Model Building with F-Theory GUTs J. Callaghan, S. King, G. Leontaris, G. Ross

James Callaghan

University of Southampton

12/09/2011

- Introduction and motivation
- Local F-theory models
- 'Dictionary' between different GUT theories
- Model which stabalises the proton and forbids R-parity violating operators

・ロト ・ 日 ト ・ ヨ ト ・

• A major motivation for string theory is that it provides a consistent formulation of quantum gravity; the effects of which are expected to become important at the Planck scale, $M_{Planck} \sim 10^{19} GeV$

- A major motivation for string theory is that it provides a consistent formulation of quantum gravity; the effects of which are expected to become important at the Planck scale, $M_{Planck} \sim 10^{19} \, GeV$
- It seems very hard to predict anything about particle physics from such theories, because of the large number of consistent solutions to the string theory equations of motion

- A major motivation for string theory is that it provides a consistent formulation of quantum gravity; the effects of which are expected to become important at the Planck scale, $M_{Planck} \sim 10^{19} \, GeV$
- It seems very hard to predict anything about particle physics from such theories, because of the large number of consistent solutions to the string theory equations of motion
- In order to facilitate the search for realistic models, we can adopt the selection criteria of unification and decoupling

- A major motivation for string theory is that it provides a consistent formulation of quantum gravity; the effects of which are expected to become important at the Planck scale, $M_{Planck} \sim 10^{19} \, GeV$
- It seems very hard to predict anything about particle physics from such theories, because of the large number of consistent solutions to the string theory equations of motion
- In order to facilitate the search for realistic models, we can adopt the selection criteria of unification and decoupling
- Decoupling refers to the existence of a limit where in principle $\frac{M_{GUT}}{M_{Planck}} \rightarrow 0$ (of course this limit is not taken in practice)

- A major motivation for string theory is that it provides a consistent formulation of quantum gravity; the effects of which are expected to become important at the Planck scale, $M_{Planck} \sim 10^{19} \, GeV$
- It seems very hard to predict anything about particle physics from such theories, because of the large number of consistent solutions to the string theory equations of motion
- In order to facilitate the search for realistic models, we can adopt the selection criteria of unification and decoupling
- Decoupling refers to the existence of a limit where in principle $\frac{M_{GUT}}{M_{Planck}} \rightarrow 0$ (of course this limit is not taken in practice)
- A class of models which have these properties are F-theory GUTs

・ロト ・ 日 ト ・ 田 ト ・

• F-theory is a 12d strongly coupled formulation of type IIB superstring theory

- F-theory is a 12d strongly coupled formulation of type IIB superstring theory
- The 12 dimensional theory can be broken up into the 4 large spacetime dimensions, 6 internal dimensions, and 2 additional dimensions which encode the variation of the real and imaginary parts of the axio-dilaton

- F-theory is a 12d strongly coupled formulation of type IIB superstring theory
- The 12 dimensional theory can be broken up into the 4 large spacetime dimensions, 6 internal dimensions, and 2 additional dimensions which encode the variation of the real and imaginary parts of the axio-dilaton
- The formal language of global F-theory models is that of an elliptically fibred Calibi-Yau fourfold, X, with a threefold base, B₃

Moebius Strip- Example of a Fibre Bundle

Introduction

▲口> ▲圖> ▲国> ▲国>

$$y^{2} + \alpha_{1}xy + \alpha_{3}y = x^{3} + \alpha_{2}x^{2} + \alpha_{4}x + \alpha_{6}$$

 (x,y) are coordinates on the torus fibre, and the α_i are functions of the base coordinates

$$y^{2} + \alpha_{1}xy + \alpha_{3}y = x^{3} + \alpha_{2}x^{2} + \alpha_{4}x + \alpha_{6}$$

- (x,y) are coordinates on the torus fibre, and the α_i are functions of the base coordinates
- $\bullet\,$ When the discriminant vanishes $\rightarrow\,$ singularity $\rightarrow\,$ D7 branes
- The type of singularity is determined by the order of vanishing

$$y^{2} + \alpha_{1}xy + \alpha_{3}y = x^{3} + \alpha_{2}x^{2} + \alpha_{4}x + \alpha_{6}$$

- (x,y) are coordinates on the torus fibre, and the α_i are functions of the base coordinates
- $\bullet\,$ When the discriminant vanishes $\rightarrow\,$ singularity $\rightarrow\,$ D7 branes
- The type of singularity is determined by the order of vanishing

