Baryogenesis in an extended ν MSM

Kyle Allison

University of Oxford, UK

September 9, 2011

Table of contents

1 The ν MSM

Neutrino masses and cosmology

2 Extended ν MSM Explaining the mass degeneracy

3 Baryogenesis in the extended ν MSM Calculating the baryon asymmetry

4 Conclusions

The <i>∨</i> MSM ●00	Extended ν MSM 00000	Baryogenesis in the extended $ u$ MSM 0000	Conclusions
Neutrino masses and cosmo	ology		

Introducing sterile neutrinos

• Active (left-handed) neutrino oscillations give

$$\begin{aligned} m_2^2 - m_1^2 &= \Delta m_{sol}^2 &= (7.59 \pm 0.21) \times 10^{-5} \text{eV}^2 \\ \left| m_3^2 - m_2^2 \right| &= \left| \Delta m_{atm}^2 \right| = (2.43 \pm 0.13) \times 10^{-3} \text{eV}^2 \end{aligned}$$

At least two active neutrinos are massive!

- To give neutrinos mass, need sterile (right-handed) neutrinos; singlets under SU(3)×SU(2)×U(1)
- At least two sterile neutrinos are needed to explain active neutrino masses, but including more may explain other BSM physics

The ν MSM 000	Extended ν MSM 00000	Baryogenesis in the extended $ u MSM_{0000}$	Conclusions
Neutrino masses and cosm	ology		

Sterile neutrino Lagrangian

 The most general renormalizable Lagrangian with n sterile neutrinos N_i (i = 1,..., n) is

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + i\overline{N_i}\gamma^{\mu}\partial_{\mu}N_i - \left(F_{\alpha i}\overline{L_{\alpha}}\Phi N_i + \frac{M_i}{2}\overline{N_i^c}N_i + \text{h.c.}\right)$$

where the Majorana mass matrix M_i has been diagonalized by a unitary transformation of the N_i

• At high temperatures, the N_i are mass eigenstates; at low temperatures, they will be mixed with the active neutrinos to form mass eigenstates

The ν MSM	Extended ν MSM 00000	Baryogenesis in the extended $ u$ MSM 0000	Conclusions 00
Neutrino masses and cosmo	logy		

The νMSM

• Add minimum number of sterile neutrinos needed to explain neutrino masses, dark matter, and baryon asymmetry: 3

Dark matter

- $\circ~$ \textit{N}_{1} with mass \textit{M}_{1} in the 1-10 keV range
- $\circ~$ Yukawa couplings ${\it F}_{\alpha 1} \sim 10^{-12}$

Baryon asymmetry

- \circ N_{2,3} with masses M_{2,3} in the 1 17 GeV range
- Yukawa couplings $F_{\alpha 2}, F_{\alpha 3} > 10^{-8}$
- Mass degeneracy $M_3 M_2 \sim M_1$
- Mass degeneracy may suggest underlying physics

The ν MSM 000	Extended ν MSM •0000	Baryogenesis in the extended $ u$ MSM 0000	Conclusions		
Explaining the mass degeneracy					

Is there a way to generate the ν MSM mass degeneracy?

- Idea: Have two mass scales (GeV and keV) and choose N_i couplings to give desired pattern
- Add new global symmetry and scalar particle $\boldsymbol{\theta}$ with charges

	Q
N_1	1
N_2	-1
N ₃	-1
θ	2

• At high temperatures, relevant mass terms in the Lagrangian are

$$-\mathcal{L}_{\mathsf{mass}} = rac{M_{ij}}{2} \overline{N^c_i} N_j + \lambda_{ij} \left< heta \right> \overline{N^c_i} N_j + \mathsf{h.c.}$$

where the global symmetry restricts M_{ij} and λ_{ij}

The ν MSM 000	Extended <i>v</i> MSM 0●000	Baryogenesis in the extended $ u MSM$	Conclusions
Explaining the mass degen	eracy		

