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actions for the dynamics of multiple M5 branes

single brane: (2,0) chiral tensor multiplet:

multiple branes: non-abelian deformation

no-go theorems

lessons from M2 branes

non-dynamical fields may be crucial  (BLG)

full supersymmetry may not be manifest  (ABJM)

study (1,0) non-abelian superconformal models in six dimensions

(dB)− = 0

[Bagger, Lambert, Gustavsson ’07]
[Aharony, Bergman, Jafferis, Maldacena, ’08]

{
Bµν , χi, φij

}
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field content {Ar
µ, BI

µν , Cµνρ r}

covariant field strengths  (Yang-Mills)

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

non-abelian gauge transformations

δAr
µ = DµΛr − hr

IΛ
I
µ

and gauge generators Xrwith structure constantsdI
rs, bIrs, frs

t, gIr, hr
I
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non-abelian gauge transformations

covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

field content {Ar
µ, BI

µν , Cµνρ r}

δAr
µ = DµΛr − hr

IΛ
I
µ

∆BI
µν = 2D[µΛI

ν] − 2 dI
rsΛ

rFs
µν − gIrΛµν r

∆Cµνρ r = 3D[µΛνρ] r + 3 bIrs Fs
[µν ΛI

ρ] + bIrsHI
µνρ Λs + . . .

∆BI
µν ≡ δBI

µν − 2dI
rs Ar

[µ δAs
ν]

∆Cµνρ r ≡ δCµνρ r − 3 bIrs BI
[µν δAs

ρ] − 2 bIrs dI
pq As

[µ Ap
ν δAq

ρ]

[B de Wit, HS, ’05]
[B de Wit, H Nicolai, HS, ’08]
[J. Hartong, T. Ortin, ’09]

in terms of constant tensors dI
rs, bIrs, frs

t, gIr, hr
I Xr
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covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

consistency requires a number of constraints on the parameters :

(Xr)s
t = − frs

t + dI
rs ht

I

(Xr)I
J = 2 hs

Id
J
rs − gJsbIsr

gauge group generators

close into the algebra [Xr, Xs] = (Xr)s
t Xt

charged tensor fields require Stückelberg-type coupling

generalized Bianchi identities                          , etc.

continues to 4-forms, 5-forms, ...

DFr = hr
I HI

Dµ = ∂µ −Ar
µ Xr
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covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

consistency requires a number of constraints on the parameters :

in terms of the constant tensors appearing in the system. The second relation exposes

an important feature of the tensor hierarchy: tensor fields can be charged under the

gauge group only if either hr
I or gIr are non-vanishing, i.e. they require some non-

vanishing Stückelberg-type couplings in the field strengths (2.1). This corresponds to

the known results [31, 32] that in absence of such couplings and the inclusion of addi-

tional three-form gauge potentials, the free system of self-dual tensor multiplets does

not admit any non-abelian deformations. On the other hand, the first relation of (2.4)

shows that in presence of hr
I , the gauge group generators in the ‘adjoint representa-

tion’ (Xr)s
t are not just given by the structure constants but acquire a modification,

symmetric in its indices (rs).

Furthermore, consistency of the system, i.e. covariant transformation behavior of

the field strengths (2.1) under the gauge transformations (2.2) requires the constant

tensors to satisfy a number of algebraic consistency constraints. A first set of con-

straints, linear in f , g, h, is given by

2
(
dJ

r(ud
I
v)s − dI

rsd
J
uv

)
hs

J = 2fr(u
sdI

v)s − bJsrd
J
uv gIs ,

(
dJ

rs bIut + dJ
rt bIsu + 2 dK

rubKstδ
J
I

)
hu

J = frs
ubIut + frt

ubIsu + gJubIurbJst , (2.5)

and ensures the invariance of the d- and the b-symbol under gauge transformations.

The remaining constraints are bilinear in f , g, h and take the form

f[pq
ufr]u

s − 1
3h

s
I dI

u[pfqr]
u = 0 ,

hr
Ig

Is = 0 ,

frs
thr

I − dJ
rs ht

Jhr
I = 0 ,

gJshr
KbIsr − 2hs

Ih
r
K dJ

rs = 0 ,

− frt
sgIt + dJ

rth
s
JgIt − gItgJsbJtr = 0 . (2.6)

They may be understood as generalized Jacobi identities of the system: together with