 $SU(5) \to \alpha_1 = b_5, \ \alpha_2 = b_4 z, \ \alpha_3 = b_3 z^2, \ \alpha_4 = b_2 z^3, \ \alpha_6 = b_0 z^5$ $E_6 \to \alpha_1 = b_5 z, \ \alpha_2 = b_4 z^2, \ \alpha_3 = b_3 z^2, \ \alpha_4 = b_2 z^3, \ \alpha_6 = b_0 z^5$

۵

$$y^{2} + \alpha_{1}xy + \alpha_{3}y = x^{3} + \alpha_{2}x^{2} + \alpha_{4}x + \alpha_{6}$$

- (x,y) are coordinates on the torus fibre, and the α_i are functions of the base coordinates
- $\bullet\,$ When the discriminant vanishes $\rightarrow\,$ singularity $\rightarrow\,$ D7 branes
- The type of singularity is determined by the order of vanishing

 $\begin{aligned} SU(5) \to \alpha_1 &= b_5, \ \alpha_2 = b_4 z, \ \alpha_3 = b_3 z^2, \ \alpha_4 &= b_2 z^3, \ \alpha_6 = b_0 z^5 \\ E_6 \to \alpha_1 &= b_5 z, \ \alpha_2 &= b_4 z^2, \ \alpha_3 &= b_3 z^2, \ \alpha_4 &= b_2 z^3, \ \alpha_6 &= b_0 z^5 \end{aligned}$

• To get a local model, we assign scaling dimensions to the coordinates, and discard irrelevant terms, eg.

$$E_6: y^2 = x^3 + b_3 y z^2 + b_2 x z^3 + b_0 z^5$$

۵

・ロト ・ 日 ト ・ ヨ ト ・

• The idea of local F-theory models however, is to focus on the submanifold S, where the GUT symmetry G_S is localised

- The idea of local F-theory models however, is to focus on the submanifold S, where the GUT symmetry G_S is localised
- Intersections of the gauge brane with other 7-branes wrapping surfaces S_i and supporting gauge groups G_i gives rise to matter curves Σ_i = S ∩ S_i. Along the matter curves, the local symmetry group is enhanced to G_{Σ_i} ⊃ G_S × G_i

- The idea of local F-theory models however, is to focus on the submanifold S, where the GUT symmetry G_S is localised
- Intersections of the gauge brane with other 7-branes wrapping surfaces S_i and supporting gauge groups G_i gives rise to matter curves $\Sigma_i = S \cap S_i$. Along the matter curves, the local symmetry group is enhanced to $G_{\Sigma_i} \supset G_S \times G_i$
- When matter curves intersect at a point in the internal geometry, there is a further enhancement, and there is a Yukawa coupling induced

- The idea of local F-theory models however, is to focus on the submanifold S, where the GUT symmetry G_S is localised
- Intersections of the gauge brane with other 7-branes wrapping surfaces S_i and supporting gauge groups G_i gives rise to matter curves $\Sigma_i = S \cap S_i$. Along the matter curves, the local symmetry group is enhanced to $G_{\Sigma_i} \supset G_S \times G_i$
- When matter curves intersect at a point in the internal geometry, there is a further enhancement, and there is a Yukawa coupling induced
- Different view: larger gauge group, broken by a position dependent VEV for an adjoint Higgs field

-≣->

・ロト ・ 日 ト ・ 田 ト ・

The Role of Exceptional Gauge Symmetries

- 一司

The Role of Exceptional Gauge Symmetries

• In F-theory, the fact that g_s is of order one provides us with the presence of exceptional symmetry groups- E_6 , E_7 and E_8

The Role of Exceptional Gauge Symmetries

- In F-theory, the fact that g_s is of order one provides us with the presence of exceptional symmetry groups- E_6 , E_7 and E_8
- In F-theory GUTs, all the interactions of particles are assumed to arise from a point of E_8 in the internal geometry

The Role of Exceptional Gauge Symmetries

- In F-theory, the fact that g_s is of order one provides us with the presence of exceptional symmetry groups- E_6 , E_7 and E_8
- In F-theory GUTs, all the interactions of particles are assumed to arise from a point of E_8 in the internal geometry

• We take the gauge symmetry on the surface S to be $G_S = SU(5)$

Image: A matrix of the second seco

• We take the gauge symmetry on the surface S to be $G_S = SU(5)$

$$\begin{array}{l} E_8 \supset SU(5) \times SU(5)_{\perp} \\ 248 \rightarrow (24,1) + (1,24) + (10,5) + (\overline{5},10) + (\overline{10},\overline{5}) + (5,\overline{10}) \end{array}$$

