COMBINING F-TERM HYBRID INFLATION WITH A PECCEI-QUINN PHASE TRANSITION

C. PALLIS

DEPARTMENT OF PHYSICS UNIVERSITY OF CYPRUS

BASED ON:

G. LAZARIDES AND C. PALLIS, Phys. Rev. D. 82, 063535 (2010) [arXiv:1007.1558].

OUTLINE

INTRODUCTION

F-term Hybrid Inflation (FHI) The Peccei-Quinn Phase Transition (PQPT)

MODEL CONSTRUCTION

STRUCTURE OF THE MODEL THE COSMOLOGICAL SCENARIO

THE COSMOLOGICAL DYNAMICS

The Inflationary Era The Post-Inflationary Era

TESTING AGAINST OBSERVATIONS

Observational Constraints Results

CONCLUSIONS

C. PALLIS

3

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
•	000	00	0	
E man Human Lun and (EIII)				

THE RELEVANT SUPERPOTENTIAL TERMS

THE FHI CAN BE REALIZED ADOPTING THE FOLLOWING SUPERPOTENTIAL¹:

 $W_{\rm FHI} = \kappa S \left(\bar{\Phi} \Phi - M^2 \right)$, Where κ and M are Real Parameters With $M \sim M_{\rm GUT} = 2.86 \cdot 10^{16} \, {\rm GeV}$

- W_{FHI} is Renormalizable and Consistent With the $U(1)_R$ Symmetry: $S \rightarrow e^{i\alpha} S$, $\bar{\Phi}\Phi \rightarrow \bar{\Phi}\Phi$, $W \rightarrow e^{i\alpha} W$.
- S: a left Handed Superfield, Singlet Under a GUT Gauge Group, e.g., $G_{LR} = SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$.
- $\overline{\Phi}$ and Φ : Pair of Left Handed Superfields Which are $SU(2)_R$ Doublets With B L = -1, 1 Respectively - No Cosmic Strings Are Produced Since $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$.

THE SUSY POTENTIAL

- The SUSY Potential is $V_{SUSY} = V_F + V_D$, Where
 - $V_{\rm D} = 0$, with $|\bar{\Phi}| = |\Phi|$.
 - $V_{\rm F} = \kappa^2 M^4 \left((\mathbf{\Phi}^2 1)^2 + 2\mathbf{S}^2 \mathbf{\Phi}^2 \right),$ with $\mathbf{\Phi} = |\Phi|/M = |\overline{\Phi}|/M$ and $\mathbf{S} = |S|/M.$
- W_{FHI} Gives Rise to FHI Since There is a F-Flat Direction with $\Phi=0$ and $V_F\simeq\kappa^2 M^4=cst$ Which is a Local Minimum of V_F for $S>1=S_c.$

+ $W_{\rm FHI}$ Also Leads to the Spontaneous Breaking of $G_{\rm LR},$ Since the SUSY Vacuum is

$$\langle S \, \rangle = 0 \; \text{ and } \; |\langle \bar{\Phi} \rangle| = |\langle \Phi \rangle| = v_G = M$$

《曰》《聞》《臣》《臣》:

¹G.R. Dvali, Q. Shafi, and R.K. Schaefer (1994); G. Lazarides, R.K. Schaefer and Q. Shafi (1997).

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	0	
THE PECCEL OLINN PH	SE TRANSITION (POPT)	00	0	

THE PECCEI-QUINN (PQ) SOLUTION TO THE STRONG CP PROBLEM

Due to the Structure of the Vacuum of SU(3)_c the Langrangian of QCD includes a CP-Violating Term, Involving the Strong Coupling Constant, g_3 , the Gluon Field-Strength Tensor, \mathcal{G} , and its Dual, $\tilde{\mathcal{G}}$. I.e.,

$$\mathcal{L}_{\rm QCD} \ni \frac{g_3^2}{32\pi^2} \bar{\theta} \, \mathcal{G}^{\rm a}_{\mu\nu} \, \mathcal{\widetilde{G}}_{a\mu\nu} \, \text{ With } \bar{\theta} \lesssim 5 \cdot 10^{-10} \ (!?) \text{ Since } d_{\rm n} \simeq 5 \cdot 10^{-16} \bar{\theta} < 10^{-26} {\rm e \ cm^2}$$

With d_n the Neutron Electric Dipole Moment. A Possible Solution to This *Strong CP Problem* is to Introduce a Global Color Anomalous $U(1)_{PO}$ Symmetry Which Induces New Terms in \mathcal{L}_{OCD} As Follows:

$$\mathcal{L}_{\rm QCD} \ni \frac{g_3^2}{32\pi^2} \left(\bar{\theta} + c_a \frac{a}{f_a} \right) \mathcal{G}_{\mu\nu}^a \widetilde{\mathcal{G}}_{a\mu\nu} \text{ With } 10^9 \lesssim f_a/{\rm GeV} \lesssim 10^{12} \text{ and } = -\bar{\theta} f_a/c_a.$$

Where c_a is a Model-Dependent Parameter, a(x) is the Goldstone Boson - Axion - Associated With the Spontaneous Breaking of $U(1)_{PO}$ and f_a is the Energy Scale Where $U(1)_{PO}$ is Broken Spontaneously.

