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Today’s high energy colliders

Collider Process  status

Tevatron pp closes this month

LHC pp started Mar. ’10

current and upcoming 
experiments collide protons

⇒ all involve QCD

Tevatron: discovery of top (1995) and many QCD measurements

LHC designed to

understand the mechanics of electro-weak symmetry breaking (Higgs?) 
unravel possible BSM physics
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HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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Tevatron and LHC figures

Tevatron: 1.8 TeV [run I], 1.96 TeV [run II]
LHC: 7 TeV [Mar. ’10 - Dec. ’12], 14TeV ? [after ’14] 

Tevatron:  > 10 fb-1 [Sep. ’11]
LHC: 2.5 fb-1 [Sep. ’11], 5-8 fb-1 [’11-’12] ?, ? [after ’14, SLHC?]
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These lectures

These lectures will try to give you a theoretical basics for the analysis and 
interpretation of collider data 

Mains aims of today’s collider are to understand the EW symmetry 
breaking and/or the Beyond Standard Model particles that we might see. 
For this purpose one needs to  

✓measure cross-sections
✓measure particle properties (spin, masses, couplings ... ) 

• Inclusive cross-section measurements can be done purely with data 
(no need for theory really)  

• However, the extraction of properties requires theoretical predictions 
for cross-sections as a function of the “property to be measured” 

These lectures will be a lot about how we can make those predictions  
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These lectures

For correct data interpretation it is crucial to 
1. understand how much a given approximation can be trusted 
2. know how to improve on it if necessary (when possible)

1984 redux

Unfortunately the plot

is completely wrong!

The culprit (again):

misuse of Monte

Carlo tools outside

their region of

validity.

SUSY
SM

How reliable is the SM prediction ? 
If an excess is seen in the Meff 
distribution, can one safely conclude 
that it is because of New Physics? 

These lectures will be also a lot on understanding how reliable theoretical 
predictions are  
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Some recent excitement

CDF reported seeing a peak in Mjj for W + dijet events: first claim 
based on 4.3fb-1  was of 3.2 σ 

CDF 1104.0699
Update to include 7.3fb-1 ⇒ 4.1 σ 

http://www-cdf.fnal.gov/physics/ewk/2011/wjj
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CDF 1104.0699
Update to include 7.3fb-1 ⇒ 4.1 σ 

Since then 
- a large numbers of tentative BSM explanations                               [ ... ]
- three SM analysis    Plehn et al. 1104.4087; Sullivan & Menon 1104.3790; Campbell et al. 1105.4594
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Some recent excitement

CDF reported seeing a peak in Mjj for W + dijet events: first claim 
based on 4.3fb-1  was of 3.2 σ 

CDF 1104.0699
Update to include 7.3fb-1 ⇒ 4.1 σ 

Since then 
- a large numbers of tentative BSM explanations                               [ ... ]
- three SM analysis    Plehn et al. 1104.4087; Sullivan & Menon 1104.3790; Campbell et al. 1105.4594

- D0 data do not support excess seen by CDF                       D0 col. 1106.1921

http://www-cdf.fnal.gov/physics/ewk/2011/wjj
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Some recent excitement

Update to include 7.3fb-1 ⇒ 4.1 σ 

http://www-cdf.fnal.gov/physics/ewk/2011/wjj

Is there a mistake? 
If so, what is it?  

At the LHC expect many similar cases  
• confirmation or not by a different experiment very important (re-

analysis of new data not sufficiently independent) 
• need robust SM predictions with reliable errors

This means that one needs to understand QCD 

CDF reported seeing a peak in Mjj for W + dijet events: first claim 
based on 4.3fb-1  was of 3.2 σ 

CDF 1104.0699

7

http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html
http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html


Some recent excitement

Update to include 7.3fb-1 ⇒ 4.1 σ 

http://www-cdf.fnal.gov/physics/ewk/2011/wjj

Is there a mistake? 
If so, what is it?  

At the LHC expect many similar cases  
• confirmation or not by a different experiment very important (re-

analysis of new data not sufficiently independent) 
• need robust SM predictions with reliable errors

This means that one needs to understand QCD 

“Once we see a 
resonant peak on top of 

smooth background it’s New 
Physics, we don’t need precise 
SM predictions” Is not true.

CDF reported seeing a peak in Mjj for W + dijet events: first claim 
based on 4.3fb-1  was of 3.2 σ 

CDF 1104.0699
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Motivations for QCD  

Satisfactory model for strong interactions: non-abelian gauge theory SU(3)

- each quark of a given flavour comes in Nc=3 colors 

- SU(3) is an exact symmetry

- hadrons are colour neutral, i.e. colour singlet under SU(3)

- observed hadrons are colour neutral ⇒ hadrons have integer charge 

- hadrons (baryons,mesons): made of spin 1/2 quarks 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

R ≡ e+e− → hadrons

e+e− → µ+mu− ∝ Q2

1

Hadron spectrum fully classified with the following assumptions
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Color singlet hadrons

Quarks can be combined in 2 ways into color singlets of the SUc(3) group

�

ijk

�ijkψiψjψk →
�

ii�jj�kk�

�ijkUii�Ujj�Ukk�ψi�ψj�ψk� =
�

i�j�k�

�i�j�k� det(U)ψi�ψj�ψk�

�

i

ψ∗
i ψi →

�

ijk

U∗
ijUikψjψk =

�

k

ψ∗
kψk

Baryons (fermions, e.g. proton, neutrons ...)

Mesons (bosons, e.g. pion ...)
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First experimental evidence for colour

I. Existence of Δ++ particle: particle with three up quarks of the same spin 
and with symmetric spacial wave function.  Without an additional 
quantum number Pauli’s principle would be violated 
⇒ color quantum number
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First experimental evidence for colour

I. Existence of Δ++ particle: particle with three up quarks of the same spin 
and with symmetric spacial wave function.  Without an additional 
quantum number Pauli’s principle would be violated 
⇒ color quantum number

II.R-ratio: ratio of (e+e- → hadrons)/(e+e- → µ+µ-) 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

1

Data compatible with Nc = 3.  Will come back to R later.

p2

p1e+

e−
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Quark mass spectrum

charge 2/3
mass=

up
few MeV

charm
~1.6 GeV

top
~172 GeV

charge -1/3
mass =

down
few MeV

strange
~100 MeV

bottom
~5 GeV

m
q
/m

to
p

t

b
c

s

d
u

100

10−1

10−2

10−3

10−4

10−5

10−6

up-type quarks

down-type quarks
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The R-ratio: comparison to data
Renormalisation group

QCD beta function

Short-distance observables

Comparison of R̂ to experimental data
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QCD matter sector

• The light quark's existence was validated by the SLAC's deep inelastic 
scattering (DIS) experiments in 1968: strange was a necessary component 
of Gell-Mann and Zweig's three-quark model, it also provided an 
explanation for the kaon and pion mesons discovered in cosmic rays in 
1947

2nd1st

quark generation

up

down strange

u

d s
el

ec
tr

ic
 c

ha
rg

e

−
1/

3
+

 2
/3

e− e−

γ∗

q

q

p
X

Feynman diagram 
describing DIS of an 
electron on a proton
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QCD matter sector

2nd1st

quark generation

up

down strange

u

d s
el

ec
tr

ic
 c

ha
rg

e

−
1/

3
+

 2
/3

c
charm

[S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2 (1970) 2] 

• In 1970 Glashow, Iliopoulos, and Maiani (GIM mechanism) presented 
strong theoretical arguments for the existence of the as-yet undiscovered 
charm quark, based on the absence of flavor-changing neutral currents

∝ G2
F sin2 θc

m2
c

M2
W

s̄

d

K̄K

d̄

s

c c

Feynman diagram describing 
the mixing of a kaon into its 
anti-particle. The black boxes 
indicate weak effective four-
fermion interactions

14



QCD matter sector

2nd1st

quark generation

up

down strange

u

d s
el

ec
tr

ic
 c

ha
rg

e

−
1/

3
+

 2
/3

c
charm

Computer reconstruction of 
a ψ′ decay in the Mark I 
detector at SLAC, making a 
near-perfect image of the 
Greek letter ψ

