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Motivation

NC space(time): θµν breaks Lorentz invariance, UV/IR mixing

protection through maximal SUSY:
IKKT model S = Tr([X a,X b][X a,X b] + ΨΓa[X a,Ψ])

→ 4-dimensional solutions, e.g. R4
θ: too simple for physics

natural way out: compact extra dimensions
→ symmetry breaking, etc.

usually: M4
θ ×KN , , e.g. KN = S2

N

problem: need cubic term, breaks (super)symm., scale!

here: split NC = Poisson structure relatesM with K
solutions of undeformed IKKT model (Minkowski)
milder Lorentz violation
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Basic idea:

NC spaces with geometryM2n =M4 ×K s.t.
NC structure mixes spacetimeM4 with the compact space K

Poisson tensor: Π = θµi (x , y) ∂
∂xµ ∧ ∂

∂y i + ...

i.e. [xµ, y i ] 6= 0

... “split noncommutativity” xµ onM4, y i on K

in particular: dim(K) = 4 ⇒ M may be isotropic! [xµ, xν ] = 0

always assume Π nondeg.,M2n =M4 ×K symplectic space

may get strict UV cutoff onM4

since: ∆xµ∆y i ≥ θ, ∆y i ≤ R ⇒ ∆xµ ≥ θR−1

Lorentz inv. onM4 may be respected (almost ...),
good for gravity

find solutions of IKKT model (Minkowski!), scales = dynamical

H. Steinacker Split noncommutativity and ,[1ex] compactified brane solutions in matrix models



Motivation Fuzzy cylinder solutions of matrix models

Basic idea:

NC spaces with geometryM2n =M4 ×K s.t.
NC structure mixes spacetimeM4 with the compact space K

Poisson tensor: Π = θµi (x , y) ∂
∂xµ ∧ ∂

∂y i + ...

i.e. [xµ, y i ] 6= 0

... “split noncommutativity” xµ onM4, y i on K

in particular: dim(K) = 4 ⇒ M may be isotropic! [xµ, xν ] = 0

always assume Π nondeg.,M2n =M4 ×K symplectic space

may get strict UV cutoff onM4

since: ∆xµ∆y i ≥ θ, ∆y i ≤ R ⇒ ∆xµ ≥ θR−1

Lorentz inv. onM4 may be respected (almost ...),
good for gravity

find solutions of IKKT model (Minkowski!), scales = dynamical

H. Steinacker Split noncommutativity and ,[1ex] compactified brane solutions in matrix models



Motivation Fuzzy cylinder solutions of matrix models

basic example: fuzzy cylinder S1 ×ξ R

Chaichian Demichev Presnajder 1998
3 hermitian matrices X 1,X 2,X 3, define U = X 1 + iX 2,

UU† = U†U = R2 hence [X 1,X 2] = 0

[U,X 3] = ξU, [U†,X 3] = −ξU†

representation on H:

U|n〉 = R|n + 1〉, U†|n〉 = R|n − 1〉
X 3|n〉 = ξn|n〉, n ∈ Z, ξ ∈ R

interpretation: quantized embedding functions

(
X 1 + iX 2

X 3

)
∼
(

Reiy3

x3

)
: S1 × R ↪→ R3.

... quantization of T ?S1, Poisson structure: {x3, y3} = ξ
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wavefunctions: basis of functions on S1 ×ξ R:

{eipX 3
Un, p ∈ [−π

ξ
,
π

ξ
], n ∈ Z},

hence

φ =
∑
n∈Z

∫ π/ξ

−π/ξ
dp φ̃n(p) eipX 3

Un.

note: momenta p compactified on a circle, since eipX 3 ≡ ei(p+ 2π
ξ )X 3

,
noncompact space is lattice ! (since X 3|n〉 = ξn|n〉, n ∈ Z)

(matrix) Laplacian:

2 := [X a, [X b, .]]δab ∼ eσ2G, Gµν ∼ θµµ
′
θµµ

′
gµ′ν′

check:
2X 3 = 0

2X i = ξ2X i , i = 1,2

⇒ is not solution of matrix model / but: it is, if rotating! ,
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Matrix Models

IKKT (IIB) model Ishibashi, Kawai, Kitazawa and Tsuchiya 1996

S[X ] = −Tr
(

[X a,X b][X a′ ,X b′ ]ηaa′ηbb′ + Ψ̄γa[X a,Ψ]
)

X a = X a† ∈ Mat(N,C) , a = 0, ..., 9, N →∞

gauge symmetry X a → UX aU−1, SO(9, 1), SUSY, etc.
e.o.m.