• We take the gauge symmetry on the surface S to be $G_S = SU(5)$ •

$$\begin{split} & E_8 \supset SU(5) \times SU(5)_{\perp} \\ & 248 \rightarrow (24,1) + (1,24) + (10,5) + (\overline{5},10) + (\overline{10},\overline{5}) + (5,\overline{10}) \end{split}$$

• The equations for the curves in terms of the weights t_i (i = 1, ..., 5, $\sum t_i = 0$), of the 5 representation of SU(5) are

$$egin{aligned} \Sigma_{10} &: t_i = 0 \ \Sigma_5 &: -t_i - t_j = 0, i
eq j \ \Sigma_1 &: \pm (t_i - t_j) = 0, i
eq j \end{aligned}$$

• We take the gauge symmetry on the surface S to be $G_S = SU(5)$ •

$$\begin{split} & E_8 \supset SU(5) \times SU(5)_{\perp} \\ & 248 \rightarrow (24,1) + (1,24) + (10,5) + (\overline{5},10) + (\overline{10},\overline{5}) + (5,\overline{10}) \end{split}$$

• The equations for the curves in terms of the weights t_i (i = 1, ..., 5, $\sum t_i = 0$), of the 5 representation of SU(5) are

$$\begin{split} & \Sigma_{10} : t_i = 0 \\ & \Sigma_5 : -t_i - t_j = 0, i \neq j \\ & \Sigma_1 : \pm (t_i - t_j) = 0, i \neq j \end{split}$$

• The fibration coefficients *b_k* are the elementary symmetric polynomials in the weights, of degree k

• We take the gauge symmetry on the surface S to be $G_S = SU(5)$ •

$$\begin{split} & E_8 \supset SU(5) \times SU(5)_{\perp} \\ & 248 \rightarrow (24,1) + (1,24) + (10,5) + (\overline{5},10) + (\overline{10},\overline{5}) + (5,\overline{10}) \end{split}$$

• The equations for the curves in terms of the weights t_i (i = 1, ..., 5, $\sum t_i = 0$), of the 5 representation of SU(5) are

$$\begin{split} \Sigma_{10} &: t_i = 0 \\ \Sigma_5 &: -t_i - t_j = 0, i \neq j \\ \Sigma_1 &: \pm (t_i - t_j) = 0, i \neq j \end{split}$$

- The fibration coefficients b_k are the elementary symmetric polynomials in the weights, of degree k
- Non linear \rightarrow Monodromies

An Example

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

An Example

Monodromy must be at least Z_2 for a tree level top yukawa: $t_1 \leftrightarrow t_2$
An Example

Monodromy must be at least Z_2 for a tree level top yukawa: $t_1 \leftrightarrow t_2$

Field	$SU(5) imes SU(5)_{\perp}$	$SU(5)_{\perp}$ component
Q_3, U_3^c, I_3^c	(10,5)	<i>t</i> _{1,2}
Q_2, U_2^c, I_2^c	(10,5)	t_3
Q_1 , U_1^c , I_1^c	(10,5)	t_4
D3 ^c , L3	$(\overline{5}, 10)$	$t_{3} + t_{5}$
D2 ^c , L2	$(\overline{5}, 10)$	$t_1 + t_3$
D_1^c , L_1	$(\overline{5}, 10)$	$t_1 + t_4$
H_u	$(5,\overline{10})$	$-t_1 - t_2$
H_d	$(\overline{5}, 10)$	$t_1 + t_4$
$ heta_{ij}$	(1,24)	$t_i - t_j$

Table: Matter Fields and their assignments

3

・ロト ・ 日 ト ・ 田 ト ・

Family Symmetries

• The up quark Yukawa operators $Q_i U_j^c H_u$ require the following flavons to balance the charges

•
$$Q_i U_j^c H_u \begin{pmatrix} \theta_{14}^2 & \theta_{13}\theta_{14} & \theta_{14} \\ \theta_{13}\theta_{14} & \theta_{13}^2 & \theta_{13} \\ \theta_{14} & \theta_{13} & 1 \end{pmatrix} \rightarrow Y^u \sim \begin{pmatrix} \epsilon^6 & 3\epsilon^5 & \epsilon^3 \\ 3\epsilon^5 & 9\epsilon^4 & 3\epsilon^2 \\ \epsilon^3 & 3\epsilon^2 & 1 \end{pmatrix}$$

• The choice $heta_{13}=3\epsilon^2, \ heta_{14}=\epsilon^3$ has been made for the VEVs