THEREFORE, MINIMIZING THE POTENTIAL WITH RESPECT TO *a* SETS THE TOTAL CP-VIOLATING TERM TO ZERO.

THE RELEVANT SUPERPOTENTIAL TERMS

Obviously, the Spontaneous Breaking of $U(1)_{PQ}$ Within SUSY Can be be Realized Through the VEVs Which Acquire a Pair of PQ-Charged Fields Adopting² Only Renormalizable Superpotential Terms Similar to Those Which Lead to FHI. I.e., If We Impose $P \rightarrow P$, $Q \rightarrow e^{i\alpha} Q$, $\bar{Q} \rightarrow e^{-i\alpha} Q$, Under $U(1)_{PQ}$ We Obtain $W_{PQ} \rightarrow W_{PQ}$ Where

$$W_{PQ} = \kappa_a P \left(\bar{Q}Q - f_a^2 / 4 \right)$$
, Which Leads To VEVs $\phi_Q = f_a$ With $2Q = 2\bar{Q} = \phi_Q$.

CAN WE OBTAIN A CONCRETE MODEL COMBINING BOTH INGREDIENTS (FHI AND PQPT)?

<ロト < 団 ト < 臣 ト < 臣 ト 三 の < C</p>

² J.E. Kim (1984); T. Goto and M. Yamaguchi (1992)

INTRODUCTION O O	Model Construction	The Cosmological Dynamics OO OO	Testing Against Observations O O	CONCLUSIONS
STRUCTURE OF THE MODEL				

THE RELEVANT SUPERPOTENTIAL

THE KEY POINT OF OUR CONSTRUCTION IS THAT P CAN BE REGARDED AS THE LINEAR COMBINATION OF THE GLR SINGLETS WITH (PO, R) = (0, 4) That Does Not Couple to $\overline{\Phi}\Phi$. Therefore, The Superpotential can be Written As

$$\begin{split} W &= \kappa S \left(\bar{\Phi} \Phi - M^2 \right) \; \text{FHI} \\ &+ \; \kappa_a P (\bar{Q} Q - f_a^2 / 4) \; \text{PQPT} \\ &+ \; \lambda S \, \bar{Q} Q \quad \text{UNAVOIDABLE COUPLING} \\ &+ \; \lambda_\mu \frac{\bar{Q}^2 h^2}{m_P} \left(m_P \simeq 2.44 \cdot 10^{18} \; \text{GeV} \right) \\ &\quad \text{TO GENERATE } \mu = \lambda_\mu f_a^2 / m_P \sim 1 \; \text{TeV} \\ &+ \; \underbrace{ \frac{\Phi l_i^c \bar{\Phi} l_j^c}{m_P}}_{\text{To GENERATE } Masses \; \text{FOR RHNS} \\ &+ \; \underbrace{ \frac{\Phi l_i^c \bar{\Phi} l_j^c}{m_P}}_{\text{To GENERATE } \text{Masses FOR RHNS} \\ &+ \; \underbrace{ \frac{\Phi l_i^c \bar{\Phi} l_j^c}{m_P}}_{\text{To GENERATE } \text{Masses FOR RHNS} \\ &+ \; \underbrace{ \frac{\Psi_{1ij} l_i h l_j^c + y_{qij} q_i h q_j^c}{m_P}}_{\text{To GENERATE } \text{Masses FOR RHNS} \\ &+ \; \underbrace{ \frac{\Psi_{1ij} l_i h l_j^c + y_{qij} q_i h q_j^c}{m_P}}_{\text{To AVOID DOMAIN WALLS} \\ \end{split}$$

GLOBAL SYMMETRIES

R

Ω

1/3

-1/3

Ω

D

-1

R PQ

-2

-1

-2

-1

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	0	
0	0	00	0	
STRUCTURE OF THE MODEL				

EVADING THE DOMAIN-WALL PROBLEM

We Introduce³ n Pairs Of Left-Handed Superfields \bar{D}_a and D_a (a = 1, ..., n) Which Are $SU(3)_c \ \bar{3}$ And 3 Respectively. To Restore Gauge Unification, We Include An Equal Number of $SU(2)_L \times SU(2)_R$ (2, 2) Superfields H_a . We Give Intermediate Scale Masses To $\bar{D}_a - D_a$ and H_a Through Superpotential Terms:

$$m_{D_a} = m_{\bar{D}_a} \simeq \lambda_{D_a} f_a$$
 and $m_{H_a} \simeq \lambda_{H_a} f_a$.

