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AdS/CFT and motivation

I The AdS/CFT correspondence is a tool to extract information
for gauge theories at strong coupling from gravity. Prototype
was the AdS5 × S5 dual to N=4 SYM [Maldacena 99].
Extensions: temperature, velocity, Coulomp branch, marginally
deformed backgrounds. . .

I AdS4/CFT3: Type IIA string theory on AdS4 × CP3 with an
N = 6 quiver CS matter theory with gauge group
U(N)k × U(N)−k and marginal superpotential [ABJM
Model]. The superpotential coupling proportional to k−2,
N1/5 � k and allows for a weak coupling regime (λ = N/k).
The Type IIA theory is then weakly curved when k � N.

I Bound states of quarks are dual to classical string/brane probe
solutions. Discrepancies arise in many examples between field
theory /experimental expectations and their gravitational
description, baryons: colorless states.



Plan of the talk:

I Construction of baryons within the gravity/gauge theory
duality.

I Macroscopical calculation of binding energy and charges.

I Stability analysis:
I Based on general statements concerning the perturbative

stability of such string solutions (transcendental equation),
rather than (heavy) numerics.

I Applications and resolutions of the discrepancies, non-sinlet
solutions.

I Microscopical calculation of binding energy and charges.

I Conclusions and future directions.



Baryon potential within AdS/CFT
I Heavy baryon potential E (L) is extracted from Wilson loop

expectation values 〈W (C )〉.
I Within AdS/CFT, the interaction potential energy of the

baryon is given by [prototype by Witten 1998]

e−iET = 〈W (C )〉 ' exp (iS [C ]) ,

S [C ] = SNG + SDBI + SCS , Note: Quarks are external.

Figure: Baryon Configuration.



Dp-Brane energy
The DBI action of a Dp-brane in string units reads

Sp = −Tp

∫
dp+1ξ e−φ

√
| det(P [g + 2πF ])| , Tp =

1
(2π)p

,

where g is the induced metric and F = F + 1
2π B2 is the magnetic

flux. The metric of a Dp-brane wrapping on CPp/2 cycles (gauge
choice is time and the angles of the CPp/2 cycles) reads

ds2
ind = −16ρ2

L2 dτ2 + L2ds2
CP

p
2
.

where F = N J and B2 = −2πJ, J is the Kähler form (equations
of motion are satisfied) and N ∈ 2Z. The energy of the Dp-brane
is [Lozano et. al. 2010].

EDp
DBI = −Qp

4ρ0
L

, Qp =
Tp
gs

Vol(CP
p
2 )
(
L4 + (2π)2(N − ap)

2
) p

4
,

a2,6 = 1, a4 = 0,due Freed-Witten anomaly of CP2, not spin-manifold.

Note: N 2 is comparable to L4 � 1.



Dp-brane Charges
The CS action for a Dp-brane reads

SCS = Tp

∫
dp+1ξ

[
P

(
∑
q

Cq eB2

)
e2πF

]
p+1

.

Both the D4 and D6-branes have CP1 D2-branes dissolved.
Therefore in the presence of a magnetic flux they capture the F2

flux and develop a tadpole with charge q = k N
p
2 −1

2
p
2 −1( p

2−1)!
, [Lozano

et al 2010].
There are three more couplings for D6:

I The
∫
D6 F2 ∧ B2 ∧ B2 ∧ A which cancels [Aharony et al 09]

from higher curvature terms [Green et al 96, Cheung et al 97,
Bachas et al 99].

I The
∫
D6 F2 ∧ F ∧ B2 ∧ A which contributes to its k charge,

qD6 = N + k N (N−2)
8 , where the N units induced by the F6

flux SD6
CS = 2π T6

∫
R×P3 P [F6] ∧ A = N TF1

∫
dtAt .



Classical solution

Solving the e.o.m. and imposing the b.c. at the boundary and the
baryon vertex (Figure) we find that the length and the energy of
the distribution reads

` =
L2
√

x(1− x)
6ρ0

2F1

(
1
2
,
3
4
,
7
4
; 4x (1− x)

)
,

Ebin = EDp + ElF1 + E(q−l)F1 =

= l TF1 ρ0

{
− 2F1

(
−1

4
,
1
2
,
3
4
; 4x (1− x)

)
+ 2x − 1

}
.

x = lmin/l , l > q
2
(1+

√
1− β2) = lmin ,

√
1− β2 ≡ 2Qp

L q TF1

.

Thus, the binding energy reads
Ebin = −f (x) (gsN)2/5

` 6 0 , f (x) > 0 .
[Conformal dependence (non-logarithmic), non-pertubative and
concavity].