Family Symmetries

• The up quark Yukawa operators $Q_i U_j^c H_u$ require the following flavons to balance the charges

•
$$Q_i U_j^c H_u \begin{pmatrix} \theta_{14}^2 & \theta_{13}\theta_{14} & \theta_{14} \\ \theta_{13}\theta_{14} & \theta_{13}^2 & \theta_{13} \\ \theta_{14} & \theta_{13} & 1 \end{pmatrix} \rightarrow Y^u \sim \begin{pmatrix} \epsilon^6 & 3\epsilon^5 & \epsilon^3 \\ 3\epsilon^5 & 9\epsilon^4 & 3\epsilon^2 \\ \epsilon^3 & 3\epsilon^2 & 1 \end{pmatrix}$$

• The choice $heta_{13}=3\epsilon^2,\;\; heta_{14}=\epsilon^3$ has been made for the VEVs

• The down quark Yukawa operators $Q_i D_j^c H_d$ require the following flavons to balance the charges

• $Q_i D_j^c H_d \begin{pmatrix} \theta_{54} \theta_{34} & \theta_{54} & \theta_{14} \\ \theta_{54} & \theta_{53} & \theta_{13} \\ \theta_{31} \theta_{54} + \theta_{34} \theta_{51} & \theta_{23} & \theta_{23} \end{pmatrix} \rightarrow Y^d \sim \begin{pmatrix} 0 & \epsilon^3 & \epsilon^3 \\ \epsilon^3 & \epsilon^2 & 3\epsilon^2 \\ 0 & 0 & 1 \end{pmatrix}$

• The additional choices $heta_{53}=\epsilon^2, \ heta_{54}=\epsilon^3, \ heta_{31}=0$ have been made

э

・ロト ・ 日 ト ・ 目 ト ・

• We can take the gauge symmetry G_S on the seven brane wrapping a surface S to be E_6 , SO(10) or SU(5). We have made complete the connections between these three pictures

• We can take the gauge symmetry G_S on the seven brane wrapping a surface S to be E_6 , SO(10) or SU(5). We have made complete the connections between these three pictures

 $\begin{array}{l} E_8 \supset E_6 \times SU(3)_{\perp} \\ \rightarrow SO(10) \times U(1)_{\psi} \times SU(3)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \times SU(3)_{\perp} \\ E_8 \supset SO(10) \times SU(4)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times SU(4)_{\perp} \\ E_8 \supset SU(5) \times SU(5)_{\perp} \end{array}$

• We can take the gauge symmetry G_S on the seven brane wrapping a surface S to be E_6 , SO(10) or SU(5). We have made complete the connections between these three pictures

$$\begin{split} E_8 \supset E_6 \times SU(3)_{\perp} \\ \rightarrow SO(10) \times U(1)_{\psi} \times SU(3)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \times SU(3)_{\perp} \\ E_8 \supset SO(10) \times SU(4)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times SU(4)_{\perp} \\ E_8 \supset SU(5) \times SU(5)_{\perp} \end{split}$$

• We assume the breakings proceed via fluxes

• We can take the gauge symmetry G_S on the seven brane wrapping a surface S to be E_6 , SO(10) or SU(5). We have made complete the connections between these three pictures

$$\begin{array}{l} E_8 \supset E_6 \times SU(3)_{\perp} \\ \rightarrow SO(10) \times U(1)_{\psi} \times SU(3)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \times SU(3)_{\perp} \\ E_8 \supset SO(10) \times SU(4)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times SU(4)_{\perp} \\ E_8 \supset SU(5) \times SU(5)_{\perp} \end{array}$$

- We assume the breakings proceed via fluxes
- $\bullet~$ U(1)s from perpendicular group: chirality of complete GUT reps

• We can take the gauge symmetry G_S on the seven brane wrapping a surface S to be E_6 , SO(10) or SU(5). We have made complete the connections between these three pictures

$$\begin{array}{l} E_8 \supset E_6 \times SU(3)_{\perp} \\ \rightarrow SO(10) \times U(1)_{\psi} \times SU(3)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \times SU(3)_{\perp} \\ E_8 \supset SO(10) \times SU(4)_{\perp} \\ \rightarrow SU(5) \times U(1)_{\chi} \times SU(4)_{\perp} \\ E_8 \supset SU(5) \times SU(5)_{\perp} \end{array}$$

- We assume the breakings proceed via fluxes
- $\bullet~$ U(1)s from perpendicular group: chirality of complete GUT reps
- Fluxes inside GUT group