Mass degeneracy

• The global symmetry requires

$$M_{ij} = \begin{pmatrix} 0 & * & * \\ * & 0 & 0 \\ * & 0 & 0 \end{pmatrix}, \ \lambda_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

- Assume Majorana masses M_{ij} originate at the GeV scale
- Assume $\lambda_{ij} \langle \theta \rangle$ is at the keV scale
- Diagonalize mass matrix $\implies M_1 \sim \text{keV}, M_{2,3} \sim \text{GeV},$ and $M_3 - M_2 \sim M_1 \checkmark$

The ν MSM 000	Extended ν MSM 00000	Baryogenesis in the extended $ u MSM$ 0000	Conclusions
Explaining the mass degen	eracy		

Active neutrino masses

 At low temperatures, the seesaw mechanism gives active neutrino mass matrix

$$(m_{\nu})_{\alpha\beta} = -\sum_{i} F_{\alpha i} \frac{\langle \Phi \rangle^2}{M_i} F_{\beta i}$$

• Choosing $\overline{L_{\alpha}}\Phi = -1$, the symmetry requires

$$F_{\alpha i} = \left(\begin{array}{rrr} * & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0 \end{array}\right)$$

Diagonalizing $(m_{
u})_{lphaeta} \Longrightarrow$ only one massive active neutrino $m{ imes}$

The ν MSM 000	Extended ν MSM 00000	Baryogenesis in the extended $ u MSM$ 0000	Conclusions 00
Explaining the mass degen	eracy		

Active neutrino masses

• Choosing $\overline{L_{\alpha}} \Phi = 1$, the symmetry requires

$$F_{\alpha i} = \left(\begin{array}{ccc} 0 & * & * \\ 0 & * & * \\ 0 & * & * \end{array}\right)$$

Diagonalizing $(m_
u)_{lphaeta} \implies$ only one massive active neutrino $m{ imes}$

Way out?

- Choose $\overline{L_{\alpha}}\Phi = -1$ and add two more sterile neutrinos N'_1 , N'_2 with charges matching N_1 , N_2 5 sterile neutrinos
- Two pairs of degenerate sterile neutrinos in the GeV range and one in the keV range
- $\,\circ\,$ Two massive active neutrinos at correct scale if $F_{\alpha i} \sim 10^{-5}$

The ν MSM	Extended ν MSM	Baryogenesis in the extended $ u$ MSM 0000	Conclusions
000	0000 \bullet		00
Explaining the mass degen	eracy		

Important question

Does extending the νMSM in this way destroy its predictions of baryogenesis or dark matter?

Baryogenesis via leptogenesis

- Qualitatively, baryogenesis in the extended ν MSM proceeds as in ν MSM via leptogenesis
 - At high temperatures, sterile neutrino oscillations and CP violation in the neutrino mass matrix produce lepton asymmetry in the active neutrinos
 - 2 Electroweak sphalerons transfer active neutrino lepton asymmetry into baryon asymmetry for $T \gtrsim 100 \text{ GeV}$
- Major difference in extended ν MSM is coupling to new particle θ how does this affect baryogenesis quantitatively?

The ν MSM	Extended ν MSM	Baryogenesis in the extended ν MSM 0000	Conclusions
000	00000		00
Calculating the baryon	asymmetry		

Kinetic equation

- To describe neutrinos in early universe, need to use density matrices $\rho_L, \rho_{\bar{L}}, \rho_N, \rho_{\bar{N}}$
- Evolution of density matrices given by kinetic equation

$$i\frac{d\rho_L}{dt} = \left[H_L^0 + V_L, \rho_L\right] - \frac{i}{2}\left\{\Gamma_L, \rho_L - \rho_L^{eq}\right\} + \frac{i\sin\phi}{4}TF\left(\rho_N - \rho_N^{eq}\right)F^{\dagger}$$
$$i\frac{d\rho_N}{dt} = \left[H_N^0 + V_N, \rho_N\right] - \frac{i}{2}\left\{\Gamma_N, \rho_N - \rho_N^{eq}\right\}$$
$$+ \frac{i\sin\phi}{8}TF^{\dagger}\left(\rho_L - \rho_L^{eq}\right)F + \frac{i\sin\phi}{4}T\lambda^*\left(\rho_{\bar{N}} - \rho_{\bar{N}}^{eq}\right)\lambda$$