Soft SUSY Breaking and Instanton Effects Explicitly Break $U(1)_R \times U(1)_{PQ}$ to a Discrete Subgroup. The Explicitly Unbroken Subgroup of $U(1)_R \times U(1)_{PQ}$ is $Z_4 \times Z_{2(n-6)}$ and Can Be Found, For Every n, as Follows:

$$e^{irR(W)} = 1 \\ e^{ir\sum_{i} R(i) + p \sum_{i} PQ(i)} = 1 \\ \right\} \Rightarrow \begin{cases} 4r = 0 \pmod{2\pi} \\ -12r + 2(n-6)p = 0 \pmod{2\pi} \end{cases} \quad \text{where} \quad \begin{cases} e^{irR} \in \mathrm{U}(1)_R \\ e^{ipPQ} \in \mathrm{U}(1)_{\mathrm{PQ}}, \end{cases}$$

Where r[p] is a $U(1)_R[U(1)_{PQ}]$ and the Sum Over *i* is Applied Over All $SU(3)_c$ 3 and $\overline{3}$ Of The Model. It is Then Important To Ensure That This Subgroup is not Spontaneously Broken by $\langle \bar{Q} \rangle$ and $\langle Q \rangle$, i.e.,

$$e^{2ip_s}\langle Q\rangle = \langle Q\rangle \text{ and } e^{-2ip_s}\langle \bar{Q}\rangle = \langle \bar{Q}\rangle \implies 2p_s = 0 \pmod{2\pi},$$

Since Otherwise Cosmologically Disastrous Domain Walls Will Be Produced at PQPT. This Implies n = 5 or n = 7. The One Loop Evolution of the Three Gauge Coupling Constants g_i , With i = 1, 2 and 3, Within MSSM Obey the Relations⁴:

$$\frac{d\alpha_i}{dt} = -\frac{b_i}{2\pi}\alpha_i^2 \text{ With } \alpha_i(t) = \frac{g_i^2(t)}{4\pi} \text{ and } t = \ln(\Lambda/\text{ GeV}) \implies \frac{1}{\alpha_3} = \frac{(1+B_\alpha)}{\alpha_2} - \frac{B_\alpha}{\alpha_1} \text{ Where } B_\alpha = \frac{b_3 - b_2}{b_2 - b_1}$$

If we Assign B - L = 2/3 and -2/3 to \bar{D}_a and D_a Respectively and Find The Contribution of \bar{D}_a, D_a and H_a to b_1, b_2 , and b_3 , We Can Prove That B_α Remains Unaltered.

-

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

³G. Lazarides and Q. Shafi (1982); H. Georgi and M.B. Wise (1982); G. Lazarides and Q. Shafi (2000).

⁴ See e.g. M. Peskin, arXiv:0801.1928.

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	0	
U	5	00	0	
STRUCTURE OF THE MODEL				

THE RELEVANT KÄLHER POTENTIAL

WE EXPAND THE KÄHLER POTENTIAL UP TO FOURTH ORDER IN THE RELEVANT FIELDS AS FOLLOWS:

$$K = |S|^{2} + |P|^{2} + a(SP^{*} + S^{*}P) + b\frac{|S|^{4}}{4m_{p}^{2}} + c\frac{|P|^{4}}{4m_{p}^{2}} + d\frac{|S|^{2}|P|^{2}}{m_{p}^{2}} + \frac{e|S|^{2} + f|P|^{2}}{2m_{p}^{2}}(SP^{*} + S^{*}P) + \frac{g}{4m_{p}^{2}}\left[(SP^{*})^{2} + (S^{*}P)^{2}\right]$$

Where All The Coefficients a, b, c, d, e, f and g Are Taken, For Simplicity, Real.

THE SUSY POTENTIAL

THE SUSY POTENTIAL, VF, COMES FROM THE SUGRA SCALAR POTENTIAL

$$V_{\rm SUGRA} = e^{K/m_{\rm P}^2} \left(K^{MN^*} F_M F_{N^*}^* - 3 \frac{|W|^2}{m_{\rm P}^2} \right) \mbox{ Where } M, N = \{S, P, \Phi, \bar{\Phi}, Q, \bar{Q}\}.$$