James Callaghan (University of Southampton

3

・ロト ・ 日 ト ・ 田 ト ・

Flux breaking

Flux can be used to break down to the SM, leading to splitting equations

$$10 = \begin{cases} \operatorname{Rep.} & \# \\ n_{3,2}^1 - n_{\overline{3},2}^1 & : M_{10} \\ n_{\overline{3},1}^1 - n_{3,1}^1 & : M_{10} - N \\ n_{\overline{1},1}^1 - n_{1,1}^1 & : M_{10} + N \end{cases} \quad 5 = \begin{cases} \operatorname{Rep.} & \# \\ n_{3,1}^1 - n_{\overline{3},1}^1 & : M_5 \\ n_{1,2}^1 - n_{1,\overline{2}}^1 & : M_5 + N \end{cases}$$

Flux breaking

Flux can be used to break down to the SM, leading to splitting equations

$$10 = \begin{cases} \text{Rep.} & \# \\ n_{3,2}^1 - n_{\overline{3},2}^1 & : M_{10} \\ n_{\overline{3},1}^1 - n_{3,1}^1 & : M_{10} - N \\ n_{\overline{1},1}^1 - n_{1,1}^1 & : M_{10} + N \end{cases} \quad 5 = \begin{cases} \text{Rep.} & \# \\ n_{3,1}^1 - n_{\overline{3},1}^1 & : M_5 \\ n_{1,2}^1 - n_{1,\overline{2}}^1 & : M_5 + N \end{cases}$$

The Ms and Ns are integers given by the flux dotted with the homology class of the matter curve.

The flux associated with M respects the GUT structure, and so is a flux in the perpendicular U(1)s.

The flux associated with N is a hypercharge flux, and leads to incomplete SU(5) multiplets.

Dictionary between different GUT theories

E ₆ Origin of SU(5) Matter	$U(1)_i$	homology	$U(1)_Y$ -flux	U(1)-flux
$27_{t_1} \supset 16_{t_1} \supset 10_M$	$t_{1,2}$	$\eta - 2c_1 - \chi$	- <i>N</i>	<i>M</i> ₁₀₁
$27_{t_3} \supset 16_{t_3} \supset 10_2$	t ₃	$-c_1 + \chi_5$	N ₅	<i>M</i> ₁₀₂
$78 \supset 16_{t_4} \supset 10_3$	t_4	$-c_1 + \chi_7$	N ₇	<i>M</i> ₁₀₃
$78 \supset 45_{t_5} \supset 10_4$	t_5	$-c_1 + \chi_9$	N ₉	M_{10_4}
$27_{t_3} \supset 10_{t_3} \supset 5_{H_u}$	$-t_1 - t_2$	$-c_1 + \chi$	N	$M_{5_{h_u}}$
$27_{t_1} \supset 10_{t_1} \supset 5_1$	$-t_{1,2}-t_3$	$\eta - 2c_1 - \chi$	-N	M_{5_1}
$27_{t_1} \supset 10_{t_1} \supset 5_2$	$-t_{1,2} - t_4$	$\eta - 2c_1 - \chi$	- <i>N</i>	M_{5_2}
$27_{t_1} \supset 16_{t_1} \supset 5_3$	$-t_{1,2}-t_5$	$\eta - 2c_1 - \chi$	- <i>N</i>	M_{5_3}
$27_{t_3} \supset 10_{t_3} \supset 5_4$	$-t_{3}-t_{4}$	$-c_1 + \chi - \chi_9$	$N - N_9$	M_{5_4}
$27_{t_3} \supset 16_{t_3} \supset 5_5$	$-t_3 - t_5$	$-c_1 + \chi - \chi_7$	$N - N_7$	$M_{5_{h_d}}$
$78 \supset 16_{t_4} \supset 5_6$	$-t_4 - t_5$	$-c_1 + \chi - \chi_5$	$N - N_5$	M_{5_6}

Table: Field representation content under $SU(5) \times U(1)_{t_i}$, their homology class and flux restrictions. For convenience, only the properties of 10,5 are shown. $\overline{10},\overline{5}$ are characterized by opposite values of $t_i \rightarrow -t_i$ etc. Note that the fluxes satisfy $N = N_5 + N_7 + N_9$ and $\sum_i M_{10_i} + \sum_j M_{5_j} = 0$ while $\chi = \chi_5 + \chi_7 + \chi_9$.