(2.5) they ensure the closure of the gauge algebra according to

[Xr, Xs] = −(Xr)s
t Xt , (2.7)

for the generators (2.4), as well as gauge invariance of the tensors f , g and h. The

first equation of (2.6) shows that the standard Jacobi identity is modified in presence

of a non-vanishing hI
r. Even though the set of constraints (2.5), (2.6) looks highly

restrictive, it admits rather non-trivial solutions and we will discuss explicit examples

of solutions in sections 3.6, 4.4, and 4.5, below. The system admits different abelian

limits with frs
t = 0 = gIr and either hr

I or dI
rs vanishing, in which the constraints

(2.5), (2.6) are trivially satisfied. A slightly more general solution is given by vanishing

hr
I = 0 = gIr with frs

t representing the structure constants of a Lie algebra. With the

particular choice dI
rs = dIδrs, the vector-tensor system then reduces to the coupling of

the Yang-Mills multiplet to an uncharged self-dual tensor multiplet as described in [13].
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for the constant tensors dI
rs, bIrs, frs

t, gIr, hr
I
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orthogonality

violation of Jacobi identities

too many constraints ?  are there solutions ?
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covariant field strengths

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν

some examples   (which satisfy all constraints)

abelian limit

Yang-Mills with neutral tensor fields

Yang-Mills with adjoint tensor fields

frs
t = 0, gIr = 0, hr

I = 0

gIr = 0, hr
I = 0, dI

rs = dIηrs

hr
s = 0, grs = ηrs, bt rs = frst

free theory with nontrivial Chern-Simons term

no Stückelberg-type couplings
[E. Bergshoeff, E. Sezgin, E. Sokatchev, ’96]

coupling of three-forms, charged tensors
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(1,0) supermultiplets
{
Ar

µ, λr
i , Y r

ij

} {
Cµνρ r

}
vector tensor three-form

{
BI

µν , χI
i , φ

I
}

off-shell on-shell ??
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(1,0) supermultiplets
{
Ar

µ, λr
i , Y r

ij

} {
Cµνρ r

}
vector tensor three-form

closure of the supersymmetry algebra on the tensor multiplet impliesresulting tensor multiplet field equations are given by

HI −
µνρ = −dI

rsλ̄
rγµνρλ

s ,

γσDσχ
iI = 1

2d
I
rsF r

στ γστλis + 2dI
rsY

ij r λs
j +

(
dI

rsh
s
J − 2bJsrg

Is
)
φJλir ,

DµDµ φI = −1
2d

I
rs

(
F r

µνFµν s − 4 Y r
ijY

ij s + 8λ̄rγµDµλ
s
)

− 2
(
bJsrg

Is − 8dI
rsh

s
J

)
λ̄rχJ − 3 dI

rsh
r
Jhs

K φJφK . (3.5)

The first equation, which imposes a self duality condition on the three-from field

strength, originates in the closure of supersymmetry on the associated two-form poten-

tial BI
µν . The closure on δχi I gives the fermionic equations of motion while the scalar

field equation is obtained by the supersymmetry transformation of the χiI- equation.

The fact that the tensor fields are charged under the gauge group has rather non-

trivial consequences, namely supersymmetry variation of the field equations (3.5) in

turn implies the following first-order equations of motion for the Yang-Mills multiplets

gKrbIrs

(
Y s

ij φI − 2λ̄s
(iχ

I
j)

)
= 0 ,

gKrbIrs

(
F s

µνφ
I − 2 λ̄sγµνχ

I
)

= 1
4! εµνλρστ gKrH(4) λρστ

r ,

gKrbIrs

(
φIγµDµλ

s
i + 1

2γ
µλs

iDµφ
I
)

= gKrbIrs

(
1
4F

s
µνγ

µνχI
i + 1

24H
I
µνργ

µνρλs
i − Y s

ij χj I

+ 3
2h

s
JφIχJ

i + 1
3d

I
uv γµλu

i λ̄
sγµλ

v
)

.

(3.6)

The first equation is the algebraic equation for the auxiliary field Y ij r, while the second

equation provides the anticipated duality of vector fields and three-form potentials by

relating their respective field strengths. In particular, derivation of this equation and

use of the Bianchi identity (2.9) gives rise to a standard second-order equation of Yang-

Mills type for the vector fields Ar
µ . Equivalently, the first two equations of (3.6) can be

inferred from closure of the supersymmetry algebra on the three-form gauge potentials

gKrCµνρ r . The appearance of the Yang-Mills dynamics (3.6) from supersymmetry of

the tensor field equations (3.5) is in strong contrast to the model of [13] (in which

effectively gKr = 0, and the tensor field are not charged) where the vector fields remain

entirely off-shell or can alternatively be set on-shell with field equations that do not

contain the tensor multiplet fields. Moreover, in the model of [13], an algebraic equation

analogous to the first equation of (3.6) is excluded by the appearance of an anomaly

in its supersymmetry variation (see also [33]). We should stress that in the present

model, such anomalies are actually absent due to the particular Fierz identities (A.6),

(A.7) in combination with the identity (2.15). I.e. the quartic fermion terms in the

supersymmetry variation of (3.6) cancel precisely, which yields a strong consistency

check of the construction.

