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Motivation

Motivation

@ NC space(time): 6*” breaks Lorentz invariance, UV/IR mixing
@ protection through maximal SUSY:
IKKT model S = Tr([X2, X?][X2, X?] + W ,[X2, V])
— 4-dimensional solutions, e.g. R3: too simple for physics

@ natural way out: compact extra dimensions
— symmetry breaking, etc.

usually: Mg x Ky, , e.g. Ky = Sy
problem: need cubic term, breaks (super)symm., scale!
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Motivation

@ NC space(time): 6*” breaks Lorentz invariance, UV/IR mixing
@ protection through maximal SUSY:
IKKT model S = Tr([X2, X?][X2, X?] + W ,[X2, V])
— 4-dimensional solutions, e.g. R3: too simple for physics

@ natural way out: compact extra dimensions
— symmetry breaking, etc.

usually: Mg x Ky, , e.g. Ky = Sy
problem: need cubic term, breaks (super)symm., scale!

= Poisson structure relates M with K

solutions of undeformed IKKT model (Minkowski)
milder Lorentz violation
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Motivation

Basic idea:

NC spaces with geometry M?" = M* x K s.t.
NC structure mixes spacetime M* with the compact space K

' . _ ui 9 d
Poisson tensor: 1= Ql "X, ¥) g5 N 3y T
le. [x*y#0
... “split noncommutativity” x" on M*, ylonK

in particular: dim(K) =4 = M may be isotropic! [x*,x"] =0

always assume 1 nondeg., M?" = M* x K symplectic space
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Motivation

Basic idea:

NC spaces with geometry M?" = M* x K s.t.
NC structure mixes spacetime M* with the compact space K

' . _ ui 9 d
Poisson tensor: 1= Ql "X, ¥) g5 N 3y T
le. [x*y#0
... “split noncommutativity” x" on M*, ylonK

in particular: dim(K) =4 = M may be isotropic! [x*,x"] =0
always assume 1 nondeg., M?" = M* x K symplectic space
@ may get strict UV cutoff on M*
since: Ax*Ay' > 6, Ay’ <R = Ax*>#9R'
@ Lorentz inv. on M* may be respected (almost ...),
good for gravity

@ find solutions of IKKT model (Minkowski!), scales = dynamical
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Fuzzy cylinder

basic example: fuzzy cylinder ST x; R

Chaichian Demichev Presnajder 1998
3 hermitian matrices X', X2, X8, define U = X' + iX?,

uut = U'U =R? hence X', X3 =0
[Ua XS] = £Ua [UT7X3] = _£UT

representation on #:

Uln) =Rjn+1), U'|n) = Rln—1)

X8|n) = ¢nin), nez, éeR
interpretation: quantized embedding functions /\\7 A
\ ) e
1, jy2 iy ./ \_\J
(X )JgSIX ) ~ <Rfsa) . S8'" xR < RS 2

... quantization of T*S',  Poisson structure: {x%, y3} = ¢
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Fuzzy cylinder

wavefunctions: basis of functions on S' x, R:
(eP°Un. pel-2.1), nez,
S
hence e
o= [ dodutp) e U
nez’ —m/§

g . . P i 27\ y3
note: momenta p compactified on a circle, since ePX’ = g/(P+7€)X",
noncompact space is lattice ! (since X3|n) = ¢njn), n e 7Z)
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Fuzzy cylinder

wavefunctions: basis of functions on S' x, R:
(eP°Un. pel-2.1), nez,
S
hence e
o= [ dodutp) e U
nez’ —m/§

g . . P i 27\ y3
note: momenta p compactified on a circle, since ePX’ = g/(P+7€)X",
noncompact space is lattice ! (since X3|n) = ¢njn), n e 7Z)

(matrix) Laplacian:

0:= X% (X2, I6as ~ € 0g,  G* ~ 0" 6"'g,.,

check:
oxX® = 0

oX' = X i=1,2

= is not solution of matrix model ®  but: it is, if rotating! ©
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solutions of matrix models

Matrix Models

IKKT (11B) model Ishibashi, Kawai, Kitazawa and Tsuchiya 1996
SIX] = =T (IX% XENX, XV Inaarnpry + FyalX?, W])

X2 =Xa" € Mat(N,C), a=0,...,9, N— oo

gauge symmetry X2 — UX2U~"', SO(9,1), SUSY, etc.
e.o.m.
0X® = [X2, [X®, X]Inap = 0

as | 1) nonpert. def. of IIB string theory (on R'0)  (IKKT)
2) N =4 SUSY Yang-Mills gauge thy. on R}

NC branes M C R'0, (NC) gauge theory & (emergent) gravity ~ (H.S. 2007 ff)

BFSS model Banks Fischler Shenker Susskind 1996

9 time-dependent matrices X4(t), e.o.m.