Singlet	Q_{χ}	Q_{ψ}	Representations		
θ_{12}	0	0	SO(10) singlet in 78		
θ_{13}	0	0	$45 \subset 78$		
θ_{14}	0	4	SO(10) singlet in $27_{t_{1,2}}$		
θ_{15}	-5	1	$16_{t_{1,2}} \subset 27_{t_{1,2}}$		
θ_{34}	0	4	SO(10) singlet in 27_{t_3}		
θ_{35}	-5	-1	$16_{t_3} \subset 27_{t_3}$		
θ_{45}	-5	-3	$16_{t_4} \subset 78$		

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

・ロト ・回ト ・ヨト

A realistic model based on E_6

The only E_6 allowed trilinear term in the superpotential is $27_{t_1}27_{t_1}27_{t_3}$

A realistic model based on E_6

The only E_6 allowed trilinear term in the superpotential is $27_{t_1}27_{t_1}27_{t_3}$ Anomalies can be cancelled by having complete 27 representations of E_6

A realistic model based on E_6

The only E_6 allowed trilinear term in the superpotential is $27_{t_1}27_{t_1}27_{t_3}$ Anomalies can be cancelled by having complete 27 representations of E_6

$E_6, SO(10), SU(5)$	Charge	N _Y	$M_{U(1)}$	SM particle content
27_{t_1} , 16_{t_1} , $\overline{5}_3$	$t_1 + t_5$	Ñ	$-M_{5_3}$	$-M_{5_3}d^c + (-M_{5_3} + \tilde{N})L$
27_{t_1} , 16_{t_1} , 10_M	t_1	$-\tilde{N}$	$-M_{5_3}$	$-M_{5_3}Q + (-M_{5_3} + \tilde{N})u^c + (-M_{5_3} - \tilde{N})e^c$
27_{t_1} , 16_{t_1} , θ_{15}	$t_1 - t_5$	0	$-M_{5_3}$	$-M_{5_3}\nu^c$
27_{t_1} , 10_{t_1} , 5_1	$-t_1 - t_3$	$-\tilde{N}$	$-M_{5_3}$	$-M_{5_3}D + (-M_{5_3} - \tilde{N})H_u$
$27_{t_1}, 10_{t_1}, \overline{5}_2$	$t_1 + t_4$	Ñ	$-M_{5_3}$	$-M_{5_3}\overline{D}+(-M_{5_3}+\widetilde{N})H_d$
27_{t_1} , 1_{t_1} , θ_{14}	$t_1 - t_4$	0	$-M_{5_3}$	$-M_{5_3}S$
27_{t_3} , 16_{t_3} , $\overline{5}_5$	$t_3 + t_5$	$-\tilde{N}$	$M_{5_{H_u}}$	$M_{5_{H_{\mu}}}d^{c}+(M_{5_{H_{\mu}}}- ilde{N})L$
27_{t_3} , 16_{t_3} , 10_2	t ₃	Ñ	$M_{5_{H_u}}$	$M_{5_{H_{u}}}Q + (M_{5_{H_{u}}} - \tilde{N})u^{c} + (M_{5_{H_{u}}} + \tilde{N})e^{c}$
27_{t_3} , 16_{t_3} , θ_{35}	$t_3 - t_5$	0	$M_{5_{H_u}}$	$M_{5_{H_u}}\nu^c$
27_{t_3} , 10_{t_3} , 5_{H_u}	$-2t_{1}$	Ñ	$M_{5_{H_u}}$	$M_{5_{H_u}}D + (M_{5_{H_u}} + \tilde{N})H_u$
$27_{t_3}, 10_{t_3}, \overline{5}_4$	$t_3 + t_4$	$-\tilde{N}$	$M_{5_{H_u}}$	$M_{5_{H_u}}\overline{D} + (M_{5_{H_u}} - \widetilde{N})H_d$
27_{t_3} , 1_{t_3} , θ_{34}	$t_3 - t_4$	0	$M_{5_{H_u}}$	$M_{5_{H_{\mu}}}\tilde{S}$

Spectrum

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Spectrum

- Choosing the case $M_{5_3}=-3,~M_{5_{H_u}}=0$ and $ilde{N}=1,$ the spectrum is
- $3[Q, u^c, d^c, L, e^c, \nu^c]_{16}$
- $3[H_u, D, H_d, \overline{D}]_{10}$
- 3[*S*]₁
- $L + \overline{L}, e^c + \overline{e^c}, u^c + \overline{u^c}, H_d + \overline{H_d}$

Spectrum

- Choosing the case $M_{5_3}=-3,~M_{5_{H_u}}=0$ and $ilde{N}=1,$ the spectrum is
- $3[Q, u^{c}, d^{c}, L, e^{c}, \nu^{c}]_{16}$
- $3[H_u, D, H_d, D]_{10}$
- 3[*S*]₁
- $L + \overline{L}, e^c + \overline{e^c}, u^c + \overline{u^c}, H_d + \overline{H_d}$
- With this choice, however, H_d comes from 27_{t_1} and so down quark masses are forbidden at tree level!