• Charm quarks were observed almost simultaneously in November 1974 
at SLAC and at BNL as charm anti-charm bound states (charmonium). 
The two groups had assigned the discovered meson two different 
symbols, J and ψ. Thus, it became formally known as the J/ψ meson 
(Nobel Prize 1976)
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QCD matter sector

2nd1st

quark generation

up

down strange

u

d s

c
charm

el
ec

tr
ic

 c
ha

rg
e

−
1/

3
+

 2
/3

3rd

b
bottom

• The bottom quark was theorized in 1973 by Kobayashi and Maskawa in 
order to accommodate the phenomenon of CP violation, which requires 
the existence of at least three generations of quarks in Nature (Nobel 
Prize 2008)

[M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652] 
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measuring the amount 
of CP violation in the 
standard model

16



QCD matter sector

2nd1st

quark generation

up

down strange

u

d s

c
charm

el
ec

tr
ic

 c
ha

rg
e

−
1/

3
+

 2
/3

3rd

b
bottom

The “bump” at 9.5 GeV 
that lead to the discovery 
of the bottom quark at 
FNAL in 1977

• In 1977, physicists working at the fixed target experiment E288 at FNAL 
discovered the Υ (Upsilon) meson. This discovery was eventually 
understood as being the bound state of the bottom and its anti-quark 
(bottomonium)
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QCD matter sector

t
top

2nd1st

quark generation
3rd

el
ec

tr
ic

 c
ha

rg
e

−
1/

3
+

 2
/3

up

down strange

u

d s

c
charm

b
bottom

Diagram involving the virtual 
exchange of top quarks that 
induces a mass difference in 
the B meson system

• The measurement of the oscillations of B mesons into its own anti-
particles in 1987 by ARGUS led to the conclusion that the top-quark 
mass has to be larger than 50 GeV.  This was a big surprise at that time, 
because in 1987 the top quark was generally believed to be much lighter 

d

b̄

t t

d̄

b

B̄B

W−

W+

∆MB ∝ G2
F mB f2

B |Vtd|2 m2
t
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QCD matter sector

t
top

2nd1st

quark generation
3rd

el
ec

tr
ic

 c
ha

rg
e

−
1/

3
+

 2
/3

up

down strange

u

d s

c
charm

b
bottom

• It was also realized that certain precision measurements of the 
electroweak vector-boson masses and couplings are very sensitive to the 
value of the top-quark mass. By 1994 the precision of these indirect 
measurements led to a prediction of the top-quark mass between 145 
GeV and 185 GeV

t

t

t
Z

b

b̄

W−

Diagrams that feature a 
quadratic dependence 
on the top-quark mass

Z, W− Z, W−

t, b
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QCD matter sector

• The top quark was finally discovered in 1995 by CDF and D0 at FNAL. 
While the mass of the top quark is today quite well known, mt = (173.1 ± 
1.3) GeV, its charge is measured to be + 2/3 only at the 90% confidence 
level 

t
top

2nd1st

quark generation
3rd

el
ec

tr
ic

 c
ha

rg
e

−
1/

3
+

 2
/3

up

down strange

u

d s

c
charm

b
bottom

jet

p
t

p̄

t̄
b̄

b

t̄

b

W−

W+

jet

jet µ+

νµ

Top anti-top production 
in proton anti-proton 
collision at the Tevatron

jet
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QCD matter sector
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a 
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d
u
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up-type quarks

down-type quarks
t

top

2nd1st

quark generation
3rd

el
ec

tr
ic
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ha

rg
e

−
1/

3
+

 2
/3

up

down strange

u

d s

c
charm

b
bottom

• The masses of the six different quark flavors range from around 2 MeV 
for the up quark to around 175 GeV for the top. Why these masses are 
split by almost six orders of magnitude is one of the big mysteries of 
particle physics
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QCD matter sector
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• The masses of the up, down, and strange are much lighter than the 
proton. If one takes these light flavors to have an identical mass, the 
quarks become indistinguishable under QCD, and one obtains an effective 
SU(3)f symmetry  

proton
Yu

ka
w

a 
co

up
lin

g
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QED and QCD

QED and QCD are very similar, yet very different theories

quarks are a bit like leptons, but there are three of each

gluons are a bit like photons, but there are eight of them 

gluons interact with themselves

the QCD coupling is also small at collider energies, but larger 
then the QED one

the similarities and differences are evident from the two 
Lagrangians
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QED and QCD

QED and QCD are very similar, yet very different theories

quarks are a bit like leptons, but there are three of each

gluons are a bit like photons, but there are eight of them 

gluons interact with themselves

the QCD coupling is also small at collider energies, but larger 
then the QED one

the similarities and differences are evident from the two 
Lagrangians

So, let’s start by looking at the QED Lagrangian
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The QED Lagrangian

covariant derivative

electromagnetic vector potential

field strengh tensor
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QED Feynman rules
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QED gauge invariance

A crucial property of the QED Lagrangian is that it is invariant under 

which acts on the Dirac field as a local phase transformation 

Exercise: Check that the QED Lagrangian is invariant under the above 
transformations
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QED gauge invariance

A crucial property of the QED Lagrangian is that it is invariant under 

which acts on the Dirac field as a local phase transformation 

Exercise: Check that the QED Lagrangian is invariant under the above 
transformations

Yang and Mills (1954) proposed that the local phase rotation in QED 
could be generalized to invariance under any continues symmetry 

[C. N. Yang and R. L. Mills, Phys. Rep. 96 (1954) 191]
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The QCD Lagrangian

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

1

⇒ covariant derivative ⇒ field strength

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

1
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The QCD Lagrangian

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

1

⇒ covariant derivative ⇒ field strength

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +
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only one QCD parameter gs regulating the strength of the interaction 
(quark masses have EW origin)
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1

only one QCD parameter gs regulating the strength of the interaction 
(quark masses have EW origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of 
quarks and gluons without interaction)
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σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

1

only one QCD parameter gs regulating the strength of the interaction 
(quark masses have EW origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of 
quarks and gluons without interaction)

terms proportional to gs in the field strength cause self-interaction 
between gluons (makes the difference w.r.t. QED)
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R1 = R0

(
1 +
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π

)

1

only one QCD parameter gs regulating the strength of the interaction 
(quark masses have EW origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of 
quarks and gluons without interaction)

terms proportional to gs in the field strength cause self-interaction 
between gluons (makes the difference w.r.t. QED)

color matrices taij  are the generators of SU(3) 
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∑
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)

1

only one QCD parameter gs regulating the strength of the interaction 
(quark masses have EW origin)

setting gs = 0 one obtains the free Lagrangian (free propagation of 
quarks and gluons without interaction)

terms proportional to gs in the field strength cause self-interaction 
between gluons (makes the difference w.r.t. QED)

color matrices taij  are the generators of SU(3) 

QCD flavour blind (differences only due to EW)
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The generators of SU(N)

The gauge group of QCD is SU(N) with N =3   
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The generators of SU(N)
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N×N complex generic matrix ⇒ N2 complex values, i.e. 2 N2 real ones

☛unit determinant ⇒ 1 condition 

det(U) = 1

☛unitarity ⇒ N2 conditions 

UU† = U†U = 1N×N

So, the fundamental representation of SU(N) has N2-1 generators ta :  
N×N traceless hermitian matrices ⇒ N2-1 gluons
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ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
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SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

1

a = 1, · · · N2 − 1
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The Gell-mann matrices

Phenomenology: lecture 3 (p. 56)

QCD basics

Lagrangian
Lagrangian + colour

Quarks — 3 colours: ψa =





ψ1

ψ2

ψ3





Quark part of Lagrangian:

Lq = ψ̄a(iγ
µ∂µδab − gsγ

µtC
abA

C
µ − m)ψb

SU(3) local gauge symmetry ↔ 8 (= 32 − 1) generators t1
ab . . . t8

ab

corresponding to 8 gluons A1
µ . . .A8

µ.

