Green-Schwarz Mechanism in Heterotic (2,0) Gauged Linear Sigma Models: Torsion and NS5 Branes

Stefan Groot Nibbelink

Arnold Sommerfeld Center, Ludwig-Maximilians-University Munich

Corfu, 2011

Joint work with Michael Blaszczyk and Fabian Rühle (Bonn)

Fortsch.Phys. 59 (2011) 454-493 [arXiv:1012.3350] JHEP 1108 (2011) 083 [arXiv:1107.0320]

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Corfu, 2011 1 / 30

nan

Heterotic String Phenomenology

2 Heterotic Orbifold Resolutions as Gauged Linear Sigma Models

3 Anomalies on Resolutions of $\mathbb{C}^3/\mathbb{Z}_2 imes \mathbb{Z}_2$

4 Green–Schwarz Mechanism on the Worldsheet

Heterotic String Phenomenology

Overview:

- Approaches to String Phenomenology
- Model Building on Orbifolds
- Model Building on their Resolutions

Objective

One of the aims of String Phenomenology is to find the Standard Model of Particle Physics from String constructions:

The $E_8 \times E_8$ Heterotic Strings incorporates features of GUT theories and can lead to the Supersymmetric Standard Models (MSSMs).

Two approaches are often considered to achieve this goal:

- singular Orbifold constructions Dixon, Harvey, Vafa, Witten'85
- smooth Calabi–Yau compactifications with gauge bundles Candelas.Horowitz,Strominger,Witten'85

have lead to MSSM models Bouchard, Donagi'05

イロト イポト イヨト イヨト

Heterotic Strings on Orbifolds

Orbifolds: are flat spaces except for the singular fixed points.

Heterotic strings on orbifolds are free CFTs: Ibanez, Mas, Nilles, Quevedo'88

On T^6/\mathbb{Z}_{6-II} give rise to a large pool (≈ 200) of possible MSSMs. Buchmuller,Hamaguchi,Lebedev,Ratz'04, Lebedev,Nilles,Raby,Ramos-Sanchez,Ratz, Vaudrevange,Wingerter'07

< 🗇 🕨 < 🖃 🕨

Model Building on Resolutions

We have constructed MSSM-like models on resolutions of T^6/\mathbb{Z}_{6-II} using methods of toric geometry: Lüst,Reffert,Scheidegger,Stieberger'06

 In full resolution the hyper charge is always broken, because in blow-up it is broken by a flux. SGN,Held,Rühle,Trapletti'09

To avoid this we have constructed $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ orbifold models: Blaszczyk,SGN,Ratz,Rühle,Trapletti,Vaudrevange'10

- The GUT symmetry is broken by a freely acting Wilson line.
- Such models can in principle be completely blown up.

イロト イポト イヨト イヨト

Heterotic String Phenomenology

Orbifold / Resolution Model Matching

Matching of orbifold and resolution models is hampered at least by the fact that we are comparing different regions in the moduli space:

Aspinwall, Greene, Morrison'93

We need an approach that is able to interpolate between both regimes.

Gauge Linear Sigma Model (GLSM) is such a framework...

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

A D N A B N A B N

Orbifold Resolution GLSMs

Heterotic Resolution Gauged Linear Sigma Models

Overview:

- Twisted States on Orbifolds
- Characterization of a GLSM

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Corfu, 2011 8 / 30

4 A 1

Basic Picture of a Resolution

An orbifold theory contains so-called twisted states $|T_r\rangle$.

A non-vanish twisted state Vacuum Expectation Values (VEV) $\langle T_r \rangle \neq 0$

1

The orbifold singularity gets resolved, i.e. blown-up:

• An exceptional cycle E_r becomes large $Vol(E_r) \sim b_r \gg 0$.

Non–Compact Heterotic Orbifolds

The input data for a heterotic $\mathbb{C}^3/\mathbb{Z}_N$ orbifold model is quite limited:

• the geometrical orbifold twist $v = (v^1, v^2, v^3)$:

$$\theta(z^1, z^2, z^3) = \left(e^{2\pi i v^1} z^1, e^{2\pi i v^2} z^2, e^{2\pi i v^3} z^3\right)$$

• the gauge shift emdedding $V = (V^1, \dots, V^{16})$:

$$heta(\lambda^1,\ldots,\lambda^{16}) = \left(e^{2\pi i V^1} \,\lambda^1,\ldots,e^{2\pi i V^{16}} \,\lambda^{16} \right)$$

The entries of $v^a = n^a/N$ and $V^{\alpha} = N^{\alpha}/N$ are quantized in units of 1/N, i.e. $n^a, N^{\alpha} \in \mathbb{Z}$.