Spectrum

- Choosing the case $M_{5_3}=-3,~M_{5_{H_u}}=0$ and $ilde{N}=1,$ the spectrum is
- $3[Q, u^{c}, d^{c}, L, e^{c}, \nu^{c}]_{16}$
- $3[H_u, D, H_d, D]_{10}$
- 3[*S*]₁
- $L + \overline{L}, e^c + \overline{e^c}, u^c + \overline{u^c}, H_d + \overline{H_d}$
- With this choice, however, H_d comes from 27_{t_1} and so down quark masses are forbidden at tree level!
- \Rightarrow Slightly modified structure:

$$M_{10_{M}} = -M_{5_{3}} = 4,$$

$$M_{5_{1}} = -M_{5_{2}} = 3$$

$$M_{10_{2}} = -M_{5_{5}} = -1,$$

$$M_{5_{4}} = M_{H_{u}} = 0,$$

$$M_{\theta_{15}} = 2,$$

$$\tilde{N} = 1$$

E ₆	SO(10)	<i>SU</i> (5)	N _Y	$M_{U(1)}$	SM particle content	Low energy
$27_{t_1'}$	16	<u>5</u> 3	1	4	$4d^{c} + 5L$	3d ^c + 3L
$27_{t_1'}$	16	10 _M	-1	4	$4Q + 5u^{c} + 3e^{c}$	$3Q + 3u^c + 3e^c$
$27_{t_1'}$	16	θ_{15}	0	3	$3\nu^{c}$	-
$27_{t_1'}$	10	5 ₁	-1	3	$3D + 2H_u$	-
$27_{t_1'}$	10	<u>5</u> 2	1	3	$3\overline{D} + 4H_d$	H _d
$27_{t'_3}$	16	<u>5</u> 5	-1	-1	$\overline{d^c} + 2\overline{L}$	-
$27_{t'_3}$	16	102	1	-1	$\overline{Q} + 2\bar{u^c}$	-
$27_{t'_3}$	16	θ_{35}	0	0	_	-
$27_{t'_3}$	10	5 _{Hu}	1	0	H_u	H_u
$27_{t'_3}$	10	54	-1	0	$\overline{H_d}$	-
$27_{t'_3}$	1	θ_{34}	0	1	θ_{34}	-
-	1	θ_{31}	0	4	θ_{31}	-
-	1	θ_{53}	0	1	θ_{53}	-
-	1	θ_{14}	0	3	θ_{14}	-
-	1	θ_{45}	0	2	θ_{45}	-

▲□▶ ▲圖▶ ▲温▶ ▲温≯

▲□▶ ▲圖▶ ▲温▶ ▲温≯

• The vector pairs with components in the 27_{t_1} and 27_{t_3} multiplets are removed by introducing θ_{31} which is a singlet of E_6 and has couplings:

 $\theta_{31}27_{t_1'}\overline{27_{t_3'}} = \theta_{31}Q\overline{Q} + \theta_{31}(2u^c)(2\overline{u^c}) + \theta_{31}d^c\overline{d^c} + \theta_{31}(2L)(2\overline{L}) + \theta_{31}H_d\overline{H_d}$

 The vector pairs with components in the 27_{t1} and 27_{t3} multiplets are removed by introducing θ₃₁ which is a singlet of E₆ and has couplings:

 $\theta_{31}27_{t_1'}\overline{27_{t_3'}} = \theta_{31}Q\overline{Q} + \theta_{31}(2u^c)(2\overline{u^c}) + \theta_{31}d^c\overline{d^c} + \theta_{31}(2L)(2\overline{L}) + \theta_{31}H_d\overline{H_d}$

• If θ_{31} gets a large VEV these vector states get large masses as required.