To summarize, the system of equations of motion (3.5), (3.6) consistently trans-

forms into itself under supersymmetry. It describes a novel system of supersymmetric
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supersymmetry variation of (3.6) cancel precisely, which yields a strong consistency
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supersymmetry of these equations implies

non-abelian couplings for multiple (1, 0) tensor multiplets in six dimensions. The equa-

tions of motion contain no dimensionful parameter and hence the system is at least

classically (super)-conformal. A crucial ingredient to the model are the three-form

gauge potentials Cµνρ r which are related by first-order duality equations to the vector

fields of the theory and thus do not constitute new dynamical degrees of freedom. This

is similar to the situation of Chern-Simons matter theories in the context of multiple

M2 branes [5], [3]. The actual model depends on the explicit choice of the gauge group

and representations and the associated invariant tensors of the gauge group which have

to satisfy the conditions (2.4)–(2.6). The task that remains is to find explicit solutions

for these constraints. We will discuss different examples in sections 3.6, 4.4 and 4.5

below.

3.3 Extended model

The above described model represents the minimal field content and equations of mo-

tion, required for closure of the supersymmetry algebra and the supersymmetry of the

equations of motions. In particular, it relies on the projected subset gK rCµνρ r of three-

form gauge potentials. Just as for the bosonic tensor hierarchy in section 2.2, one may

seek to extend the above supersymmetric system to the full set of three-form gauge

potentials. With the supersymmetry transformation of general Cµνρ r given by (3.4),

closure of the supersymmetry algebra leads to the following uncontracted equations

bIrs
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Y s

ij φI − 2λ̄s
(iχ
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)
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F s
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I
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24H
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J

(
2φIχJ

i − 1
2φ

JχI
i

)
+ 1

3d
I
uv γµλu

i λ̄
sγµλ

v
)

,

(3.7)

In order to have this system close under supersymmetry it is necessary to introduce also

a four-form gauge potential. Consequently the tensor hierarchy has to be continued one

step further as described in section 2.2. The resulting supersymmetry transformation

of the four-form potential is

∆C(4)
µνρσ α = 2cα IJ φ[I ε̄γµνρσχ

J ] , (3.8)

Furthermore, supersymmetry of the field equations (3.7) induces the first-order field

equations

1
5! εµνρλστ kr

αH(5) µνρλσ
α = 2kr

α
(
cα IJ

(
φIDµφ

J − 2χ̄Iγµχ
J
)
− ct

α ubJtv λ̄uγµλ
v
)

. (3.9)

This shows that the dynamics of C(4)
µνρσ α is given by a first-order duality equations,

which relates these four-form potentials to the Noether current of some underlying

global symmetry. In particular, this first-order equation ensures that the four-form

gauge potentials do not constitute new dynamical degrees of freedom.
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can these equations be lifted to an action ?

yes! provided that there is a constant metric

and the parameters are related as

ηIJ

hr
I = ηIJgJr , 2 dI

rs = ηIJbJrs

i.e. in particular a b-symbol that is symmetric in its indices (rs). Moreover, in the

process of computing the action, one finds that the identity (2.15) needs to be imposed

in order to ensure the existence of a proper topological term. From (4.1) it is obvious

that the models we have discussed in section 3.6 indeed do not admit an action.

To summarize, with these identifications, the algebraic consistency conditions (2.5),

(2.6), (2.15) reduce to

bI r(ub
I
vs) = 0 ,

(
bJ
r(u bI

v)s − bJ
uv bI

rs + bK rsb
K
uv ηIJ

)
gs

J = 2fr(u
sbI

v)s ,

6f[pq
ufr]u

s − gs
I bI

u[pfqr]
u = 0 ,

2frs
tgr

I − bJ
rs gt

Jgr
I = 0 ,

gr
Kgs

[IbJ ]sr = 0 ,

gr
Ig

Is = 0 . (4.2)

Finding non-trivial solutions to these constraints is a formidable task. We will give in

sections 4.4, 4.5 below some explicit solutions that are inspired from similar construc-

tions in gauged supergravity theories.