In The Limit Where $m_{
m P}
ightarrow \infty, V_{
m SUGRA}$ tends to its SUSY Limit, $V_{
m F}$, Which Turns out to be:

$$\begin{split} V_{\rm F} &\simeq & \left|\kappa \left(\bar{\Phi}\Phi - M^2\right) + \lambda \bar{Q}Q\right|^2 / (1-a^2) + \kappa_a^2 \left|\bar{Q}Q - f_a^2/4\right|^2 / (1-a^2) + \kappa^2 |S|^2 \left(|\bar{\Phi}|^2 + |\Phi|^2\right) \\ &+ & \left|\lambda S + \kappa_a P\right|^2 \left(|\bar{Q}|^2 + |Q|^2\right) - \left[a\kappa_a \left(\bar{Q}^*Q^* - f_a^2/4\right) \left[\kappa \left(\bar{\Phi}\Phi - M^2\right) + \lambda \bar{Q}Q\right] / (1-a^2) + \text{Complex Conjugate}\right] \end{split}$$

The D-term Contribution Vanishes Along The Direction $|\bar{\Phi}| = |\Phi|$. For $M \gg f_a$, we Find That The SUSY Vacuum Lies at

$$\langle S\,\rangle=0,\; |\langle\bar\Phi\rangle|=|\langle\Phi\rangle|\simeq M,\; \langle P\rangle=0,\; \text{and}\; |\langle\phi_Q\rangle|=f_a,\;\; \text{Where}\;\; \phi_Q=2Q=2\bar Q.$$

Therefore, $G_{LR} \times U(1)_{PQ}$ is Spontaneously Broken Down to $G_{SM} \times Z_2$. The Same V_F Gives Also Rise to a Stage of FHI and a PQPT, as We Show in the Following. $rac{1}{2}$ is a sign of c and c

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	0	
0	•	00	0	
THE COSMOLOGICAL SCENARIO				

FLAT DIRECTIONS OF THE SUSY POTENTIAL

V_F Possesses TWO D- and F-Flat Directions at

(1)
$$\bar{\Phi} = \Phi = 0$$
 and $\bar{Q} = Q = 0$
(2) $S = 0$, $\bar{\Phi} = \Phi = M$, and $\bar{Q} = Q = 0$ with a Constant Potential Energy Density
$$\begin{cases} V_{\text{HIO}} \simeq \kappa^2 M^4 / (1 - a^2) \\ V_{\text{PQO}} = \kappa_a^2 f_a^4 / 16 \end{cases}$$

STABILITY OF THE FLAT DIRECTION (1)

THE DIRECTION (1) CAN BE USED AS INFLATIONARY PATH SINCE IT CORRESPONDS TO A CLASSICALLY FLAT VALLEY OF MINIMA FOR

 $(\mathbf{a}) \quad |S| > M/\sqrt{1-a^2} \quad \text{and} \quad (\mathbf{b}) \quad |\sigma_a| > \sqrt{\kappa(\lambda-a\kappa_a)/(1-a^2)}M, \quad \text{Where} \quad \sigma_a = \lambda S + \kappa_a P$

THE MASS SPECTRUM ALONG THE INFLATIONARY TRAJECTORY:

SUPERFIELDS	Fields	Mass Squared
OF ORIGIN		
	Bosons	
$\bar{\Phi}, \Phi$	4 Complex Scalars	$\kappa^2 \left(S ^2 \pm \frac{M^2}{(1-a^2)} \right)$
\bar{Q}, Q	2 COMPLEX SCALARS	$ \sigma_a ^2 \pm \frac{\kappa(\lambda - \mathbf{a}\kappa_a)M^2}{(1 - \mathbf{a}^2)}$
	Fermions	
$\bar{\Phi}, \Phi$	2 DIRAC SPINORS	$\kappa^2 S ^2$
\bar{Q}, Q	1 Dirac Spinors	$ \sigma_a ^2$

SINCE $V_{PO0} \ll V_{HI0}, V_{PO0}$ can Dominate Over Radiation after the end of FHI Leading to a Peccei-Quinn Phase Transition (PQPT)

THE COSMOLOGICAL SCENARIO ABOVE CAN BE ATTAINED IF (a) IS VIOLATED BEFORE (b)

COMBINING F-TERM HYBRID INFLATION WITH A PECCEI-QUINN PHASE TRANSITION

Introduction O O	Model Construction	The Cosmological Dynamics	Testing Against Observations O O	Conclusions
THE INELATIONARY ERA				

THE INFLATIONARY POTENTIAL

The Inflationary Potential can Be Written As $V_{\rm HI} = V_{\rm HI0} + V_{\rm HIs} + V_{\rm HIc}$, Where