A representation is: tA = 1
2λA,

λ
1

=

0

@

0 1 0

1 0 0

0 0 0

1

A , λ
2
=

0

@

0 −i 0

i 0 0

0 0 0

1

A , λ
3
=

0

@

1 0 0

0 −1 0

0 0 0

1

A , λ
4
=

0

@

0 0 1

0 0 0

1 0 0

1

A ,

λ
5

=

0

@

0 0 −i

0 0 0

i 0 0

1

A , λ
6
=

0

@

0 0 0

0 0 1

0 1 0

1

A , λ
7
=

0

@

0 0 0

0 0 −i

0 i 0

1

A , λ
8

=

0

B

@

1
√

3
0 0

0
1

√

3
0

0 0
−2
√

3

1

C

A
,

One explicit representation: 

λA are the Gell-mann matrices

tA =
1
2
λA

Standard normalization: Tr(tatb) = TR δab TR =
1
2

Notice that the first three Gell-mann matrices contain the three Pauli 
matrices in the upper-left corner
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The generators of SU(N)

Infinitesimal transformations (close to the identity) give complete 
information about the group structure. The most important 
characteristic of a group is the commutator of two transformations: 

[U(δ1), U(δ2)] ≡ U(δ1)U(δ2)− U(δ2)U(δ1)
= (iδa

1 ) (iδb
2) [ta, tb] +O(δ3)

The two matrices to not commute, therefore the transformations don’t. 
Such a group is called non-abelian 

• Familiar abelian groups: translations, phase transformations U(1) ... 

• Familiar non-abelian groups: 3D-rotations 
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The generators of SU(N)

Consider the commutator

fabc are the (real) structure constants of the SU(Nc) algebra, they generate 
a representation of the algebra called adjoint representation 

Clearly, fabc is anti-symmetric in (ab). It is easy to show that it is fully 
antisymmetric

and that 

ifabc = 2Tr ([ta, tb]tc)

fabc = −fbac = −facb

[ta, tb] = ifabct
cTr([ta, tb]) = 0 ⇒
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Color algebra: fundamental identities

Fundamental representation 3:

Trace identities:

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

R = R0



1 +
αs(µ)

π
+

(
αs(µ)

π

)2 (

c + πb0 ln
µ2

Q2

)

+ O(α3
s(µ))





β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

Tr(ta) = 0

Tr(ta tb) = TRδab

2

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

R = R0



1 +
αs(µ)

π
+

(
αs(µ)

π

)2 (

c + πb0 ln
µ2

Q2

)

+ O(α3
s(µ))





β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

Tr(ta) = 0

Tr(ta tb) = TRδab

2

Adjoint representation 8:

i j = δij

= δaba b

a a b= 0 = TR

i j = taij

= ifabcba

c
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What do color identities mean physically

What does this really mean?

ψ̄i tAij ψj
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What do color identities mean physically




0 1 0
1 0 0
0 0 0



(1, 0, 0)




0
1
0





ψ̄i t1ij ψjWhat does this really mean?

ψ̄i tAij ψj

Gluons carry color and anti-color. They repaint quarks and other gluons.
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Color algebra: Casimirs & Fierz identity

Fundamental representation 3:

Adjoint representation 8:  

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities

Casimir factors

Fundamental representation 3:

X

a

taiktakj = CF δij CF =
N2

c − 1

2Nc CF=

Adjoint representation 8:

X

cd

facdfbcd = CAδab CA = Nc
CA

=

Fierz identity:

(ta)i
k (ta)l

j =
1

2
δi
j δl

k −
1

2Nc
δ1
k δl

j

2

1

Nc2

1
= !

Gluons as carriers of colour in the large-Nc limit

+  O(1/N )c
1

2
=
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∑

a

(taij)(t
a
kj) = CF δij CF =

N2
c − 1

2Nc

∑

cd

facdf bdc = CAδab CA = Nc

(ta)i
k(t

a)l
j

1

2
δi
jδ

l
k −

1

2Nc
δi
kδ

l
j

3

∑

a

(taij)(t
a
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l
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Fierz identity:

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities
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Fundamental representation 3:

X

a

taiktakj = CF δij CF =
N2

c − 1

2Nc CF=

Adjoint representation 8:

X

cd

facdfbcd = CAδab CA = Nc
CA

=

Fierz identity:

(ta)i
k (ta)l

j =
1

2
δi
j δl

k −
1

2Nc
δ1
k δl

j

2

1

Nc2

1
= !

Gluons as carriers of colour in the large-Nc limit

+  O(1/N )c
1

2
=

Andrea Banfi Lecture 1

∑

a

(taij)(t
a
kj) = CF δij CF =

N2
c − 1

2Nc

∑

cd

facdf bdc = CAδab CA = Nc

(ta)i
k(t

a)l
j =

1

2
δi
jδ

l
k −

1

2Nc
δi
kδ

l
j

3
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Gauge invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e. 
one can redefine the quark and gluon fields independently at every point 
in space and time without changing the physical content of the theory

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψi → ψ′
i = Ujk(x)ψk

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

1

• Gauge transformation for the quark field

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

1

• The covariant derivative                                     must transform as 
(covariant = transforms “with” the field) 

• From which one derives the transformation property of the gluon field 

(Dµ)ij = ∂µδij + igst
a
ijA

µ
a
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Gauge invariance

• It follows that 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

[ta, tb] = fabc tc

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

[ta, tb] = fabc tc

1

e.g. because

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

[ta, tb] = fabc tc

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ ∂µδij + igst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

U = eiθa(x)ta

ψ → ψ′ = U(x)ψ

taAa → taA′
a = U(x)taAaU

−1(x) +
i

gs
(∂U(x)) U−1(x)

Dµψ → D′
µψ

′ = U(x)Dµψ

ψ̄ → ψ̄′ = ψ̄U †(x)

i gs taF a
µν = [Dµ, Dν ]

taF a
µν → taF a′

µν = U(x)taF a
µνU

−1(x)

−1

4
F

′µν
a F

′a
µν = −1

4
F µν

a F a
µν

1∑

f

ψ̄
′(f)
i

(
iD/′ij − mfδij

)
ψ

′(f)
j =

∑

f

ψ̄(f)
i (iD/ij − mfδij) ψ(f)

j

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

2

• Therefore the QCD Lagrangian is indeed gauge invariant 

The QCD Lagrangian is invariant under local gauge transformations, i.e. 
one can redefine the quark and gluon fields independently at every point 
in space and time without changing the physical content of the theory
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Gauge invariance

• the field strength alone is not gauge invariant in QCD (unlike in QED) 
because of self interacting gluons (carries of the force carry colour, 
unlike the photon) 

• a gluon mass term violate gauge invariance and is therefore forbidden 
(as for the photon). On the other hand quark mass terms are gauge 
invariant.

Remarks:

m2AµAµ

The QCD Lagrangian is invariant under local gauge transformations, i.e. 
one can redefine the quark and gluon fields independently at every point 
in space and time without changing the physical content of the theory
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Isospin symmetry

Isospin SU(2) symmetry: invariance under  u ↔ d 

The QCD Lagrangian has isospin symmetry if mu = md or mu, md → 0

Particles in the same isospin multiplet have very similar masses 
(proton and neutron, neutral and charged pions)

The fermionic Lagrangian becomes

So neglecting fermion masses the Lagrangian has the larger symmetry

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

1

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

1
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Feynman rules: propagators 

Obtain quark/gluon propagators from free piece of the Lagrangian

Quark propagator: replace i∂ → k and take the i × inverse 
∑

f

ψ̄
′(f)
i

(
iD/′ij − mfδij

)
ψ

′(f)
j =

∑

f

ψ̄(f)
i (iD/ij − mfδij) ψ(f)

j

Lq,free =
∑

f

ψ̄(f)
i (i∂/ − mf) δijψ

(f)
j

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

2

p
i j

i

/p−m
δij
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Feynman rules: propagators 

Obtain quark/gluon propagators from free piece of the Lagrangian

Quark propagator: replace i∂ → k and take the i × inverse 
∑

f

ψ̄
′(f)
i

(
iD/′ij − mfδij

)
ψ

′(f)
j =

∑

f

ψ̄(f)
i (iD/ij − mfδij) ψ(f)

j

Lq,free =
∑

f

ψ̄(f)
i (i∂/ − mf) δijψ

(f)
j

[ta, tb] = fabc tc

fabc = −facb = −fbac

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

ψ(f) →
∑

f ′
Uff ′

ψ(f ′)

LF =
∑

f

(
ψ̄(f)

L D/ψ(f)
L + ψ̄(f)

R D/ψ(f)
R

)
−

∑

f

mf

(
ψ̄(f)

R ψ(f)
L + ψ̄(f)

L ψ(f)
R

)

SUL(Nf ) × SUR(Nf) × UL(1) × UR(1)

ψL = PLψ , ψR = PRψ , PL/R =
1

2
(1 ∓ γ5)

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

αs =
g2

s

4π

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

2

p
i j

i

/p−m
δij

Gluon propagator: replace i∂ → k and take the i × inverse ? 