4.2 The action

In case the constant tensors satisfy all algebraic conditions (4.2), the equations of

motion (3.5), (3.6) can be lifted to an action. In fact, one may verify a somewhat

stronger conclusion: the identifications (4.1) and thus the set of constraints (4.2) appear

already to be necessary in order to construct a conserved supercurrent underlying the

equations of motion (3.5), (3.6) from a canonical structure for the fermions [37].

In order to write an action, we ignore for the moment the subtleties of writing an

action for a self-dual three-form field strength, but give a standard second-order action,

keeping in mind that the corresponding first-order equation of (3.5) is supposed to be

imposed after having derived the second-order equations of motion, just as in the

democratic formulation of ten-dimensional supergravities [22].3 The full action then

reads

L = −1
8D

µφI Dµφ
I − 1

2 χ̄I γµDµχ
I + 1

16bIrsφ
I
(
F r

µνFµν s − 4Y r
ijY

ij s + 8λ̄rγµDµλ
s
)

− 1
96H

I
µνρH

µνρ
I − 1

48bIrsHI
µνρ λ̄rγµνρλs − 1

4bIrsF r
µν λ̄sγµνχI + bIrsY

r
ij λ̄i sχj I

+ 1
2 (bJsrg

s
I − 4bIsrg

s
J) φI λ̄rχJ + 1

8bIrsg
r
Jgs

K φIφJφK − 1
48Ltop

− 1
24bIrsb

I
uv λ̄rγµλuλ̄sγµλ

v , (4.3)

which shows explicitly the role of the scalar fields φI as inverse coupling constants for

the Yang-Mills multiplet. Like the equations of motion, this action contains no dimen-

sionful parameter such that the system is (super)-conformal at least at the classical

3 Alternatively, this self-duality can be implemented by using a non-abelian version [38] of the
Henneaux-Teitelboim action [39] that breaks manifest space-time covariance.
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level. The topological term is given by integrating

dV δLtop = 6
{
bIrs δAr∧F s∧HI −∆BI∧

(
gr

I H(4) − 1
2bIrsF r∧F s

)
− gr

I∆Cr∧HI
}

,(4.4)

and has the explicit form

dV Ltop = −6 gr
I Cr∧HI + bIrsB

I∧F r∧F s − bIrsh
r
Jhs

K BI∧BJ∧BK

+ BI∧
[
hs

Ib
J
subJvrA

u∧Av∧ dAr + 3
4(bIrsfpq

r + 4bJqsXp I
J) fuv

sAp∧Aq∧Au∧Av
]

− 1
10 fup

sbJ
qsbJvr Ap∧Aq∧Au∧Av∧ dAr . (4.5)

It can be understood in compact form as the boundary contribution of a manifestly

gauge-invariant seven-dimensional term
∫

∂M7

Ltop ∝
∫

M7

(
bIrsF r∧F s∧HI −HI∧DHI

)
. (4.6)

As usual, gauge invariance of the topological term may lead to quantization conditions

for the various coupling constants. For the tensor multiplet, it is straightforward to

verify that the action (4.3) induces the field equations (3.5) from above. For the fields

of the vector multiplet, we obtain the first and the last of the uncontracted equations

(3.7), while the duality equation relating F r
µν and H(4)

µνρσ r only appears in its contracted

form (3.6). In addition, variation w.r.t. the vector field gives rise to the Yang-Mills

equation

bIrs Dν
(
φIF s

µν − 2λ̄sγµνχ
I
)

=
(
φIDµφ

J − 2χ̄Iγµχ
J
)
Xr IJ − 2φIbIpqXrs

q λ̄pγµλ
s

− 1
12bIrs εµνρλστ Fνρ sHλστ I , (4.7)

that can alternatively obtained as a derivative of the uncontracted duality equation

(3.7) upon use of the first-order equation (3.9).