- V_{HI0} : The Dominant Contribution to V_{HI} Along the F-Flat Direction, $V_{\text{HI0}} = \kappa^2 M^4 / (1 a^2)$.
- V_{HIs}: SUGRA Corrections to V_{HI} Which can be Found by Expanding V_{SUGRA} on the Inflationary Trajectory

$$\begin{split} V_{\rm HIs} &\simeq \frac{V_{\rm HI0}}{(1-a^2)m_{\rm p}^2} \Big[A_1 |S|^2 + A_{12} \left(S^*P + PS^* \right) + A_2 |P|^2 \Big] + \frac{V_{\rm HI0}}{4(1-a^2)^2 m_{\rm p}^4} \Big[B_1 |S|^4 + B_2 |P|^4 \\ &+ B_3 |S|^2 |P|^2 + \Big(B_4 |S|^2 + B_5 |P|^2 \Big) \left(S^*P + PS^* \right) + B_6 \left((S^*P)^2 + (P^*S)^2 \right) \Big] \\ &= \frac{V_{\rm HI0}}{2m_{\rm p}^2} \left(m_+^2 \left(s^2 + q^2 \right) + m_-^2 \sigma^2 \right) + \cdots \quad \text{Where} \\ \hline \\ \frac{K_{SP} = |S|^2 + |P|^2 + a(SP^* + S^*P) = \left(\sigma^2 + s^2 + q^2 \right) / 2}{(1-a^2)^2 \text{ with } D_1 = A_1 - 2aA_{12} + A_2 \text{ and } D_2 = D_1^2 + 4(1-a^2)(A_{12}^2 - A_1A_2). \\ A_1 = 2ae - a^4 - a^2(d-1) - b, A_2 = 1 - d - a(a + ac - 2f), \\ A_{12} = a(1 + d - a(a + f) + g) - e \text{ and } B_{1-6} = f(a, ..., g) \\ \text{Note That For } a \neq 0 \text{ and } b = c = d = e = f = g = 0 \text{ We Obtain } m_-^2 = 0. \text{ However We Need } m_-^2 \leq 0 \text{ in Order to Obtain Observationally Acceptable Values for the Spectral Index, } n_c - See Below. \end{split}$$

V_{HIc}: One-Loop Radiative Corrections to V_{HI} due to SUSY Breaking Along the Inflationary Trajectory

$$V_{\rm HIc} \simeq \frac{\kappa^2 V_{\rm HI0}}{16\pi^2 (1-a^2)} \left(2 \ln \frac{\kappa^2 x M^2}{(1-a^2)\Lambda^2} + 3 \right) + \frac{(\lambda - a\kappa_a)^2 V_{\rm HI0}}{32\pi^2 (1-a^2)} \left(2 \ln \frac{\kappa (\lambda - a\kappa_a) x_a M^2}{(1-a^2)\Lambda^2} + 3 \right)$$

$$\text{Th} \ x = |S|^2 (1-a^2) / M^2 \text{ and } x_a = |\sigma_a|^2 (1-a^2) / \kappa (\lambda - a\kappa_a) M^2.$$

WI.

INTRODUCTION	Model Construction	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	0	0	
0	0	00	0	
THE INFLATIONARY ERA				

THE INFLATIONARY DYNAMICS

THE Equations Of Motion (E.O.M.) OF THE VARIOUS FIELDS ARE

$$\ddot{f} + 3H\dot{f} + V_{\mathrm{HI},f} = 0 \implies H^2 f'' + 3H^2 f' + V_{\mathrm{HI},f} = 0 \text{ with } f = \sigma, \text{ s, and } q \text{ and } ' = d/dN \text{ with } N = \ln(R/R_{\mathrm{HI}i})$$

Here R(t) is the Scale Factor of the Universe and R_{HIi} its Value at the Onset of FHI.

We impose The Following Initial Conditions (at N = 0): $f(0) = (1.5 - 4.5) \cdot 10^{17}$ GeV and f'(0) = 0 with $f = \sigma$, s, or q. If f(0) is Large Enough, s Reaches An Attractor And Our Results Are Independent Of The Precise f(0). E.g.,

 \bullet The Field s Turns Out To Be Just Mildly, And Not Drastically 5 Reduced w.r.t. $\sigma.$

C. PALLIS

COMBINING F-TERM HYBRID INFLATION WITH A PECCEI-QUINN PHASE TRANSITION

⁵ I. Izawa, M. Kawasaki, and T. Yanagida (1997); M. Kawasaki, N. Sugiyama, and T. Yanagida (1998) 🔹 🗆 🕨 🗧 🕨 🦉 🖉 🖓 🔍

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	0	
Tur Poer Ivra errovenv En		•0	0	
THE POSI-INFLATIONARY ER.	A			