Twisted States on Orbifolds

A non–oscillator *r*–twisted states $|T_r\rangle = |p_r, P_r\rangle$ is determined by

Dixon, Harvey, Vafa, Witten'85, Ibanez, Nilles, Quevedo'87

 $p_r = p + rv$, $p \in SO(8)$ vector weight lattice;

a left-moving shifted momentum:

 $P_r = P + rV$, $P \in SO(32)$ root lattice.

They fulfill the level matching condition:

$$P_r^2 = 1 + p_r^2$$

GLSM Multiplets: Chiral & chiral-Fermi Superfields

The heterotic string on complex manifolds has at least (2,0) worldsheet supersymmetry:

superfield				bos. DOF		ferm. DOF	
type	symbol	dim	charge	on	off	on	off
chiral	Ψ ^a	0	q_l^a	Z ^a	-	ψ^{a}	-
chiral-Fermi	Λ^{lpha}	1/2	Q^{lpha}_I	-	h^{lpha}	λ^{lpha}	-

• z^a , a = 0, ..., 3 are the complex target space coordinates,

- ψ^a , a = 0, ..., 3 are their right–moving superpartners,
- λ^α, α = 1,..., 16 are the left–moving fermions that generate the target space gauge degrees of freedom (DOF)

Bosonic Gaugings & Fayet-Iliopoulos Terms

superfield				bos. DOF		ferm. DOF	
type	symbol	dim	charge	on	off	on	off
gauge	$(V,A)^{\prime}$	(0,1)	0	$A_{\sigma}^{\prime}, A_{\bar{\sigma}}^{\prime}$	\widetilde{D}'	ϕ^I	-

The action of the gauge multiplets contains Witten'93, Distler, Kachru'93

$$S_{\mathsf{FI}} = \int \mathrm{d}^2 \sigma \mathrm{d} heta^+ \,
ho_I(\Psi) \, F_I + \mathrm{h.c.}$$

is expressed in terms of

- the gauge superfield strengths $F_I = -\frac{1}{2}\overline{D}_+ (A i\overline{\partial}V)_I$
- and Fayet-Ilopoulos parameters ρ_I

Bosonic Gaugings & Fayet-Iliopoulos Terms

When we eliminate the auxiliary fields \widetilde{D}_l we end up with the worldsheet potential

$$V_{FI} = \sum_{l} \frac{e_{l}^{2}}{2} \left(\sum_{a} q_{l}^{a} |z^{a}|^{2} - b_{l} \right)^{2},$$

where the lowest components $\rho_I = b_I + i\beta_I$ are the Kähler parameters b_I and axions β_I .

In order to preserve (2,0) worldsheet supersymmetry, this potential needs to vanish. Witten'93

Some Consistency Requirements on a GLSM

No pure or mixed gauge anomalies:

$$\sum_{\alpha} \mathsf{Q}^{\alpha}_{I} \, \mathsf{Q}^{\alpha}_{J} = \sum_{a} q^{a}_{I} \, q^{a}_{J} \qquad \rightsquigarrow \qquad c_{2}(\mathbb{V}) = c_{2}(TX)$$

No divergent FI-terms on the worldsheet: (Otherwise the FI-parameters flow to $\pm \infty$ in the IR)

$$\sum_{a} q_{I}^{a} = 0 \qquad \qquad \rightsquigarrow \qquad c_{1}(TX) = 0$$

Distler'93

A (10) N (10)

Orbifold Resolution GLSMs

From a Twisted State VEV to a GLSM

This charge assignment has to be such that:

- the number of DOF is as in the free theory
- the sum of charges zero

From a Twisted State VEV to a GLSM

This charge assignment has to be such that:

- the number of DOF is as in the free theory
- the sum of charges zero

The left-moving momenta define the charges of Ψ^a : SGN'10

$$(q_r)^a = (p_r)^a = \frac{n_r^a}{N} \qquad \sum_a n_r^a = N$$

And we introduce a new chiral superfield Ψ^{-r} with charge $(q_r)^{-r} = -1$.

Non-Oscillatory Blow-Up Modes

We set the charges Q_r^{α} of the chiral-Fermi superfields Λ^{α} : SGN'10

$$\mathsf{Q}^{lpha}_{r}=\mathsf{P}^{lpha}_{r}$$

The level matching condition ensures pure anomaly cancellation:

$$Q_r^2 = P_r^2 = 1 + p_r^2 = q_r^2$$

for twisted states without oscillator excitations ($\tilde{N}_r = 0$).