• The vector pairs with components in the 27_{t_1} and 27_{t_3} multiplets are removed by introducing θ_{31} which is a singlet of E_6 and has couplings:

 $\theta_{31}27_{t_1'}\overline{27_{t_3'}} = \theta_{31}Q\overline{Q} + \theta_{31}(2u^c)(2\overline{u^c}) + \theta_{31}d^c\overline{d^c} + \theta_{31}(2L)(2\overline{L}) + \theta_{31}H_d\overline{H_d}$

- If θ_{31} gets a large VEV these vector states get large masses as required.
- To remove the remaining exotics we introduce $\theta_{\rm 34}$ which has the couplings :

 $\theta_{34}5_1\overline{5_2} = \theta_{34}[3D + 2H_u][3\overline{D} + 3H_d] = \theta_{34}[3(D\overline{D})] + \theta_{34}[2(H_uH_d)]$

If it too acquires a large VEV it generates large mass to the three copies of $D + \overline{D}$ (solving the doublet-triplet splitting problem) and two families of Higgs H_u , H_d , leaving just the MSSM spectrum

Singlet VEVs

▲口> ▲圖> ▲屋> ▲屋>

Singlet VEVs

• To determine the large singlet VEVs we consider the *F*- and *D*-flatness conditions, which leads to

$$| heta_{53}|^2 = X$$

 $| heta_{34}|^2 = 2X$
 $| heta_{31}|^2 = 37X$

where
$$X = \frac{g_s^2 M_S^2}{192\pi^2}$$

< Ξ →

Singlet VEVs

• To determine the large singlet VEVs we consider the *F*- and *D*-flatness conditions, which leads to

$$| heta_{53}|^2 = X$$

 $| heta_{34}|^2 = 2X$
 $| heta_{31}|^2 = 37X$

where $X = rac{g_s^2 M_S^2}{192\pi^2}$

• The singlet θ_{14} gets a TeV VEV in order to generate the μ term $\theta_{14}H_uH_d$.

Baryon- and lepton-number violating terms

< 4 **₽** ► <

3 ×

• The R-parity violating superpotential couplings $u^c d^c d^c$, $Qd^c L$, $Le^c L$, κLH_u are not allowed because of the underlying $27_{t'_1} \rightarrow -27_{t'_1}$ symmetry. Under this symmetry the matter fields and H_d are odd but H_u is even.

- The R-parity violating superpotential couplings $u^c d^c d^c$, $Q d^c L$, $L e^c L$, $\kappa L H_u$ are not allowed because of the underlying $27_{t'_1} \rightarrow -27_{t'_1}$ symmetry. Under this symmetry the matter fields and H_d are odd but H_u is even.
- Dimension 5 terms correspond to the superpotential terms QQQL and $u^c u^c d^c e^c$. However they are forbidden by the U(1) symmetries that originate in the underlying E_6 .

- The R-parity violating superpotential couplings $u^c d^c d^c$, $Q d^c L$, $L e^c L$, $\kappa L H_u$ are not allowed because of the underlying $27_{t'_1} \rightarrow -27_{t'_1}$ symmetry. Under this symmetry the matter fields and H_d are odd but H_u is even.
- Dimension 5 terms correspond to the superpotential terms QQQL and $u^c u^c d^c e^c$. However they are forbidden by the U(1) symmetries that originate in the underlying E_6 .
- Allowing for arbitrary singlet fields to acquire VEVs the dangerous the baryon- and lepton-number violating operators arise through the terms $\theta_{15}LH_u$, $(\theta_{31}\theta_{45} + \theta_{41}\theta_{35})10_M\overline{5_3}^2$ and $\theta_{31}\theta_{41}10_M^3\overline{5_3}$.

- The R-parity violating superpotential couplings $u^c d^c d^c$, $Q d^c L$, $L e^c L$, $\kappa L H_u$ are not allowed because of the underlying $27_{t'_1} \rightarrow -27_{t'_1}$ symmetry. Under this symmetry the matter fields and H_d are odd but H_u is even.
- Dimension 5 terms correspond to the superpotential terms QQQL and $u^c u^c d^c e^c$. However they are forbidden by the U(1) symmetries that originate in the underlying E_6 .
- Allowing for arbitrary singlet fields to acquire VEVs the dangerous the baryon- and lepton-number violating operators arise through the terms $\theta_{15}LH_u$, $(\theta_{31}\theta_{45} + \theta_{41}\theta_{35})10_M\overline{5_3}^2$ and $\theta_{31}\theta_{41}10_M^3\overline{5_3}$.
- \Rightarrow provided θ_{15} , θ_{41} and θ_{45} do *not* acquire VEVs these dangerous terms will not arise.
The Model

Summary

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• F-theory Guts can provide realistic models of flavour

- F-theory Guts can provide realistic models of flavour
- A useful framework for model building can be built by studying the relationships between different GUT theories

- F-theory Guts can provide realistic models of flavour
- A useful framework for model building can be built by studying the relationships between different GUT theories
- This framework has been used to develop a model which stabalises the proton and forbids R-parity violating operators