THE STAGE OF PQPT

For $\lambda \simeq (0.05 - 0.1)$, we get $T_{1\text{rh}} > V_{P00}^{1/4}$. Therefore, After FHI we Obtain Matter Domination (MD) for $T \ge T_{1\text{rh}}$ and Radiation Domination (RD) for $V_{P00}^{1/4} \le T \le T_{1\text{rh}}$. The Value of *s* at the Beginning of PQPT is:

$$s_{\rm PQi} \simeq \left(\rho_{\rm 1rh} / V_{\rm HI0} \right)^{1/4} s_{\rm HIf}$$
 with $\rho_{\rm 1rh} = \pi^2 g_{\rm 1rh*} T_{\rm 1rh}^4 / 30.$

For $T \lesssim V_{\rm H10}^{1/4}$, W is Dominated by the Term $W_{\rm PQ} = \kappa_a P(\bar{Q}Q - f_a^2/4)$ and the Relevant F-Term Scalar Potential is

$$V_{\rm PQF} = \kappa_a^2 \left| \bar{Q}Q - f_a^2 / 4 \right|^2 \ + \ \kappa_a^2 \left| P \right|^2 \left(\left| \bar{Q} \right|^2 + \left| Q \right|^2 \right) \Rightarrow V_{\rm PQF} = V_{\rm PQ0} = \kappa_a^2 f_a^4 / 16 \ \ \text{for} \ \ \bar{Q} = Q = 0.$$

Assuming Gravity Mediated Soft SUSY Breaking, the Potential for $\bar{Q} = Q = 0$ has the form:

$$V_{\mathrm{PQ}}\simeq V_{\mathrm{PQ0}}+m_P^2\left|P
ight|^2+V_{\mathrm{T}}+V_{\mathrm{PQc}}$$
 for $\left|P
ight|\geq f_a/2,$ Where

- $V_{\rm T} = -\sqrt{2V_{\rm PQ0}} \; |a_P||P|$ is a Tadpole Contribution^a With $a_P \sim 1 \; {\rm TeV}.$
- $V_{PQc} = \kappa_a^2 V_{PQ0} \left(\ln \kappa_a^2 |P|^2 / \Lambda^2 + 3/2 \right) / 16\pi^2$ Are Loop Corrections Arising due to the SUSY Breaking.

• V_{PQ} Does Not Give Rise To Another FHI, Since V_{PQc} Spoils the $\eta\text{-}\mathsf{Criterion};$

- When $|P| < f_a/2$, an Instability Occurs Along the |P|-axis Triggering Thereby a PQPT;
- IF $|P_{\rm PQi}| > f_a/2$ We Obtain An Out-Of-Equilibrium Decay Of the PQ System, I.e., A Secondary Reheating.

^a V.N. Şenoğuz and Q. Shafi (2005). ► < Ξ ► < Ξ ► = <->

INTRODUCTION	Model Construction	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	0	
0	0	0•	0	

THE POST-INFLATIONARY ERA

Reheating Processes and Gravitino (\widetilde{G}) Abundance

The Energy Density, ρ_1 [ρ_2], of the Oscillatory System Which Reheats The Universe At The Temperature $T_{1\text{th}}$ [$T_{2\text{th}}$], the Energy Density OF Produced Radiation, ρ_R , and the Number Density of \widetilde{G} , $n_{\widetilde{G}}$, Satisfy The Equations:

$$\begin{split} \dot{\rho}_{1} + 3H\rho_{1} + \Gamma_{1}\rho_{1} &= 0, \\ \dot{\rho}_{2} + 3H\rho_{2} + \Gamma_{2}\rho_{2} &= 0 \\ \dot{\rho}_{R} + 4H\rho_{R} - \Gamma_{1}\rho_{1} - \Gamma_{2}\rho_{2} &= 0 \\ \dot{n}_{\tilde{G}} + 3Hn_{\tilde{G}} - C_{\tilde{G}}\left(n^{\mathrm{eq}}\right)^{2} &= 0. \end{split} \\ \Rightarrow \begin{cases} Hf_{1}^{\prime} &= -\Gamma_{1}f_{1} \\ Hf_{2}^{\prime} &= -\Gamma_{2}f_{2} \\ Hf_{R}^{\prime} &= (\Gamma_{1}f_{1} + \Gamma_{2}f_{2})R \\ Hf_{R}^{\prime} &= (\Gamma_{1}f_{1} + \Gamma_{2}f_{2})R \\ Hf_{\tilde{G}}^{\prime} &= C_{\tilde{G}}\left(n^{\mathrm{eq}}\right)^{2}R^{3} \end{cases} \\ \text{ where } \begin{cases} f_{1} &= \rho_{1}R^{3} \\ f_{2} &= \rho_{2}R^{3} \\ f_{R} &= \rho_{R}R^{4} \\ f_{\tilde{G}} &= n_{\tilde{G}}R^{3} \\ f_{\tilde{G}} &= n_{\tilde{G}}R^{3} \\ f_{\tilde{G}} &= n_{\tilde{G}}R^{3} \end{cases} \\ R^{-1} &= \rho_{1}R^{3} \\ R^{-1} &= \rho_$$