Stefan Groot Nibbelink (ASC,LMU)

• • • • • • • • • • • • •

Anomalies on Resolutions of $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$

Overview:

- Phases of $\mathbb{C}^3/\mathbb{Z}_2\!\times\!\mathbb{Z}_2$ Orbifold Resolutions
- Bianchi Identities on Different Triangulations
- Target Interpretation of GLSM Anomalies

 $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold Resolutions

Phases of $\mathbb{C}^3/\mathbb{Z}_2 \times \mathbb{Z}_2$ Orbifold Resolutions

 $\mathbb{C}^3/\mathbb{Z}_2\times\mathbb{Z}_2$ Orbifold Resolutions

Bianchi Identities on Different Triangulations

The Bianchi identities on triangulation "E1" read: SGN,Ha,Trapletti'08

$$\label{eq:Q22} Q_2^2 + \, Q_3^2 = 3 \; , \qquad Q_2^2 - 2 \; Q_1 \cdot Q_3 = 1 \; , \qquad Q_3^2 - 2 \; Q_1 \cdot Q_2 = 1$$

and on triangulation "S":

$$Q_1^2 + 2 \; Q_2 \cdot Q_3 = 2 \; , \qquad Q_2^2 + 2 \; Q_1 \cdot Q_3 = 2 \; , \qquad Q_3^2 + 2 \; Q_1 \cdot Q_2 = 2 \; .$$

The pure and mixed GLSM anomaly cancellations require: SGN10

$$Q_1^2 = Q_2^2 = Q_3^2 = \frac{3}{2} \;, \qquad Q_1 \cdot Q_2 = Q_2 \cdot Q_3 = Q_3 \cdot Q_1 = \frac{1}{4}$$

Hence the GLSM anomaly conditions ensure that the Bianchi identities in any triangulation are fulfilled.

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Corfu, 2011 20 / 30

GLSM Phases and Bianchi Identities

The GLSM anomaly cancellation conditions always seem to ensures that the integrated Bianchi identities are fulfilled:

- When going from one smooth phase to the next, we might go through a flop where supergravity cannot be trusted. But in both smooth phases the corresponding integrated Bianchi identities need to be satisfied.
- The whole process should be describable in the GLSM, and therefore the GLSM anomaly conditions should imply the Bianchi identities in any smooth geometry that can ever arise.

What to do when the GLSM anomalies don't cancel?

イロト イポト イヨト イヨト

Green–Schwarz Mechanism on the Worldsheet

Overview:

- Field dependent Fayet–Iliopoulos Terms
- Possible Interpretation: Torsion and NS5–Branes
- Consequences for the geometry

Non-invariant Fayet-Iliopoulos terms

Remember, that the Fayet–Iliopoulos term on the worldsheet read:

$$W_{\mathsf{FI}} = rac{1}{2\pi} \,
ho_J(\Psi) \, F^J$$

If under gauge transformations the FI parameters transform as

$$\rho_J \to \rho_J + T_{IJ} \Theta^I \; ,$$

we can generalize the anomaly conditions to

Blaszczyk,SGN,Rühle'11, Quigley,Sethi'11

Pure anomalies:
$$T_{II} = \frac{1}{2} \left(Q_I \cdot Q_I - q_I \cdot q_I \right), \quad I = J,$$

Mixed anomalies:

$$T_{IJ} = (1 - c_{IJ}) \left(\mathsf{Q}_I \cdot \mathsf{Q}_J - q_I \cdot q_J \right), \;\; I < J \;,$$

$$T_{JI} = c_{IJ} \left(\mathsf{Q}_I \cdot \mathsf{Q}_J - q_I \cdot q_J \right), \ I > J$$

This like a Green–Schwarz mechanism on the worldsheet... 🚛 🕤 🤋

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Field dependent FI-terms

Field dependent FI-terms can be interpreted as torsion:

Adams, Ernebjerg, Lapan'06

Given that the axions

$$\beta_l(z) = \operatorname{Im}(\rho_l(z))$$

transform with shifts the three–form field strength H_3 of B_2 takes the form:

$$H_3 = \left(\mathrm{d}eta_J + T_{IJ}\,a_1^I
ight)f_2^J \,,$$

where a_1^l is the gauge field on the worldsheet.

In target space one has

$$H_3 = \mathrm{d}B_2 + \mathrm{CS}_3(\omega, \mathcal{R}) - \mathrm{CS}_3(\mathcal{A}, \mathcal{F})$$

non–vanishing, i.e. the compactification space is equipped with torsion: $H_3 = i(\bar{\partial} - \partial)J \neq 0$.

