we find:

She _x / dtA; .
8 Jr



Summary-future directions

» We have constructed macroscopically various configurations of
magnetically charged particle-like branes in ABJM with
reduced number of quarks. The stability analysis increases the
classical lower bound for each value of the magnetic flux.

» We have given an alternative description in terms of DO-branes
expanded into fuzzy CP?Z spaces that allows to explore the
finite 't Hooft coupling region, LP < n.

» We have constructed that
to the best of our knowledge have not been considered before
in the literature. This new coupling exactly cancels the k/8
contribution to the D6-brane tadpole.

» It would be interesting to extend to theories with reduced
supersymmetry, like the Klebanov—Strassler backgrounds,
where the internal geometry is the T conifold. Non-singlet
baryon vertex???



Review of the AdSy x CP? background

In our conventions the AdSs x CP3 metric reads
ds? — 12 (stf‘ g5, + 523 )
with L the radius of curvature in string units
L:<327T2N>1/4, gs:£
k k
and where we have normalized the two factors such that

Ruv = —3guv and 8g,p for AdS, and CP3, respectively. The
explicit parameterization of AdS,; we use is

2 2
o35, = 0P g2 + L2dp@ L AR = —d? b+ dd

For the metric on CP3 we use the parameterization in [Pope
1984,Warner 1985]

dsgps =  dp®+sin #[d“ + 15'" a (cos® & (dy — cos 0 dp)? +- d6”

+sin20.d¢ )+%cos V(d?(+sin2,x(dlp_c°59d¢))2} :



where

T
Oéwaéi,
Inside CP3 there is a CP! for y = a = 71/2 and fixed x and ¢ and
also a CP? for fixed 6 and ¢.

In these coordinates the connection in dsz; = (d7 +.4)% + dsé]l)3
reads

0<o<m, 02, 0Ky, x<4mr.

A= %Sin2 i (d)( +sin? & (dyp — cos dqb)) .
The Kahler form
1
J = EC/A;
is then normalized such that

/ J=1, / IAS =72, / JANIAD =73,
cp P2 cp3

Therefore,

1
cJNJIAJ=dVol(P?)  and Vol(C]P3):%.



The AdS, x CP3 background fluxes can then be written as

20 13 5
=2ty R =3 Nol(AdSy),  Fo= —(woFa) = 25 dVol(P?)
8s 8gs 8s
where g¢ = —. The flux integrals satisfy

E .

/ F6:327r5N, / F=2mk.
cP3 cpP1

The flat Bo-field that is needed to compensate for the Freed—Witten
worldvolume flux in the D4-brane is given by [Aharony et al 2009]

82 = -2mJ .



Fuzzy CP% manifold
CP?% is the coset mamfold SU(5+1)/U(5), and can be defined

by the submanifold of ]I{T+p determined by the set of p?/4
constraints

T PT*” L P_1q .
x'x'=1, diksdyk = 2~

=1 jik=1 7(5+1)
where d% are the components of the totally symmetric

SU(Z + 1)-invariant tensor. The Fubini-Study metric of the CP2
is given by

p
T+
ds?
cPt ;

A fuzzy version of CP% can then be obtained by imposing the
conditions at the level of matrices. This is achieved with a set of
coordinates X' (i =1,..., %2 + p) in the irreducible totally
symmetric representation of order m, (m,0), satisfying:



. ) 1
pm?_ 4 P
4(5+1) 4

with fj the structure constants in the algebra of the generalized

Gell-Mann matrices of SU(5 + 1). The dimension of the (m,0)
representation is given by

(m+5)!

dim(m,0) = Tg)!

The Kahler form of the fuzzy CP?% is given by:

1 p k
Jj = F XK.
ARV