➥ inverse does not exist, since 

How can one to define the propagator ? 

Lg,free =
1
2
Aµ (�gµν − ∂µ∂ν) Aν

(�gµν − ∂µ∂ν) ∂µ = �∂ν −�∂ν = 0
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Gauge fixing

Solution: add to the Lagrangian a gauge fixing term which depends on 
an arbitrary parameter ξ

In covariant gauges:

ξ=1  Feynman gauge
ξ=0  Landau gauge 

Gauge fixing explicitly breaks gauge invariance. However, in the end physical 
results are independent of the gauge choice. Powerful check of higher order 
calculations: verify that the ξ dependence fully cancels in the final result

Gluon propagator: 

Lgauge fixing = −1
ξ

�
∂µAA

µ

�2
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Ghosts

In covariant gauges gauge fixing term must be supplemented with ghost 
term to cancel unphysical longitudinal degrees of freedom which should 
not propagate

η: complex scalar field which obeys Fermi statistics 

QCD Lagrangian

Feynman rules

Pictorial representation of SU(Nc) identities

Covariant gauge

Gauge fixing condition: ∂µAµ
a = 0

LGF = −
1

2α
(∂µAµ

a)2 ⇒ ∆ab
µν(k) =

i

k2
dµν

dµν =
X

λ

ε∗µ(k, λ)εν(k, λ) = −gµν + (1 − α)
kµkν

k2

Ghost Lagrangian:

LF P = ∂µc̄aDab
µ cb = ∂µc̄a∂µca − gfabc∂µc̄aAb

µcc

Quantum corrections introduce non-physical polarisations whose contribution is
cancelled by ghost-gluon interactions

2 2 2

=+1,!1,0! =+1,!1!

! =

Andrea Banfi Lecture 1

k
a b

i

k2
δabLghost = ∂µηa†Dµ

abη
b
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Axial gauges

Alternative: choose an axial gauge (introduce an arbitrary direction n)

The gluon propagator becomes

Laxial gauge = −1
ξ

�
nµAA

µ

�2

dµν =
i

k2

�
−gµν +

nµkν + nνkµ

n · k
+

(n2 + ξk2)kµkν

(n · k)2

�
δab
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Axial gauges

Alternative: choose an axial gauge (introduce an arbitrary direction n)

The gluon propagator becomes

i.e. only two physical polarizations propagate, that’s why often the term 
physical gauge is used

Light cone gauge: n2 = 0 and λ = 0

Axial gauges for k2 → 0
dµνkµ = dµνnµ = 0

Laxial gauge = −1
ξ

�
nµAA

µ

�2

dµν =
i

k2

�
−gµν +

nµkν + nνkµ

n · k
+

(n2 + ξk2)kµkν

(n · k)2

�
δab

42



QCD Feynman rules: the vertices 
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Perturbative expansion of the R-ratio

The R-ratio is defined as 

At lowest order in perturbation theory 

R ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

σ(e+e− → hadrons) = σ0(e+e− → qq̄)

The PT treatment works since the scattering happens at large momentum 
transfer (short time), while hadronization happens at low momentum 
transfer, i.e. too late to change the original probability distribution

e-

e+

γ*/Z

Since common factors cancel in numerator/denominator, to lowest order 
one finds

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

R2 = R0

(

1 +
αs

π

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

1

44



The R-ratio: perturbative expansion

First order correction

virtual real

Real and virtual do not interfere since they have a different # of particles. 
The amplitude squared becomes

|A1|
2 = |A0|

2 + αs

�
|A1,r|

2 + 2Re{A0A
∗
1,v}

�
+ O(α2

s) αs =
g2

s

4π

R1 = R0

�
1 +

αs

π

�
Integrating over phase space, the first order result reads
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R-ratio and UV divergences

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

1

To compute the second order correction one has to compute diagrams 
like these and many more

Ultra-violet divergences do not cancel. Result depends on UV cut-off. 

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

b0 =
11Nc − 4nfTR

12π

R = R0



1 +
αs(µ)

π
+

(
αs(µ)

π

)2 (

c + πb0 ln
µ2

Q2

)

+ O(α3
s(µ))





1

...

One gets
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Renormalization and running coupling

The divergence is dealt with by renormalization of the coupling constant

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

1

R expressed in terms of the renormalized coupling is finite

Renormalizability of the theory guarantees that the same redefinition of the 
coupling removes all UV divergences from all physical quantities (massless case)

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

R = R0



1 +
αs(µ)

π
+

(
αs(µ)

π

)2 (

c + πb0 ln
µ2

Q2

)

+ O(α3
s(µ))





1

Will not cover renomalization in these lectures, but it suffices to know 
that renormalization of S-matrix elements is achieved by replacing bare 
masses and bare coupling with renormalized ones 

• the coupling ⇒	 β function
• the masses ⇒	 anomalous dimensions γm
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The beta-function

The renormalized coupling is 

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

Integrating the differential equation one finds at lowest order

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

⇒

U †U = UU † = 1 det(U) = 1

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψjUikψk =

∑

k

ψ∗
kψk

∑

ijk

ψiψjψk →
∑

ijki′j′k′
U∗

ii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′
ψi′ψj′ψk′

nq − nq̄ = n · 3 with n integer

R ≡ e+e− → hadrons

e+e− → µ+µ− ∝ Nc

∑

f

Q2
f

LQCD = −1

4
F µν

a F a
µν +

∑

f

ψ̄(f)
i (iD/ij − mfδij)ψ(f)

j

Dµ
ij ≡ i∂µδij − gst

a
ijA

µ
a , F a

µν ≡ ∂µAa
ν − ∂νA

a
µ − gsfabcA

b
µAc

ν

Lgauge−fixing = − 1

2λ

(
∂µAA

µ

)2

R0 =
σ0(γ∗ → hadrons)

σ0(γ∗ → µ+µ−)
= Nc

∑

f

q2
f

R1 = R0

(
1 +

αs

π

)

R2 = R0

(

1 +
αs

π
+

(
αs

π

)2
(

c + πb0 ln
M2

UV

Q2

))

αs(µ) = αbare
s + b0 ln

M2
UV

µ2

(
αbare

s

)2

1

So, one immediately gets

β(αren
s ) ≡ µ2 dαs(µ2)

dµ2
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The fundamental parameter ΛQCD

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

+ . . .
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The fundamental parameter ΛQCD

‣ Naively: 
Λ is the scale at which the coupling becomes infinite? No, the coupling 
becomes large before and perturbation theory is unreliable

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

+ . . .
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The fundamental parameter ΛQCD

‣ Naively: 
Λ is the scale at which the coupling becomes infinite? No, the coupling 
becomes large before and perturbation theory is unreliable

‣ Practically: 
Λ sets the scale at which the coupling becomes large and is the scale 
which effectively controls the hadron masses (∼200MeV)

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

+ . . .
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The fundamental parameter ΛQCD

‣ Technically: 
Λ is the integration constant in the above formula for αs. If one changes 
the formula, Λ changes (e.g. if one goes from one to two-loops or if one 
changes the number of active flavours,  ‘active’ means with m < Q)

‣ Naively: 
Λ is the scale at which the coupling becomes infinite? No, the coupling 
becomes large before and perturbation theory is unreliable

‣ Practically: 
Λ sets the scale at which the coupling becomes large and is the scale 
which effectively controls the hadron masses (∼200MeV)

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

+ . . .
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The fundamental parameter ΛQCD

‣ Technically: 
Λ is the integration constant in the above formula for αs. If one changes 
the formula, Λ changes (e.g. if one goes from one to two-loops or if one 
changes the number of active flavours,  ‘active’ means with m < Q)

‣ Naively: 
Λ is the scale at which the coupling becomes infinite? No, the coupling 
becomes large before and perturbation theory is unreliable

Question: why does nobody talk about ΛQED ?