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Corfu, 2011 24 / 30

Singular Fayet–Iliopoulos term

Let Ψ a charged chiral superfield then

$$\Psi^a
ightarrow \mathbf{e}^{q_l^a \Theta_l} \Psi^a \quad \Rightarrow \quad \ln \Psi^a
ightarrow \ln \Psi^a + q_l^a \Theta_l$$

Hence the logarithmic FI-term

$$W_{\text{log FI}} = rac{1}{2\pi} \left(
ho_J + T_{aJ} \ln \Psi^a
ight) F^J \, ,$$

can be used to cancel anomalies with $T_{IJ} = q_I^a T_{aJ}$. Blaszczyk,SGN,Rühle'11, Quigley,Sethi'11

Stefan Groot Nibbelink (ASC,LMU)

< ロト < 同ト < ヨト < ヨト

Quantized log-FI terms

The quantities T_{IJ} are subject to quantization conditions due to gauge instantons. Adams, Basu, Sethi'03

Flux quantization:

$$(q_J)^b \, \int rac{f_2^J}{2\pi} \in \mathbb{Z} \; .$$

.

Invariance under $z^a \sim z^a \, e^{2\pi i}$ of the action Blaszczyk,SGN,Rühle'11

$$\int \mathrm{d}^2 \sigma \mathrm{d}\theta^+ \ W_{\log \mathsf{FI}} + \mathsf{h.c.} \supset i \ T_{aJ} \int \mathsf{Im}(\mathsf{In} \ z^a) \ \frac{f_2^J}{2\pi} \quad \Rightarrow$$

Anomaly coefficient quantization:

$$T_{aJ}\int rac{f_2^J}{2\pi}\in\mathbb{Z}$$
 .

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Corfu, 2011 26 / 30

Interpretation of singular FI-terms

When the worldsheet FI-term become singular, a drastic modification of the target space geometry arises:

$$H_3 = \left(\mathrm{d}\beta_J + q_I^a T_{aJ} a_1^I\right) f_2^J$$

gives upon using the worldsheet anomaly cancellation conditions

$$\mathrm{d}H_3 = X_4 + \mathrm{tr}\mathcal{F}_2^2 - \mathrm{tr}\mathcal{R}_2^2 \; ,$$

as $X_4 = \mathrm{d}(\mathrm{d}\beta_J) f_2^J
eq 0$. Blaszczyk,SGN,Rühle'11

E.g.:
$$\beta_J = T_{aJ} \ln \left(\frac{z^a}{\bar{z}_a} \right) \quad \Rightarrow \quad \mathrm{d}(\mathrm{d}\beta_J) = 2\pi \ T_{aJ} \ \delta^2(z^a) \,\mathrm{d}\bar{z}_a \mathrm{d}z^a \ .$$

When X_4 defines an effective class, we may interpret this as an NS5–brane wrapping the corresponding curve.

Stefan Groot Nibbelink (ASC,LMU)

Corfu, 2011 27 / 30

イロト イポト イヨト イヨト

Backreaction on the geometry

Naively the geometry is given by the scalar potential:

$$V_{\mathsf{D}\;\mathsf{naive}} = rac{e^2}{2} \left(q^a \, |z^a|^2 + q \, |z|^2 - b
ight)^2 \, ,$$

Suppose that all q^a and q are positive, then the naive potential shows that the target space geometry is compact.

The presence of the logarithmic FI-terms leads to the modification Blaszczyk,SGN,Rühle'11, Quigley,Sethi'11

$$V_{\text{D}} = rac{e^2}{2} \left(q^a \, |z^a|^2 + q \, |z|^2 - b - T \, \ln |z|^2
ight)^2 .$$

This has various consequences:

- The divisor $D = \{z = 0\}$ no longer exists,
- There are no instantons that wrap around z = 0, hence z does not leads to a quantization condition any.

Stefan Groot Nibbelink (ASC,LMU)

GS Mechanism in Het GLSMs

Corfu, 2011 28 / 30

Case T < 0: Gauge bundle subdominant

The modified D-term leads to the constraint:

$$\sum_{a} q^{a} |z^{a}|^{2} = b + T \ln |z|^{2} - q |z|^{2}$$

For T < 0 we may write:

$$\sum_{a} q^{a} |z^{a}|^{2} = b - |T| \ln |z|^{2} - q |z|^{2}.$$

We can make the right-hand-side arbitrary large by taking z very close to zero (no matter what the value of b is).

In this case the target space geometry is no longer compact!

Hence we interpret the case T < 0 as having anti–NS5-branes.

Conclusions

- We associated a specific GLSM to a non-compact heterotic orbifold model with VEVs of twisted states:
 - The charges of the GLSM superfields are determined by the shifted momenta of the twisted non-oscillatory states.
- The GLSM anomaly cancellation conditions are much stronger than the integrated Bianchi identities:
 - They seem to ensure that the Bianchi identities are satisfied in all possible phases (triangulations) simultaneously.
 - The mixed anomaly conditions is very constraining.
- Field dependent FI-terms lead to a GS-mechanism:
 - Singular (logarithmic) FI-terms may be interpreted as NS5-branes,
 - and can substantially modify the target space geometry.

イロト イポト イヨト イヨト