Stability analysis
Instabilities can emerge only from the longitudinal fluctuations of
the l strings [Sfetsos, K.S. 2008]. Perturbing the embedding
according to r = rcl + δr(ρ) and expanding the Nambu-Goto action
to quadratic order in the fluctuations, the zero mode solution
vanishing in the UV reads

δr = A
∫ ∞

ρ
dρ

ρ2

(ρ4 − ρ4
1)

3/2 =
A

3ρ3 2F1

(3
2
,
3
4
;
7
4
;

ρ4
1

ρ4

)
.

imposing the boundary condition at the baryon vertex ρ0 we find

2F1

(3
2
,
3
4
;
7
4
; 1− γ2

)
=

3
2γ(1+ γ2)

, γ ≡

√
1−

ρ4
1

ρ4
0
.

The solution of the transcedental equation is γc ' 0.538, thus the
bound of F -strings coming from the stability is more restrictive
l > q

1+γc
(1+

√
1− β2). As for the brane fluctuations they prove

to be stable. Note that there are no boundary conditions for these
fluctuations, the reason being that the R × CP

p
2 space has no

boundary.



Microscopical energy

D0-brane charge on the Dp-branes wrapped on (fuzzy) CP
p
2

suggests a close analogy with the dielectric effect dielectric
[Emparan 97, Myers 99]. The DBI action describing the dynamics
of n coincident D0-branes expanded into fuzzy CPp/2

SDBI
nD0 = − 1

gs

∫
dτ

4ρ

L
STr

√
det Q ,Q i

j = δi
j +

i
2π

[X i ,X k ]Ekj .

E = g + B2. Thus, Q i
j = δi

j +M i
j with M i

j given by

M i
j = − 1

p
2 + 1

Λ(m)fiklX
l
(pL2

8π
δk

j −
√ p

4(p
2 + 1)

fkjmXm
)
,

We shall compute det(Q) by computing traces of powers of M for
the fuzzy CPp/2 space.



However, for B2 = 0 in the limit

L � 1 , m � 1 −→ r ' L4

m2 = finite ,

Tr(M2n) ' p (−1)n
( r

16π2

)n
I , Tr(M2n+1) ' 0 .

Thus the energy of n D0-branes expanding into a fuzzy CP
p
2 is

then given to leading order in m by

EnD0 ' − n
gs

(
1+

L4

16π2m2

) p
4 4ρ0

L
, (L � 1 , Lp � n),

where n = dim(m, 0). For m ∼ N
2 the leading order in m coincides

with the macroscopical result.
I For B2 6= 0 the discussion is more technical and would not be

presented here. It turns out, that redefinition of m gets
corrected: N = 2m + 2 , p = 2, 4 and N = 2m + 4 , p = 6.



Microscopical charges

We shall next show how fundamental strings that stretch from the
Dp-brane to the boundary of AdS4 strings arise in the microscopic
setup. The relevant CS terms for n coincident D0-branes in the
AdS4 × CP3 are

SCS =
∫

dτ STr
{[

(iX iX )F2 −
1

(2π)2
(iX iX )3F6 +

i
2π

(iX iX )2F2 ∧ B2 −

−1
2

1
(2π)2

(iX iX )3F2 ∧ B2 ∧ B2

]
Aτ

}
.

Where we have expanded the background potentials on the
non-Abelian scalars occurs through the Taylor expansion [Garousi et
al 1998] and the pull-backs into the worldline are given in terms of
gauge covariant derivatives, DτX µ = ∂τX µ + i [Aτ,X µ].



In the large m limit we find:

I SCS1 ' q
∫

dτAτ , q = 2
p k N

p
2 −1

2
p
2 −1( p

2−1)!
,

the number of fundamental string charge in each CP1, in
agreement with the macroscopical result.

I SCS2 ' N
∫

dτAτ, in agreement with the macroscopical result.

I SCS3 ' −k m
p
2 −2

( p
2 )!

∫
dτAτ , SCS4 ' 3!

8 k m
p
2 −3

( p
2 )!

∫
dτAτ .

To find the total k charge we add the subleading contributions in
the large m expansion of SCS1 . Next we use the corrected
redefinition of m we recover precicely the units of F-charge for D2,
D4 and D6 brane plus a k/8 contribution for the D6, coming from
SCS4 . Stability analysis goes along the same lines than in the
macroscopical set-up; non-singlet classical stable solutions.



Dielectric higher-curvature terms

Generalizing the Chern–Simons action for multiple Dp-branes
[Myers 1999] to include higher curvature terms we find for our
background

Sh.c. = − i
(2π)2

∫
R

STr [(iX iX )3(F2 ∧ Ω4)]A ,

where Ω4 is given in term of the Pontryagin classes of the normal
and the tangent bundle of the three CP2 circles of the CP3

manifold [Eguchi et al 1980, Bergman et al 2009].
Substituting F2 and Ω4 we find:

Sh.c. ' −κ

8

∫
R

dτAτ .