‣ Practically: 
Λ sets the scale at which the coupling becomes large and is the scale 
which effectively controls the hadron masses (∼200MeV)

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0α
2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

2

+ . . .
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Active flavours & running coupling

The (active) field content of a theory modifies the running of the 
couplings  

50



Renormalization Group Equation

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 

51



Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 

β(αs) = µ2 ∂αs

∂µ2αs = αs(µ2)

�
µ2 ∂

∂µ2
+ µ2 ∂αs

∂µ2

∂

∂αs

�
A

�
Q2

µ2
,αs(µ2)

�
= 0

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 
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Renormalization Group Equation

But the renormalization scale is arbitrary. The dependence on it must cancel 
in physical observables up to the order to which one does the calculation. 

So, for any observable A one can write a renormalization group equation 

β(αs) = µ2 ∂αs

∂µ2αs = αs(µ2)

�
µ2 ∂

∂µ2
+ µ2 ∂αs

∂µ2

∂

∂αs

�
A

�
Q2

µ2
,αs(µ2)

�
= 0

Consider a dimensionless quantity A, function of a single scale Q. The 
dimensionless quantity should be independent of Q. However in quantum 
field theory this is not true, as renormalization introduces a second scale µ 

The scale dependence of A enters through the running of the coupling: 
knowledge of                    allows one to compute the variation of A with 
Q given the beta-function 

A(1,αs(Q2))
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More on the beta-function

Perturbative expansion of the beta-function: 

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

2

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

2

β(αren
s ) ≡ µ2αren

s

dµ2

β = −b0 α2
s(µ) + . . .

1

αs(µ)
= b0 ln

µ2

µ2
0

+
1

αs(µ0)

αs(µ) =
1

b0 ln µ2

Λ2

β = −α2
s(µ)

∑

i

biα
i
s(µ)

b0 =
11Nc − 4nfTR

12π

b1 =
17N2

c − 5Ncnf − 3CFnf

24π2

2

• nf is the number of active flavours (depends on the scale)
• today, the beta-function known up to four loops, but only first two 

coefficients are independent of the renormalization scheme (see later)

Beta function
Running of the QCD coupling αS is determined by the β function, which has the
expansion

β(αS) = −bα2
S(1 + b′αS) + O(α4

S)

b =
(11CA − 2Nf )

12π
, b′ =

(17C2
A − 5CANf − 3CF Nf )

2π(11CA − 2Nf )
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

1-loop and 2-loop
terms are scheme
independent

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.6/58
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Roughly speaking:
(a) quark loop vacuum polarization diagram gives a negative contribution 
to b0  ∼ nf

(b) gluon loop gives a positive contribution to b0  ∼ Nc

(b) > (a) ⇒	 b0,QCD > 0 ⇒	 overall negative beta-function in QCD  
While in QED (b) = 0 ⇒ b0,QED < 0 

More on the beta-function

(a)

(b)

βQED =
1
3π

α2 + . . .
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Integrating the differential equation

Asymptotic freedom

∂αs(Q)
∂t

= −b0α
2
s(Q) +O(α3

s) t = ln
�

Q2

µ2

�

αs(Q) =
αs(µ)

1 + b0 ln Q2

µ2 αs(µ)

To lowest order one gets

So the coupling constant decreases logarithmically with increasing energy.  
The statement that the theory becomes free at high energy goes under the 
name of asymptotic freedom [N.B. the sign of b0 is crucial], i.e. the non-
abelian vacuum polarization has an anti-screening effect 
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Measurements of the running coupling

expression:

R3 =
σ(e+e− → 3 − jets)

σ(e+e− → hadrons)
= C1 (ycut)αs(µ

2) + C2(ycut, µ
2)α2

s (µ
2) ,

in NLO perturbation theory. In leading order, R3 is thus directly proportional to αs, and any
energy dependence of R3 observed in the data must be due to the energy dependence of αs - if there
are no other energy dependent effects. The coefficients C1 and C2 are energy independent. They
can be reliably calculated and predicted by QCD, whereby the renormalisation scale dependence
of C2 is only a small disturbance.

• Model studies showed that hadronisation corrections to R3 are small and, in a suitable range of
centre of mass energies, almost constant, see figure 7 [26].

• The JADE jet algorithm is particlarly easy to apply to measured hadronic final states, and cor-
rections due to limited detector resolution and acceptance are small and manageable.

Figure 8: Energy dependence of 3-jet event production rates, measured using the JADE jet finder at
a scaled jet energy resolution ycut = 0.008. The errors are experimental. The data are not corrected
for hadronisation effects. They are compared to theoretical expectations of QCD, of an abelian vector
gluon model, and to the hypothesis of a constant coupling strength.

The first experimental study of the energy dependence of 3-jet event production rates, at c.m.
energies etween 22 and 46 GeV, analysed for constant jet resolution ycut at the e+e− collider PETRA,
gave first evidence for the energy dependence of αs already in 1988 [26]. These data are shown in
figure 8, together with more results from eperiments at the PEP, TRISTAN [51] and finally, at the
LEP collider [52]. The measured 3-jet rates significantly decrease with increasing centre of mass energy,
in excellent agreement with the decrease predicted by QCD. The hypthesis of an energy independent
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coupling, and especially the prediction of an alternative, QED-like abelian vector gluon model, where
gluons carry no colour charge, are in apparent contradiction with the data [52].

In order to further demonstrate asymptotic freedom with these data, they are - combined at suitable
mean energies - plotted against 1/ lnEcm, as shown in figure 9. For infinite energies, Ecm → ∞, αs and
thus R3 are expected to vanish to zero, which is in very good agreement with the data.
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Figure 9: 3-jet event production rates as shown in Fig. 8, however as a function of 1/ lnEcm, to
demonstrate that R3 ∝ αs → 0 at asymptotic (i.e. infinite) energies.

4.2 Evidence for the gluon self coupling

The gluon self-coupling, as a direct consequence of gluons carrying colour charge by themselves, is
essential for the prediction of asymptotic freedom. A rather direct method to detect effects of gluon-
selfcoupling was accomplished at the LEP collider, by analysing distributions which are sensitive to
the spin structure of hadronic 4-jet final states [27]. For instance, the so-called Bengtson-Zerwas angle,
χBZ [53], measuring the angle between the planes defined by the two highest and the two lowest energy
jets, is rather sensitive to the difference of a gluon-jet splitting into two gluons, which in QCD is the
dominant source of 4-jet final states, and a gluon splitting to a quark-antiquark pair, which is the
dominant process in an abelian vector theory where gluons carry no colour charge.

The results of an early study which showed convincing evidence for the gluon self coupling [54] after
only one year of data taking, is shown in figure 10. The data clearly favour the QCD prediction and
rule out the abelian vector gluon case.

19

Figure 12: The values of αs from 4-jet event producion. Errors are experimental (inner marks) and
the total errors [60, 56, 57, 58]. The lines indicate the QCD prediction for the running of αs with
αs(MZ0) = 0.1182 ± 0.0027 [69].

5 QCD tests in deep inelastic lepton-nucleon scattering

As outlined in section 2 and 3, the observation of approximate scaling of nuclear structure functions, and
thereafter, with higher precision and extended ranges of x and Q2, of (logarithmic) scaling violations,
originally boosted the development of the quark-parton model and of QCD. The limited range of
fixed-target lepton-nucleon scattering experiments in x and Q2, however, prevented significant and
unambiguous tests of QCD scaling violations and the running of αs, see e.g. [24].

This picture changed dramatically when the HERA electron-proton and positron-proton collider
started operation in 1991, with lepton beam energies of 30 GeV and protons of 920 GeV. HERA
extended the range in Q2 by more than 2 orders of magnitude towards higher values, and the range
in x by more than 3 orders of magnitude towards smaller values. With these parameters, precise tests
of scaling violations of structure functions, but also precise determinations of the running αs from
jet production were achieved. While these two topics will be reviewd in the following subsections, a
summary of significant αs determinion in deep inelastic scattering will be included in section 6, see also
[32, 81, 69].