We note that the last constraint equation of (4.2) shows that non-trivial solutions

to these constraints (i.e. solutions in which the tensor fields are charged) exist only

if the metric ηIJ is indefinite, which in turn implies that some of the scalars (and

some of the two-forms) in (4.3) have a negative kinetic term. This somewhat reminds

the situation for the three-dimensional BLG theories [3, 4] with Lorentzian three-

algebra [40, 41, 42, 43, 44], and certainly requires further investigation. We also note

that similar structures as encountered in this section have appeared in generic 6d

supergravity theories [45, 46, 47]

4.3 Multiplet structure of excitations

The supersymmetry transformations of the model (4.3) are still given by equations (3.3),

(3.4), such that the Killing spinor equations remain of the form (3.13). In particular,

the existence of a maximally supersymmetric vacuum is still encoded in the condition

(3.14) on the scalar expectation values. In this vacuum, the linearized field equations
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Yukawa couplings, cubic scalar potential, topological term

duality has to be imposed by hand (“democratic”) — or HT/PST style
no dimensionfull constants, classically superconformal

indefinite metrics (ghosts) : gIrηIJ gJs ≡ 0 Krs ≡ bI rs φI



examples

Henning Samtleben                                                                                  ENS Lyon

models with G adjoint tensor multiplets

vectors in G

hr
s = 0, grs = ηrs, bt rs = frst

YM field strength, Stückelberg-type coupling of tensors to three-forms,

potential vanishes, no action

vectors in G x G [Chu, arXiv:1108.5131]
{

Ar
µ, Ar′

µ

}

{
Ar

µ

}

{
Br

µν

}

frs
t = frs

t , frs′
t′ = −fs′r

t′ =
1
2
frs′

t′

dt
rs′ = dt

s′r = − 1
2
frs′

t , hr′

s = δr′

s

no three-forms, Stückelberg-type coupling of vectors to tensors,

potential vanishes, no action

grs = 0 = grs′
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models with an action

SO(5) gauge group SO(5) ⊂ GL(5) ⊂ SO(5, 5)

tensors: two copies of fundamental representation

indefinite metric, potential vanishes

T8  gauge group T8 ⊂ (SO(8)× SO(1, 1)) ! T8 ⊂ SO(9, 1)

nilpotent gauge group

indefinite metric, cubic potential

16 vectors, 10 self-dual tensors, based on magic gamma identities of SO(10)

bI
rs ≡ γI

rs , frs
t ≡ − 4 γIJK

rs γIJ p
t gp

K gp
K ∝ 1

gIr ≡ ζrζsζtγI
st

L = − 1
8Dµφi Dµφi − 1

8∂µφ+Dµφ− + g3(φ+)3
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maximally supersymmetric vacuum

φI
0 hr

I ≡ 0constant scalar fields with

fluctuations around the vacuum

3.4 Adding hypermultiplets

Another possible extension of the supersymmetric model presented above is the inclu-

sion of hypermultiplets. As is well known, global supersymmetry requires the hyper-

scalars to parametrize a hyper-Kähler manifold Mh, more precisely superconformal

symmetry requires Mh to be a hyper-Kähler cone. The above presented non-abelian

theories can be extended to include gaugings of isometries on the hyper-Kähler cone

along the lines of [34, 35, 36], from which the additional couplings and in particular the

resulting scalar potential can be inferred. While we defer the details of this extension

to another publication, here we only sketch a few relevant elements of the construc-

tion. Within in the above construction, gauging of triholomorphic isometries on the

hyper-Kähler cone is achieved by introducing an embedding tensor ϑr
α that encodes

the coupling of vector fields Ar
µ to hyper-Kähler isometries Kα and is subject to the

algebraic conditions

fpr
sϑs

α = fβγ
αϑp

βϑr
γ , hr

I ϑr
α = 0 , (3.10)

with the structure constants fαβ
γ of the algebra of hyper-Kähler isometries. On the

other hand, in the presence of hypermultiplets, the vector multiplet equations of motion

(3.7) allow for a consistent modification, in particular in the Y -field equation as

bIrs

(
Y s

ij φI − 2λ̄s
(iχ

I
j)

)
= kr

αP ij
α , (3.11)

with the constant tensor kr
α from (2.13), and the moment maps P ij

α associated with the

triholomorphic hyper-Kähler isometries. It is only by means of this algebraic equation

for Y s
ij that the hyperscalars enter the tensor multiplet field equations. Further requiring

the existence of an action eventually leads to the identification

kr
α = ϑr

α , (3.12)

i.e. relates the gauging of hyper-Kähler isometries to a modification of the vector and

tensor multiplet field equations.

3.5 Supersymmetric vacua and excitation spectrum

We study now supersymmetric vacua for the minimal model of section 3.2 and the

excitation spectrum in such vacua, i.e. the linearized field equations. The algebraic

equation for the vector field strength, the second equation in (3.6), indicates that

the expectation value of the tensor multiplet scalar φI serves as an (inverse) coupling

constant. This notion will become more evident in the subsequent sections where we

discuss models which provide a Lagrangian. Consequently, the perturbative analysis is

limited to the spontaneously broken phase where φI has a (large) expectation value.