where g_i (with i = 1, 2, 3) are the Gauge Coupling Constants of MSSM, $(k_i) = (1.634, 1.312, 1.271)$ and $(c_i) = (33/5, 27, 72)$. We use the Following Initial Conditions: $\rho_1(0) = V_{H10}$, $\rho_R(0) = n_{\overline{G}}(0) = 0$, and $\rho_2(\bar{N}_{PQ}) = V_{PQ0}$, Where \bar{N}_{PQ} is the Value of \bar{N} Corresponding to the Temperature T_{PQ} which is Defined As the Solution of the Equation $\rho_R(T_{PQ}) = V_{PQ0}$.

REHEATING AFTER FHI

REHEATING AFTER PQPT

THE CORRESPONDING REHEAT TEMPERATURE IS

$$\Gamma_{1\rm rh} = \left(\frac{72}{5\pi^2 g_{1\rm rh*}}\right)^{1/4} \sqrt{\Gamma_1 m_{\rm P}} \text{ with } \Gamma_1 = \frac{1}{16\pi} \lambda^2 m_{\rm inf}$$

(since $\lambda S\,\bar{Q}Q\in W)$ where $g_{1\mathrm{rh}*}\simeq 438.75~[g_{1\mathrm{rh}*}\simeq 513.75]$ for n=5~[n=7]. The \widetilde{G} Abundance is

$$Y_{1\widetilde{G}} = \frac{n_{\widetilde{G}}}{s}(T_{1\text{rh}}) \simeq 1.9 \cdot 10^{-12} \left(\frac{T_{1\text{rh}}}{10^{10} \text{ GeV}}\right).$$

$$T_{\rm 2rh} = \left(\frac{72}{5\pi^2 g_{\rm 2rh*}}\right)^{1/4} \sqrt{\Gamma_2 m_{\rm P}} \text{ with } \Gamma_2 = \frac{1}{2\pi} \lambda_{\mu}^2 \left(\frac{f_a}{2m_{\rm P}}\right)^2 m_{\rm PQ}$$

(since $\lambda_\mu \bar{Q}^2 h^2/m_{\rm P} \in W$) where $g_{\rm 2rh*}=228.75.$ The \widetilde{G} Abundance is

$$Y_{2\widetilde{G}} = \frac{n_{\widetilde{G}}}{s}(T_{2\text{rh}}) \simeq \left(\frac{\pi^2}{30}g_{1\text{rh}*}\right)^{1/4} \frac{T_{2\text{rh}}}{V_{PQ0}^{1/4}} Y_{1\widetilde{G}}.$$

We Observe that $Y_{2\widetilde{G}}$ is Suppressed Relative to $Y_{1\widetilde{G}}$ by the Ratio $T_{2th}/V_{PQ0}^{1/4}\ll 1$.

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	Conclusions
0	000	00	•	
0	0	00	0	
OBSERVATIONAL CONSTRA	UNTS			

COSMOLOGICAL REQUIREMENTS

WE IMPOSE ON OUR COSMOLOGICAL SCENARIO THE FOLLOWING CONSTRAINTS:

- (i) THE VIOLATION OF THE INSTABILITY CONDITIONS OCCURS ACCORDING TO THE DESIRED ORDER.
- (ii) The Number of *e*-foldings $N_{\text{HI}*}$ That the Scale $k_* = 0.002/\text{Mpc}$ Suffered During FHI has to be Sufficient to Resolve the Horizon and Flatness Problems of *Standard Big Bang* (SBB) Cosmology:

$$N_{\rm HI^*} = N_{\rm HI} - N_* \simeq 23 + \frac{2}{3} \ln \frac{V_{\rm HI0}^{1/4}}{1\,{\rm GeV}} - \frac{1}{3} \ln \frac{V_{\rm PQ0}^{1/4}}{1\,{\rm GeV}} + \frac{1}{3} \ln \frac{T_{\rm Irh}T_{\rm 2rh}}{1\,{\rm GeV}^2} \simeq 50 \ \text{for} \ T_{\rm rh1} = 10^{10} \ {\rm GeV} \ \text{and} \ T_{\rm rh2} \simeq 10^5 \ {\rm GeV}$$

Where N_* [$N_{\rm HI}$] is the Value of N from the Onset of FHI until k_* Crossed Outside the Horizon of FHI [the End of FHI]. This is Found from the Condition:

$$\max\{\epsilon(\sigma(N_{\rm HI})), |\eta(\sigma(N_{\rm HI}))|\} = 1, \ \text{with} \quad \epsilon \simeq \frac{m_{\rm P}^2}{2} \left(\frac{V_{\rm HL\sigma}}{V_{\rm HI}}\right)^2 \ \text{and} \ \eta \simeq m_{\rm P}^2 \ \frac{V_{\rm HL\sigma\sigma}}{V_{\rm HI}}$$