5.1 Basic introduction to structure functions

Cross sections of physical processes in lepton-nucleon scattering and in hadron-hadron collisions depend
on the quark- and gluon-densities in the nucleon. Assuming factorisation between short-distance, hard
scattering processes which can be calculated using QCD perturbation theory, and low-energy or long-
range effects which are not accessible by perturbative methods, such cross sections are parametrized
by a set of structure functions Fi (i= 1,2,3). The transition between the long- and the short-range
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Figure 16: Results of αs as a function of Ejet
T from HERA experiments H1 and ZEUS [67].

uncertainties. Although the error on this result, with a wider treatment of systematics, can well
increase by a factor of 2 [72], the published value is retained for further analysis in this review.

• New analyses and a new combination of results from jet production in deep inelastic electron or
positron - proton scattering at HERA [67], as shown in figure 16, provided an improved overall
value of αs(MZ0) = 0.1186 ± 0.0051, in NLO of perturbative QCD.

• A new study of hadron masses using predictions from lattice gauge theory, including vacuum polar-
isation effects from all three light quark flavours and improved third and higher order perturbative
terms, resulted in a new and improved value of αs(MZ0) = 0.1170 ± 0.0012 [73]. Although the
methods used in this study and the small size of the claimed overall error are still under discussion
[74], the published value is retained here for further discussion.

• New studies of 4-jet final states in e+e− annihilation at LEP [56, 57, 58, 60], see also section 4.4,
and a combination of the respective αs results give a new average of αs(MZ0) = 0.1176 ± 0.0022,
in O(α3

s ) which, for 4-jet production, corresponds to NLO in perturbative QCD.

In the following overall summary of measurements of αs, these four results will replace the respective
values used in the previous summary of 2004 [69].

6.3 αs summary

The new overall summary of αs is given in table 1, where the new and updated results discussed in
the previous section are underlined. Most of the results given in table 1 are combined from several
or many individual measurements of different experiments and groups. For results obtained at fixed
energy scales Q (or in narrow ranges of Q), the value of αs(Q) is given, together with the extrapolation
to the “standard” energy scale, Q = MZ0 , using equation 7 in 4-loop approximation and 3-loop quark
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threshold matching at the heavy quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Results from
data in ranges of energies are only given for Q = MZ0 . Where available, the table also contains the
contributions of experimental and theoretical uncertainties to the total errors in αs(MZ0).

Finally, in the last two columns of table 1, the underlying theoretical calculation for each mea-
surement and a reference to this result are given, where NLO stands for next-to-leading order, NNLO
for next-next-to-leading-order of perturbation theory, “resum” stands for resummend NLO calculations
which include NLO plus resummation of all leading und next-to-leading logarithms to all orders (see
[39] and [32]), and “LGT” indicates lattice gauge theory.

Figure 17: . Summary of measurements of αs(Q) as a function of the respective energy scale Q, from
table 1. Open symbols indicate (resummed) NLO, and filled symbols NNLO QCD calculations used in
the respective analysis. The curves are the QCD predictions for the combined world average value of
αs(MZ0), in 4-loop approximation and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV.

In figure 17, all results of αs(Q) given in table 1 are graphically displayed, as a function of the
energy scale Q. Those results obtained in ranges of Q and given, in table 1, as αs(MZ0) only, are not
included in this figure - with one exception: the results from jet production in deep inelastic scattering
are represented in table 1 by one line, averaging over a range in Q from 6 to 100 GeV, while in figure 17
combined results for fixed values of Q as presented in [67] are displayed.
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World average

αs(MZ0) = 0.1184± 0.007
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Measurements of the running coupling

Current experimental results on αS

Bethke,hep-ph/0407021

αS(MZ) = 0.1182 ± 0.0027, MS, NNLO
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αS is large at current scales.

Measurement αS is stable,
(αS(MZ) = 0.1183 ± 0.0027 in 2002).

The decrease of αS is quite slow – as the
inverse power of a logarithm.

Higher order corrections are and will con-
tinue to be important.

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.10/58

Summarizing:

• overall consistent picture: αs from very 
different observables compatible

• αs is not so small at current scales  

• αs decreases slowly at higher energies 
(logarithmic only) 

• higher order corrections are and will 
remain important 

αs(MZ0) = 0.1184± 0.007

2009 World average
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αs in the year 2011

Preliminary July 2011# : αs = 0.1183 ± 0.0010

new

➔

➔

➔

σpert =

�
�

n

αn
s cn

�
⊗ f1)(αs)⊗ f2(αs)

0911.2710

Competitive measurements 
at the LHC ? Combined fit 
with pdfs or use ratios ?

Open issue: treatment of very accurate outliers e.g.

αs  = 0.1135 ± 0.0010 [SCET, thrust at N3LO]          
                                                                  Abbate et al. 1106.3080
αs  = 0.1213 ± 0.0014 [τ-decays]
                                                                              Pich 1001.0389

αs  = 0.1122 ± 0.0014 [NNLO DIS] 
                                                                  Alekhin et al. 1001.0389
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Asymptotic freedom & confinement

Asymptotic freedom: 
- coupling smaller at higher energies (smaller distances). Theory 

becomes effectively free
- a consequence of the sign of the beta function
- perturbation theory predicts asymptotic freedom
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Asymptotic freedom & confinement

Asymptotic freedom: 
- coupling smaller at higher energies (smaller distances). Theory 

becomes effectively free
- a consequence of the sign of the beta function
- perturbation theory predicts asymptotic freedom

Confinement: 
- related to the fact that the coupling increases at small energies 
- however, the behavior is theoretically unknown because perturbation 

theory breaks down (rely on different techniques e.g. lattice QCD)
- we do not have a rigorous explanation for confinement
- we just observe that all partons are confined into color singlet 

hadrons: if one tries to separate partons it becomes favorable to 
extract from the QCD vacuum qq-pairs and create hadrons 

- we assume that confinement always holds
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Intermediate Recap 

QCD is in principle a simple theory based on a simple Lagrangian 
with gauge group is SU(3)

There are UV divergences but they are dealt with by renormalization 
(coupling + masses)

The theory is asymptotically free and consistent with confinement 

This is intimately related to the fact that the coupling runs ⇒	 beta-
function 

Simple color algebra and Feynman rules are the necessary ingredients 
for perturbative calculations (see later)

Today, we know three families of quarks, we briefly revisited the 
experiments which lead to their discovery
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Next

Infrared and collinear divergences and IRsafety 

Parton model: incoherent sum of all partonic cross-sections 

Sum rules (momentum, charge, flavor conservation)

Determination of parton densities from data (electron & neutrino 
scattering in DIS or Drell-Yan)

Radiative corrections: failure of parton model 

Factorization of initial state divergences into scale dependent parton 
densities

DGLAP evolution of parton densities ⇒	 measure gluon PDF
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Let’s consider again the R-ratio. This is determined by γ∗ → qq̄

At leading order: 

Mµ
0 = ū(p1)(−ieγµ)v(p2)

p1

−ieγµ

The soft approximation

p2
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Let’s consider again the R-ratio. This is determined by γ∗ → qq̄

At leading order: 

Mµ
0 = ū(p1)(−ieγµ)v(p2)

p1

−ieγµ

The soft approximation

p2Emit one gluon:

Mµ
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Let’s consider again the R-ratio. This is determined by γ∗ → qq̄

At leading order: 

Mµ
0 = ū(p1)(−ieγµ)v(p2)

p1

−ieγµ

The soft approximation

p2

Consider the soft approximation: k � p1, p2

⇒	 factorization
     of soft part

Mµ
qq̄g = ū(p1) ((−ieγµ)(−igst

a)v(p2))
�

p1�

p1k
− p2�

p2k

�

Emit one gluon:

Mµ
qq̄g = ū(p1)(−igst

a/�)
i(/p1 + /k)
(p1 + k)2

(−ieγµ)v(p2)

− ū(p1)(−ieγµ)
i(/p2 + /k)
(p2 + k)2
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−ieγµ
k, �
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_
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Soft divergences

The squared amplitude becomes

|Mqq̄g|2 =
�

pol

����M
µ
qq̄(−igst

a)
�

p1�

p1k
− p2�

p2k

�����
2

= |Mqq̄|2CF g2
s

2p1p2

(p1k)(p2k)

|Mµ
qq̄g|2 =

�

pol

����ū(p1) ((−ieγµ)(−igst
a)v(p2))