The Killing spinor equations of the theory (4.3) are obtained from (3.3), (3.4)

0
!≡ δλi r = 1

8 γµνF r
µνε

i − 1
2 Y ij rεj + 1

4h
r
Iφ

Iεi ,

0
!≡ δχi I = 1

48 γµνρHI +
µνρε

i + 1
4 γµDµφ

Iεi , (3.13)
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obtained from (4.3) extend the fluctuation equations (3.21) by the linearization of the

second-order equation for the vector fields (4.7), which takes the form

Krs

(
! As

µ − ∂µ∂
νAs

ν

)
= NIr

(
∂µϕ

I − ∂νBI
νµ

)
. (4.8)

With the gauge fixing ∂νBI
νµ = 0 = ∂µAr

µ +gr
Iϕ

I , the equation turn into the free Klein-

Gordon equation for the vector field components Ar
µ.4 With this gauge fixing, the full

set of linearized field equations obtained from (4.3) is given as

( dBI + gIrCr )− = 0 , Krs Y s
ij = 0 ,

/∂ χiI + 2 N I
r λir = 0 , N I

r dAr − gIr ∗dCr = 0 ,

!ϕI = 0 , Krs /∂λis − 2NrIχ
iI = 0 ,

Krs ! As
µ = 0 , (4.9)

with the matrices Krs and N I
r from (3.16). We note that N I

r grJ = 0 = grIN s
I . With

a proper choice of basis such that Krs is diagonal, the lowest order dynamics contains

rK = rank(K) vector multiplets. The fluctuation equations (4.9) decouple into various

multiplets which we denote as follows, and whose multiplicities are given in Table 1:

(V) : !Aµ = 0 , /∂λ = 0 ,

(T) : !ϕ = 0 , /∂χ = 0 , (dB)− = 0 ,

(T′) : !ϕ = 0 , /∂χ = 0 , (dB)− = −gC− , dC = 0 ,

(TV) : !ϕ = 0 , κ dA = ∗dC , (dB)− = −gC− , /∂λ = 0 , /∂χ = −2gκλ ,

(VT) : !ϕ = 0 , !Aµ = 0 , (dB)− = 0 , /∂χ = 0 , /∂λ = 2g χ . (4.10)

We have kept the coupling constants g and κ to keep track of the scales of gIr and φI
0,

respectively. The first two multiplets (V) and (T) are the free vector and self-dual tensor

multiplet, respectively, the third one (T’) is the self-dual tensor multiplet enhanced by

a non-propagating three-form potential. The fourth line (TV) describes the ‘non-

decomposable’ combination of a free vector multiplet and a self-dual tensor multiplet

for which the vector multiplet acts as a source. It is obvious from the fermionic field

equations that these two multiplets cannot be separated. This is the type of coupling

we have encountered in the broken sector g̃ of the model described in section 3.6. The

last line (VT) describes the dual version of such a ‘non-decomposable’ coupling, here a

free self-dual tensor multiplet acts as the source for a vector multiplet. This situation is

similar to the observation made in [33] regarding the BSS model [13]. Diagonalizing for

example the χ-equation and using the relations for N I
r given above shows that there are

rN = rank(N) TV-multiplets. Is straightforward to verify that only the combination

4 Alternatively, this can be achieved by choosing Lorenz gauge for the vector fields and fixing
the tensor gauge freedom by ∂νBI

νµ ≡ ∂µϕI . This is a consistent gauge choice since the scalar field
equation in this gauge turns into the massless Klein-Gordon equation.
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fall into multiplets

free vector / tensor multiplets

non-decomposable vector-tensor multiplets

indefinite metric, higher-derivative theory?



conclusions / outlook

‣ non-abelian (1,0) superconformal models in six dimensions
▹  coupling to three-form gauge potentials
▹  equations of motion              action

‣ consistency constraints and solutions
 ▹  models with G adjoint tensor fields (no action) 
 ▹  compact gauge group SO(5) with action  (distinguished?)

‣ vacua and spectra

‣ understand their structure / quantization
 ▹  ghosts: gauge fixing, imposing further constraints ...
 ▹  cubic potential

‣ classification: solutions to the consistency constraints
 ▹  Jacobi identities, fundamental identities, ....

‣ extension to (2,0) theories, relation to D=5 SYM
 ▹  include hypermultiplets, non-propagating vector multiplets
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