2X c ≡ [X a, [X b,X c ]]ηab = 0

as
{

1) nonpert. def. of IIB string theory (on R10) (IKKT )
2) N = 4 SUSY Yang-Mills gauge thy. on R4

θ

NC branesM⊂ R10, (NC) gauge theory & (emergent) gravity (H.S. 2007 ff)

BFSS model Banks Fischler Shenker Susskind 1996
9 time-dependent matrices X a(t), e.o.m.

Ẍ c + [X a, [X b,X c ]]δab = 0, (a, b = 1, ..., 9),

... M-theory in DLCQ, resp. IIA string theory
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let (U,X ) ... fuzzy cylinder; U = X i + iX 2 ∼ Reiξy

not solution of IKKT.

but: consider rotating fuzzy cylinder(
X 1(t) + iX 2(t)

X 3(t)

)
=

(
Ueiξt

X 3

)
∼
(

Reiξ(y+t)

x

)
.

is solution of the BFSS model:

Ẍ 1,2 + 2X 1,2 = (−ξ2 + ξ2)X 1,2 = 0, 2 = [X a, [X b, .]]δab

”rotating supertube“ Bak, Lee 2001

expect similar solution also for IKKT model; how?
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new solutions of the IKKT model

propagating fuzzy clinder: let (U,X ) ... fuzzy cylinder

embed non-compact direction along light-like direction: X 0

X 1 + iX 2

X 3

 =

0
U
0

+ va X ∼

 x
Reiy

x

 , va =

 1
0 + i0

1

 .

easy to check:

2U = (vaηabvb) [X , [X ,U]] + [X 1, [X 1,U]] + [X 2, [X 2,U]] = 0

remarks:

cylinder, propagates in light-like direction v

degenerate metric

radius, ξ are arbitrary moduli
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higher-dimensional solutions

Assume Y i describes fuzzy space K ⊂ RD with

2Y Y i = ξ2
dY i , 2Y ≡ [Y i , [Y j , .]]δij , i , j = 1, ...,D.

examples: S2
N ,T

2
N , ...

construct solution of BFSS model: define Zα := Y 2α−1 + iY 2α, and

Zα(t)′ := Zαeiωt =: Y 2α−1(t) + iY 2α(t), ω2 = ξ2
d .

is solution of BFSS
Ÿ i + 2Y Y i = 0

stabilized by angular momentum
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for IKKT model: time is noncommutative → twist via fuzzy cylinder!

Lemma

Suppose Y i , i = 1, ..., 6 are hermitian matrices which satisfy

2Y Y j ≡
∑

i [Y
i , [Y i ,Y j ]] = ξ2

Y Y j

Let (X ,U) be a fuzzy cylinder with (R = 1, ξ) which commutes with the above
matrices. Collect the Y i into complex matrices

Zα = Y 2α−1 + iY 2α, α = 1, 2, 3.

Then the 6 hermitian matrices Y i ′ defined viaZ 1′

Z 2′

Z 3′

 =

Z 1 Un1

Z 2 Un2

Z 3 Un3


satisfy

[X , [X ,Zα′]] = n2
αξ

2
X Zα′

2Y ′Y j ′ = ξ2
Y Y j ′

2Y ′X = 0
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geometrical significance of the construction, semi-classically:

Y i ∼ y i : M ↪→ RD ... quantized embedding

(R× S1)×M →M′ ⊂ RD+1

(x ,eiϕ,p) 7→ (x ,eiϕ · p)

where eiϕ · p ... S1 action onM (should be free) and

(X ,Y i ′) ∼ (x , y i ′) : M′ ↪→ RD+1

→ many new solutions of IKKT model of typeM4 ×K,

K = T 2, K = T 4, K = S2 × T 2 and K = S2 × S2
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Examples of IKKT solutions:

1) R3 ×ξ T 3: take 3 fuzzy cylinders S1 ×ξ R realized by (X i ,Ui ),
embedded along space-like directions:

X 0

X i , i = 1, 2, 3
Z 1

Z 2

Z 3

 =


0

X i , i = 1, 2, 3
U1
U2
U3


add “time-like” fuzzy cylinder (U0,X 0) ∼ (eiy0 , x0), redefine

X 0′

X i ′, i = 1, 2, 3
Z 1′

Z 2′

Z 3′

 =


X 0

X i , i = 1, 2, 3
U1U0
U2U0
U3U0


Lemma ⇒ is solution of IKKT model 2X a′ = 0 if −ξ2

0 + ξ2
i = 0

however: constraint X 0 −
∑

i X i = C, symplectic leaves R3 ×ξ T 3

avoid using SO(D) trafo ⇒ can get non-degenerate R4 ×ξ T 4
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fluctuations on NC braneM ⇒ NC gauge theory onM

induced metric on Rn ×ξ T n:

gAB =

(
ηµν 0
0 R2δµν

)
.

effective metric on Rn ×ξ T n:

GAB ∼ θAA′
θBB′

gA′B′ = ξ2
(

R2δµν 0
0 ηµν

)
because of split NC

note: time-like direction is compactified, unphysical /

way out: re-introduce some NC in non-compact direction
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propagating R3 ×ξ S1

take fuzzy cylinder (U,X 2), and R2
θ with [Xµ,X ν ] = iθµν , µ = 0,1

define Xµ, µ = 0,1
X 2

Z

 =

Xµ, µ = 0,1
X 2

U eikµXµ


Lemma ⇒ solution 2X a = 0 provided

k · k + ξ2 = 0, k · k := Gµν
(2)kµkν (Minkowski)

turns out: eff. metric on non-compact R3 has Minkowski signature ,

... analogous for R4 ×ξ T 2, R4 ×ξ T 2 × T 2, R4 ×ξ S2 × T 2 etc.
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Kaluza-Klein modes

fuzzy cylinder (Euclidean):

2eipX 3
Un =

(
4R2 sin2(pξ/2) + n2ξ2

)
eipX 3

Un

pξ�1∼
(
R2p2 + n2

)
ξ2eipX 3

Un

n ∈ Z ... Kaluza-Klein modes; strict UV cutoff on R !
⇒ looks like S1 in UV, R in IR

fuzzy cylinder with time-like X 0:

2eipX 0
Un =

(
4R2 sin2(pξ/2)− n2ξ2

)
eipX 0

Un.

time-like direction compactified

propagating cylinder R3 ×ξ S1:

2(eipj X
j
Un) =

(
4R2 sin2 ( (p2 − nk2)ξ − kµθµνpν

2

)
+Gµν

(2)
pµpν +n2ξ2

)
eipj X

j
Un
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⇒ effective metric for lowest KK modes on prop. cylinder:

2eipj X j
≈ (p · p) eipj X j

, pξ � 1

where

p · p ∼
(
pµ,p2

)(R−2Ḡµν
(2) + k̃µk̃ν −ξk̃µ

−ξk̃ν ξ2

)(
pµ
p2

)
.

Minkowski signature

consistent with direct computation of G ∼ θθg
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further remarks, conclusion

new solutions of IKKT model with R4 ×ξ K

split NC solutions have zero action (not energy)
cf. 3+1-dim space-times from Monte Carlo

Kim Nishimura Tsuchiya arXiv:1108.1540

moduli are arbitrary
for cylinder solutions: cross-section is arbitrary, cf.
left/right-movers (strings)

no preferred embedding ⇒ suitable for (emergent) gravity on
branes

good building blocks for intersecting branes, ⇒ standard model

cf. A. Chatzistavrakidis, H. Steinacker, G. Zoupanos. arXiv:1107.0265 2011
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