�
p1�

p1k
− p2�
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�����
2
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Soft divergences

The squared amplitude becomes
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Soft divergences
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Including phase space
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The differential cross section is

|Mµ
qq̄g|2 =

�

pol
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dσqq̄g = dσqq̄
2αsCF

π

dω

ω

dθ

sin θ

dφ

2π

Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence
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dσqq̄g = dσqq̄
2αsCF

π

dω

ω

dθ

sin θ

dφ

2π

Cross section for producing a qq-pair and a gluon is infinite (IR divergent)

Soft & collinear divergences

ω →0: soft divergence

θ → 0: collinear divergence

But the full O(αs) correction to R is finite, because one must include a 
virtual correction which cancels the divergence of the real radiation 

dσqq̄,v ∼ −dσqq̄
2αsCF

π

dω

ω

dθ

sin θ

dφ

2π

NB: here we kept only soft terms, if we do the full calculation one gets a 
finite correction of αs/π 
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Soft & collinear divergences 

ω →0 soft divergence: the four-momentum of the emitted particle 
approaches zero, typical of gauge theories, even if matter (radiating 
particle) is massive 

θ → 0 collinear divergence: particle emitted collinear to emitter. 
Divergence present only if all particles involved are massless

NB: the appearance of soft and collinear divergences discussed in the 
specific context of e+e- → qq are a general property of QCD  
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Infrared safety (= finiteness)

So, the R-ratio is an infrared safe quantity. 

• are there other IR-safe quantities? 
• what property of R guarantees its IR-safety? 

In perturbation theory one can compute only IR-safe quantities, otherwise 
get infinities, which can not be renormalized away (why not?) 

So, the natural questions are: 
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Sterman-Weinberg jets

First formulation of cross-sections which are finite in perturbation theory 
and describe the hadronic final state

Introduce two parameters ε and δ: 
a pair of Sterman-Weinberg jets are 
two cones of opening angle δ that 
contain all the energy of the event 
excluding at most a fraction ε

4.1 Sterman–Weinberg jets

Sterman and Weinberg [14] first realized that one can define a cross section which is calculable and finite

in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as

follows.

We define the production of a pair of Sterman–Weinberg jets, depending on the parameters ε
and δ, in the following way. A hadronic event in e+e− annihilation, with centre-of-mass energy E,
contributes to the Sterman–Weinberg jets cross section if we can find two cones of opening angle δ that
contain more than a fraction 1 − ε of the total energy E. In other words εE is the maximum energy

allowed outside of the cones. An example of Sterman-Weinberg jet event is illustrated in fig. 11. We

Fig. 11: Sterman–Weinberg jets.

will now show that the computation of the cross section for the production of Sterman–Weinberg jets, in

the approximation introduced in the previous chapter, is infrared finite. The various contributions to the

cross section (illustrated in fig. 12) are as follows

• All the Born cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12a).

• All the virtual cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12b).

• The real cross section, with one gluon emission, when the energy of the emitted gluon l0 is limited
by l0 < εE (fig. 12c), contributes to the Sterman–Weinberg cross section.

• The real cross section, when l0 > εE, when the emission angle with respect to the quark (or
antiquark) is less than δ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various contributions are given formally by

Born = σ0 (78)

Virtual = −σ0
4αSCF

2π

∫ E

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(79)

Real (c) = σ0
4αSCF

2π

∫ εE

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(80)

Real (d) = σ0
4αSCF

2π

∫ E

εE

dl0

l0

[∫ δ

θ=0

d cos θ

1 − cos2 θ
+

∫ π

θ=π−δ

d cos θ

1 − cos2 θ

]
. (81)
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• All the Born cross section contributes to the Sterman–Weinberg cross section, for any ε and δ
(fig. 12a).
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Why finite? the cancelation between 
real and virtual is not destroyed in 
the soft/collinear regions
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Why finite? the cancelation between 
real and virtual is not destroyed in 
the soft/collinear regions

Kinoshita-Lee-Nauenberg (KLN) theorem:
final-state infrared divergences cancel in measurable quantities (transition 
probabilities, cross-sections summed over indistinguishable states... ) 
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The Sterman-Weinberg jet cross-section up to O(αs) is given by 

Sterman-Weinberg jets

σ1 = σ0

�
1 +

2αsCF

π
ln � ln δ2

�

Effective expansion 
parameter in QCD is 
often αsCF/π not αs

αs-expansion enhanced by 
a double log: left-over from 
real-virtual cancellation

• if more gluons are emitted, one gets for each gluon
- a power of αsCF/π
- a soft logarithm lnε
- a collinear logarithm lnδ

• if ε and/or δ become too small the above result diverges
• if the logs are large, fixed order meaningless, one needs to resum large 

infrared and collinear logarithms to all orders in the coupling constant
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An observable     is infrared and collinear safe if

Infrared safety: definition 

On+1(k1, k2, . . . , ki, kj , . . . kn)→ On(k1, k2, . . . ki + kj , . . . kn)

whenever one of the ki/kj becomes soft or ki and kj are collinear 

O

i.e. the observable is insensitive to emission of soft particles or to collinear 
splittings
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‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 

Infrared safe ? 
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‣ energy of the hardest particle in the event

‣ multiplicity of gluons 

‣ momentum flow into a cone in rapidity and angle

‣ cross-section for producing one gluon with E > Emin and θ > θmin

‣ jet cross-sections

Infrared safety: examples 

Infrared safe ? 

NO
NO
YES
NO

DEPENDS
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Partons in the initial state

• We talked a lot about final state QCD effects

• This is the only thing to worry about at e+e- colliders (LEP)

• Hera/Tevatron/LHC involve protons in the initial state

• Proton are made of QCD constituents

Next we will focus mainly on aspects related to initial state effects
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Phenomenology: lecture 4 (p. 81)

PDF introduction Factorization & parton distributions

Recall Higgs production in
hadron-hadron collisions:

x
2 p
2

p1 p2

x 1
p 1

!

Z H

σ =

∫

dx1fq/p(x1, µ
2)

∫

dx2fq̄/p̄(x2, µ
2) σ̂(x1p1, x2p2, µ

2) , ŝ = x1x2s

Total X-section is factorized into a ‘hard part’ σ̂(x1p1, x2p2, µ2) and
‘normalization’ from parton distribution functions (PDF).

Measure total cross section ↔ need to know PDFs to be able to test
hard part (e.g. Higgs electroweak couplings).

Picture seems intuitive, but
how can we determine the PDFs? NB: non-perturbative
does picture really stand up to QCD corrections?

The parton model

Basic idea of the parton model: intuitive picture where in a high transverse 
momentum scattering partons behave as quasi free in the collision 
⇒	 cross section is the incoherent sum of all partonic cross-sections 

            : parton distribution function (PDF) is the probability to find parton 
i in hadron j with a fraction xi of the longitudinal momentum (transverse 
momentum neglected), extracted from data

            : partonic cross-section for a given scattering process, computed in 
perturbative QCD
σ̂(x1x2s)

NB: This formula is wrong/incomplete (see later)

σ =
�

dx1dx2f
(P1)
1 (x1)f

(P2)
2 (x2)σ̂(x1x2s) ŝ = x1x2s

f
(Pj)
i (xi)
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Sum rules
Momentum sum rule: conservation of incoming total momentum

� 1

0
dx

�

i

xf (p)
i (x) = 1
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Sum rules
Momentum sum rule: conservation of incoming total momentum

� 1

0
dx

�

i

xf (p)
i (x) = 1

In the proton: u, d valence quarks, all other quarks are called sea-quarks 

Conservation of flavour: e.g. for a proton
� 1

0
dx

�
f (p)

u (x)− f (p)
ū (x)

�
= 2

� 1

0
dx

�
f (p)

d (x)− f (p)
d̄

(x)
�

= 1

� 1

0
dx

�
f (p)

s (x)− f (p)
s̄ (x)

�
= 0
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Sum rules
Momentum sum rule: conservation of incoming total momentum

How can parton densities be extracted from data? 