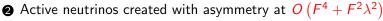
where

$$V_L = \frac{1}{16} TFF^{\dagger} \qquad \Gamma_L = 2\sin\phi V_L$$
$$V_N = \frac{1}{8} TF^{\dagger}F + \frac{1}{16} T\{\lambda, \lambda^*\} \qquad \Gamma_N = 2\sin\phi V_N$$

• Equations for $\rho_{\bar{L}}$ and $\rho_{\bar{N}}$ by taking $F \to F^*$ and $\lambda \to \lambda^*$

 The vMSM
 Extended vMSM
 Baryogenesis in the extended vMSM
 Conclusions

 000
 0000
 0000
 00


 Calculating the baryon asymmetry

Solving the kinetic equation

• Sterile neutrinos created without asymmetry at $O(F^2 + \lambda^2)$

$$\rho_{N}(T)_{ij} = \frac{\sin\phi}{4e} \frac{M_{0}}{T_{L}} \left(F^{\dagger}F + \frac{1}{2} \left[\lambda, \lambda^{*}\right] \right)_{ij} \int_{0}^{T_{L}/T} e^{ik\left(x^{3} - y^{3}\right)} dy$$

where $k \in \{-1,0,1\}$ and $T_L \gg 100~{
m GeV}$

$$\Delta L_{\alpha}(T) \equiv \left(\rho_{L} - \rho_{\bar{L}}\right)_{\alpha\alpha} = \frac{\sin^{2}\phi}{4e} \frac{M_{L}^{2}}{T_{L}^{2}} \sum_{i>j} A_{ij}^{\alpha} J(T_{L}/T)$$

where $A_{ij}^{\alpha} = \text{Im}\left[F_{\alpha i}\left(F^{\dagger}F + \frac{1}{2}\left[\lambda,\lambda^{*}\right]\right)_{ij}F_{\alpha j}^{*}\right]$ and $J(\infty) \approx 0.69$ Asymmetry in each flavour and total asymmetry!

The $ u$ MSM	Extended ν MSM	Baryogenesis in the extended νMSM	Conclusions
000	00000		00
Calculating the baryon asy	nmetry		

Solving the kinetic equation

❸ Sphalerons transfer total lepton asymmetry to baryon asymmetry until T_W ∼ 100 GeV

$$\Delta B(T) = -\frac{28}{79} \sum_{\alpha} \Delta L_{\alpha}(T)$$

and then the baryon asymmetry is frozen at $\Delta B(T_W)$

Summary

- Baryogenesis at $O(F^2\lambda^2)$ instead of $O(F^6)$ does this reduce the need for a large mass degeneracy?
- Need to investigate other cosmological constraints on λ_{ij}

The ν MSM 000	Extended ν MSM 00000	Baryogenesis in the extended $ u$ MSM 0000	Conclusions ●0

Conclusions

- Sterile (right-handed) neutrinos are needed to explain active neutrino masses
- With 3 sterile neutrinos and a 10^{-6} mass degeneracy, it is also possible to explain dark matter and the baryon asymmetry $\nu \rm MSM$
- We have attempted to explain the mass degeneracy in a natural way with 5 sterile neutrinos, scalar θ , and global symmetry extended ν MSM
- Initial results indicate the baryon asymmetry in the extended ν MSM may be much larger than in the ν MSM, but we need to further investigate cosmological constraints on this model

Acknowledgements

With the support of the European Commission under the Marie Curie Initial Training Network

Contents reflect only my views and not the views of the European Commission