)..(C+[X37[vaxc]]dab207 (avb:17---79)7

... M-theory in DLCQ, resp. lIA string theory

H. Steinacker
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solutions of matrix models

let (U, X) ... fuzzy cylinder; U = X'+ iX? ~ Re/*
not solution of IKKT.

but: consider rotating fuzzy cylinder

(x%}( 3+(g<2(t)) _ (u;;ff) . <Reffx<y+t>> |

is solution of the BFSS model:
X12roX'2=(-€+)X"2=0, 0=[X%[X" ]l6a
“rotating supertube®  Bak, Lee 2001

expect similar solution also for IKKT model; how?
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solutions of matrix models

new solutions of the IKKT model

propagating fuzzy clinder:  let (U, X) ... fuzzy cylinder

embed non-compact direction along light-like direction:

X0 0 X 1
X' +iX?| =(U]+v@X~ [ReY ], vi=|(0+i0].
X3 0 X 1

easy to check:
OU = (vinapv®) [X, [X, Ul + (X7, (X7, Ul + [X3, (X2, U] = 0
remarks:
@ cylinder, propagates in light-like direction v
@ degenerate metric

@ radius, ¢ are arbitrary moduli
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solutions of matrix models

higher-dimensional solutions

Assume Y’ describes fuzzy space K ¢ RP with
oyY' =€y,  ay=[Y,[Y, )%, ij=1,..D.
examples: 5%, TZ, ...
construct solution of BFSS model: define Z* := Y2~ 1 jy2® and
Zot)y = 2% = YR () +ivRe(t), WP =g

is solution of BFSS L )
V4 + \jyyl =0

stabilized by angular momentum
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solutions of matrix models

for IKKT model: time is noncommutative — twist via fuzzy cylinder!

Lemma

Suppose Y', i =1, ...,6 are hermitian matrices which satisfy

oyY =SV V] =&V

Let (X, U) be a fuzzy cylinder with (R = 1, £) which commutes with the above
matrices. Collect the Y' into complex matrices

Zo = y2o—1 4 jy2a a=1,2,3.
Then the 6 hermitian matrices Y'' defined via

Z1/ 71 Um
72| = [ z2ym
73/ 73 Uns

satisfy [)(7 [)(7 Z@/]] _ n(2}£)2( zo!
oy Y =&Y/’
Dy/X =0
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solutions of matrix models

geometrical significance  of the construction, semi-classically:

Y~y s M RP .. quantized embedding

RxS)xM — M cRPH
(x,€%,p)  (x,€%-p)

where €# . p ... S action on M (should be free) and

X, Y'Y~ (x,y"): M — ROH

— many new solutions of IKKT model of type M* x K,
K=T> K=T4K=8xT?and K = §2 x &
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solutions of matrix models

Examples of IKKT solutions:

1) R3 x¢ T3 take 3 fuzzy cylinders S' x; R realized by (X', U;),
embedded along space-like directions:
X0 0
X, i=1,2,3 X i=1,2,3
Z = Uy
z2 Us
z8 Us
add “time-like” fuzzy cylinder (Up, X°) ~ (€%, xo), redefine
X0’ X0
X' i=1,2,3 X, i=1,2,3
zV = Us Up
z? Uz2Up
Z3’ UsUp

Lemma = is solution of IKKT model 0X# =0 if —¢2+¢? =0

however: constraint X° — 3=, X' = C, symplectic leaves R® x, T3

avoid using SO(D) trafo = can get non-degenerate R* x, T4

H. Steinacker
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solutions of matrix models

fluctuations on NC brane M = NC gauge theory on M

@ induced metric on R” x, T":
Y 0
928 =\ 0 R, )

@ effective metric on R" x, T":

P R26 0
AB | nAA BB - 2 Nz
G 07" 07" gap =¢ ( 0 nw)

because of split NC

note: time-like direction is compactified, unphysical ®

way out: re-introduce some NC in non-compact direction
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solutions of matrix models

propagating R3 x, S

take fuzzy cylinder (U, X?), and R2 with [X*, X"] = io"’, 1 =0,1

define
X*, u=0,1 Xt p=0,1
X2 — X2
Z U el

Lemma = solution 0X? =0 provided
k-k+¢ =0, k-k:= Gé‘zl;k#kl, (Minkowski)

turns out: eff. metric on non-compact R® has Minkowski signature ©

... analogous for R* x, T2, R* x, T? x T2, R* x, §2 x T2 efc.
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solutions of matrix models

Kaluza-Klein modes

@ fuzzy cylinder (Euclidean):
0ePCUT = (4REsin®(pg/2) + Pe?) ePX U
PELT <R2p2 + n2> §Ze/'pX3 un

n € 7 ... Kaluza-Klein modes; strict UV cutoff on R !
= looks like S in UV, RinIR

@ fuzzy cylinder with time-like X°:
0ePX" U = (4R sin®(pg/2) — rP¢?) &P L.
time-like direction compactified

@ propagating cylinder R3 x, S

— nkp)§ — k6" py
2

D(eip/X/Un) _ (4H2 Sin2 ((p2 )+Gé§pupu+n2§2) eip/X/Un
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solutions of matrix models

= effective metric for lowest KK modes on prop. cylinder:
DePX ~ (p-p)ePX,  pe <1
where

R ) (1)

p-p~(pu7pz)< hpo 2 ) \p

Minkowski signature

consistent with direct computation of G ~ 66g
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solutions of matrix models

further remarks, conclusion

@ new solutions of IKKT model with R* x ¢ K

@ split NC solutions have zero action (not energy)
cf. 3+1-dim space-times from Monte Carlo
Kim Nishimura Tsuchiya arXiv:1108.1540
@ moduli are arbitrary

for cylinder solutions: cross-section is arbitrary, cf.
left/right-movers (strings)

@ no preferred embedding = suitable for (emergent) gravity on
branes

@ good building blocks for intersecting branes, = standard model

cf. A. Chatzistavrakidis, H. Steinacker, G. Zoupanos. arXiv:1107.0265 2011
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