(iii) The Power Spectrum, $P_{\mathcal{R}*}$, of the Curvature Perturbation at $k = k_*$ is to be Confronted With the WMAP7 Data:

$$P_{\mathcal{R}*}^{1/2} = \left. V_{\rm HI}^{3/2} / 2 \sqrt{3} \, \pi m_{\rm P}^3 |V_{{\rm HI},\sigma}| \right|_{N=N_*} \simeq 4.93 \cdot 10^{-5}. \label{eq:P_R}$$

(iv) The Spectral Index, n_s , is to be Consistent With the fitting of the WMAP7 Results by the Λ CDM Model ($\alpha_s \sim 0$). $n_s = 1 - 6\epsilon(N_*) + 2\eta(N_*) = 0.963 \pm 0.028 \Rightarrow 0.935 \leq n_s \leq 0.991$, at 95% c.l.

- (v) In Order For The PQPT to Take Place After A Short Temporary Domination of V_{PQ0} , we Require $|P_{PQi}| > f_a/2$, Where the value of |P| at the Beginning of PQPT.
- (vi) Assuming Unstable \widetilde{G} , We Impose an Upper Bound⁶ on $Y_{\widetilde{G}}$ In Order to Avoid Problems With the SBB Nucleosynthesis:

$$Y_{\widetilde{G}} \lesssim \begin{cases} 10^{-14} & \text{for } \widetilde{G} \text{ Mass } m_{\widetilde{G}} \simeq \begin{cases} 0.69 \text{ TeV} \\ 10.6 \text{ TeV} \end{cases}$$

イロト イロト イヨト イヨト

⁶ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

Introduction O O	Model Construction	The Cosmological Dynamics 00 00	Testing Against Observations O •	Conclusions
RESULTS				

IMPOSING THE INFLATIONARY REQUIREMENTS

We Can Delineate The Allowed (Lightly Gray Shaded) Regions in the $\kappa - a$ and $\kappa - M$ as Follows:

• Our Cosmological Set-UP Depends On The Following Parameters: κ , κ_a , λ , M, f_a , λ_μ , n, a, b, c, d, e, f, and g. • We Fix n = 5, $\kappa_a = -b = 0.01$, $\lambda = c = d = e = f = g = 0.1$, $f_a = 10^{12}$ GeV and $\lambda_\mu = 0.01 \Rightarrow \mu \sim 1$ TeV. • We Can Obtain $M = M_{\rm GUT}$ for $\kappa = 0.002$ and a = -0.0125. • The Reduction of $n_{\rm s}$ Can be Attained Without Disturbing the Monotonicity of $V_{\rm HI}$. For Large σ 's $V_{\rm HI}$ Develops an Oscillatory Behavior but for Lower σ 's $V_{\rm HI}$ Remains Monotonic.

ヘロト 人間 トメヨトメヨト

INTRODUCTION	MODEL CONSTRUCTION	THE COSMOLOGICAL DYNAMICS	TESTING AGAINST OBSERVATIONS	CONCLUSIONS
0	000	00	0	
0	0	00	0	

POST-INFLATIONARY COSMOLOGICAL EVOLUTION

For $\kappa=0.002,~M=M_{GUT}$ and $n_{\rm s}=0.963$ We Obtain $T_{1\rm rh}=4.7\cdot10^{13}~{\rm GeV},~[T_{2\rm rh}=3\cdot10^4~{\rm GeV}]$ Resulting to $Y_{1\widetilde{G}}\simeq9\cdot10^{-9}~[Y_{2\widetilde{G}}\simeq1.9\cdot10^{-14}]$ Which is Consistent With the \widetilde{G} Constraint for $m_{\widetilde{G}}<10~{\rm TeV}.$

CONCLUSIONS

COMBINING FHI WITH A PQPT BASED ON RENORMALIZABLE SUPERPOTENTIAL TERMS, WE CAN OBTAIN:

- Observationally Viable FHI at the SUSY GUT Scale With Natural Values, ±(0.01 0.1), for the Model Parameters;
- A Simultaneous Resolution of the Strong CP and μ Problems of MSSM;
- A Second Stage Of Reheating After PQPT, Which Leads to Observationally Safe Values of the \widetilde{G} Abundance.

AN IMPORTANT OPEN ISSUE OF OUR SCENARIO IS THIS OF BARYOGENESIS WHICH IS CURRENTLY UNDER CONSIDERATION.