Thus this higher curvature coupling cancels the SCS4 contribution
as in the macroscopical case.



Summary-future directions

I We have constructed macroscopically various configurations of
magnetically charged particle-like branes in ABJM with
reduced number of quarks. The stability analysis increases the
classical lower bound for each value of the magnetic flux.

I We have given an alternative description in terms of D0-branes
expanded into fuzzy CP

p
2 spaces that allows to explore the

finite ’t Hooft coupling region, Lp � n.
I We have constructed dielectric higher curvature couplings that

to the best of our knowledge have not been considered before
in the literature. This new coupling exactly cancels the k/8
contribution to the D6-brane tadpole.

I It would be interesting to extend to theories with reduced
supersymmetry, like the Klebanov–Strassler backgrounds,
where the internal geometry is the T 1,1 conifold. Non-singlet
baryon vertex???



Review of the AdS4 × CP3 background
In our conventions the AdS4 × CP3 metric reads

ds2 = L2
(1

4
ds2

AdS4
+ ds2

CP3

)
,

with L the radius of curvature in string units

L =
(32π2N

k

)1/4
, gs =

L
k

and where we have normalized the two factors such that
Rµν = −3gµν and 8gαβ for AdS4 and CP3, respectively. The
explicit parameterization of AdS4 we use is

ds2
AdS4

=
16 ρ2

L2 d~x2 + L2 dρ2

ρ2 , d~x2 = −dτ2 + dx2
1 + dx2

2 .

For the metric on CP3 we use the parameterization in [Pope
1984,Warner 1985]

ds2
CP3 = dµ2 + sin2 µ

[
dα2 +

1
4

sin2 α
(
cos2 α (dψ − cos θ dφ)2 + dθ2

+ sin2 θ dφ2)+ 1
4

cos2 µ
(
dχ + sin2 α (dψ − cos θ dφ)

)2]
,



where

0 6 µ, α 6 π

2
, 0 6 θ 6 π , 0 6 φ 6 2π , 0 6 ψ, χ 6 4π .

Inside CP3 there is a CP1 for µ = α = π/2 and fixed χ and ψ and
also a CP2 for fixed θ and φ.
In these coordinates the connection in ds2

S7 = (dτ +A)2 + ds2
CP3

reads

A =
1
2

sin2 µ
(
dχ + sin2 α

(
dψ − cos θ dφ)

)
.

The Kähler form

J =
1
2
dA ,

is then normalized such that∫
CP1

J = π ,
∫
CP2

J ∧ J = π2 ,
∫
CP3

J ∧ J ∧ J = π3 .

Therefore,

1
6

J ∧ J ∧ J = dVol(P3) and Vol(CP3) =
π3

6
.



The AdS4 × CP3 background fluxes can then be written as

F2 =
2L
gs

J , F4 =
3L3

8gs
dVol(AdS4) , F6 = −(?10F4) =

6 L5

gs
dVol(P3) ,

where gs =
L
k

. The flux integrals satisfy

∫
CP3

F6 = 32 π5 N ,
∫
CP1

F2 = 2π k .

The flat B2-field that is needed to compensate for the Freed–Witten
worldvolume flux in the D4-brane is given by [Aharony et al 2009]

B2 = −2πJ .



Fuzzy CP
p
2 manifold

CP
p
2 is the coset manifold SU( p

2 + 1)/U( p
2 ), and can be defined

by the submanifold of R
p2
4 +p determined by the set of p2/4

constraints
p2
4 +p

∑
i=1

x ix i = 1 ,

p2
4 +p

∑
j ,k=1

d ijkx jxk =
p
2 − 1√

p
4 (

p
2 + 1)

x i

where d ijk are the components of the totally symmetric
SU( p

2 + 1)-invariant tensor. The Fubini–Study metric of the CP
p
2

is given by

ds2
CP

p
2
=

p
4( p

2 + 1)

p2
4 +p

∑
i=1

(dx i )2 .

A fuzzy version of CP
p
2 can then be obtained by imposing the

conditions at the level of matrices. This is achieved with a set of
coordinates X i (i = 1, . . . , p2

4 + p) in the irreducible totally
symmetric representation of order m, (m, 0), satisfying:



[X i ,X j ] = iΛ(m)fijkX k , Λ(m) =
1√

pm2

4( p
2+1) +

p
4m

with fijk the structure constants in the algebra of the generalized
Gell-Mann matrices of SU(p

2 + 1). The dimension of the (m, 0)
representation is given by

dim(m, 0) =
(m + p

2 )!
m!( p

2 )!
.

The Kähler form of the fuzzy CP
p
2 is given by:

Jij =
1

p
2 + 1

√ p
4(p

2 + 1)
fijkX k .