� 1

0
dx

�

i

xf (p)
i (x) = 1

In the proton: u, d valence quarks, all other quarks are called sea-quarks 

Conservation of flavour: e.g. for a proton
� 1

0
dx

�
f (p)

u (x)− f (p)
ū (x)

�
= 2

� 1

0
dx

�
f (p)

d (x)− f (p)
d̄

(x)
�

= 1

� 1

0
dx

�
f (p)

s (x)− f (p)
s̄ (x)

�
= 0
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Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton
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Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton

Kinematics: 

Q2 = −q2 s = (k + p)2 xBj =
Q2

2p · q
y =

p · q

k · p

e+

qk

k�

xp
p

proton
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Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton

Kinematics: 

Q2 = −q2 s = (k + p)2 xBj =
Q2

2p · q
y =

p · q

k · p

e+

qk

k�

xp
p

proton
Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q

k · p̂
= y (p̂ + q)2 = 2p̂ · q −Q2 = 0

⇒ x = xBj
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Deep inelastic scattering

Easier than processes with two incoming hadrons is the scattering of a 
lepton on a (anti)-proton

Kinematics: 

Q2 = −q2 s = (k + p)2 xBj =
Q2

2p · q
y =

p · q

k · p

Partonic cross section: 

(just apply QED Feynman rules 

and add phase space)

dσ̂

dŷ
= q2

l
ŝ

Q4
2 π αem

�
1 + (1− ŷ)2

�

e+

qk

k�

xp
p

proton
Partonic variables: 

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ ŷ =
p̂ · q

k · p̂
= y (p̂ + q)2 = 2p̂ · q −Q2 = 0

⇒ x = xBj
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Deep inelastic scattering

Hadronic cross section:
dσ

dy
=

�
dx

�

l

f (p)
l (x)

dσ̂

dŷ
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Deep inelastic scattering

Hadronic cross section:
dσ

dy
=

�
dx

�

l

f (p)
l (x)

dσ̂

dŷ
Using x = xBJ

dσ

dy dxBj
=

�

l

f (p)
l (x)

dσ̂

dŷ

=
2π α2

emsxBj

Q4

�
1 + (1− y)2

� �

l

q2
l f (p)

l (xBj)

e+

qk

k�

xp
p

proton
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Deep inelastic scattering

Hadronic cross section:
dσ

dy
=

�
dx

�

l

f (p)
l (x)

dσ̂

dŷ

1. at fixed xBj and y the cross-section scales with s 

2. the y-dependence of the cross-section is fully predicted and is typical of 
vector interaction with fermions ⇒Callan-Gross relation

3. can access (sums of) parton distribution functions

4. Bjorken scaling: pdfs depend on x and not on Q2

Using x = xBJ

dσ

dy dxBj
=

�

l

f (p)
l (x)

dσ̂

dŷ

=
2π α2

emsxBj

Q4

�
1 + (1− y)2

� �

l

q2
l f (p)

l (xBj)

e+

qk

k�

xp
p

proton
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The structure function F2

F2 is called structure function (describes structure/constituents of nucleus)

For electron scattering on proton 

F2(x) = x

�
4
9
u(x) +

1
9
d(x)

�

NB: use perturbative language of quarks and gluons despite the fact that 

parton distribution are non-perturbative

Question: F2 gives only a linear combination of u and d. How can they be 

extracted separately?

dσ

dydx
=

2πα2
ems

Q4

�
1 + (1− y2

�
F2(x) F2(x) =

�

l

xq2
l f (p)

l (x)
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Isospin

Neutron is like a proton with u & d exchanged
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Isospin

For electron scattering on a proton 

F p
2 (x) = x

�
4
9
up(x) +

1
9
dp(x)

�
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9
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�
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�
1
9
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Isospin

For electron scattering on a proton 

F p
2 (x) = x

�
4
9
up(x) +

1
9
dp(x)

�

For electron scattering on a neutron 

Fn
2 (x) = x

�
1
9
dn(x) +

4
9
un(x)

�
= x

�
4
9
dp(x) +

1
9
up(x)

�

F2 and F2 allow determination of up and dp separatelyn p

Neutron is like a proton with u & d exchanged

NB: experimentally get F2 from deuteron: 
n

F d
2 (x) = F p

2 (x) + Fn
2 (x)
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Sea quark distributions

An infinite number of pairs can be created as long as they have very low 

momentum, because of the momentum sum rules. 

We saw before that when we say that the proton is made of uud what 

we mean is 
� 1

0
dx (up(x)− ūp(x)) = 2

� 1

0
dx

�
dp(x)− d̄p(x)

�
= 1

Inside the proton there are fluctuations, and pairs of uu,dd,cc,ss ... can be 

created
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Sea quark distributions
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momentum, because of the momentum sum rules. 

We saw before that when we say that the proton is made of uud what 

we mean is 
� 1

0
dx (up(x)− ūp(x)) = 2

� 1

0
dx

�
dp(x)− d̄p(x)

�
= 1

Inside the proton there are fluctuations, and pairs of uu,dd,cc,ss ... can be 

created

Photons interact in the same way with u(d) and u(d) 

How can one measure the difference? 

Question:  What interacts differently with particle 

and antiparticle?      
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Sea quark distributions

An infinite number of pairs can be created as long as they have very low 

momentum, because of the momentum sum rules. 

We saw before that when we say that the proton is made of uud what 

we mean is 
� 1

0
dx (up(x)− ūp(x)) = 2

� 1

0
dx

�
dp(x)− d̄p(x)

�
= 1

Inside the proton there are fluctuations, and pairs of uu,dd,cc,ss ... can be 

created

Photons interact in the same way with u(d) and u(d) 

How can one measure the difference? 

Question:  What interacts differently with particle 

and antiparticle?      
proton

νµ

µ−

W+

 W+/W-  from neutrino scattering
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Check of the momentum sum rule

uv 0.267

dv 0.111

us 0.066

ds 0.053

ss 0.033

cc 0.016

total 0.546

➟ half of the longitudinal momentum is missing

What is missing?

� 1

0
dx

�

i

xf (p)
i (x) = 1
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uv 0.267

dv 0.111

us 0.066

ds 0.053

ss 0.033

cc 0.016

total 0.546

➟ half of the longitudinal momentum is missing

What is missing?

The gluon!

� 1

0
dx

�

i

xf (p)
i (x) = 1
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Check of the momentum sum rule

uv 0.267

dv 0.111

us 0.066

ds 0.053

ss 0.033

cc 0.016

total 0.546

➟ half of the longitudinal momentum is missing

What is missing?

The gluon!

γ/W+/- don’t interact with gluons
How can one measure gluon parton densities?
We need to discuss radiative effects first

� 1

0
dx

�

i

xf (p)
i (x) = 1
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Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one

zp̂
(1− z)p̂

p̂
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Radiative corrections

To first order in the coupling: 
need to consider the emission of one real gluon and a virtual one

zp̂
(1− z)p̂

p̂

Adding real and virtual contributions, the partonic cross-section reads

Partial cancellation between real (positive), virtual (negative), but real 

gluon changes the energy entering the scattering, the virtual does not 

σ(1) =
CF αs

2π

�
dz

dk2
⊥

k2
⊥

1 + z2

1− z

�
σ(0)(zp̂)− σ(0)(p̂)

�
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

P (z) = CF
1 + z2

1− z
σ(1) =

αs

2π

�
dz

� Q2

λ2

dk2
⊥

k2
⊥

P (z)
�
σ(0)(zp̂)− σ(0)(p̂)

�
,
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

⇒	 naive parton model does not survive radiative corrections 

P (z) = CF
1 + z2

1− z
σ(1) =

αs

2π

�
dz

� Q2

λ2

dk2
⊥

k2
⊥

P (z)
�
σ(0)(zp̂)− σ(0)(p̂)

�
,
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Radiative corrections

Partonic cross-section: 

Soft limit: singularity at z=1 cancels between real and virtual terms

Collinear singularity: k⊥→ 0 with finite z. Collinear singularity does not 

cancel because partonic scatterings occur at different energies 

⇒	 naive parton model does not survive radiative corrections 

Similarly to what is done when renormalizing UV divergences, collinear 

divergences from initial state emissions are absorbed into parton 

distribution functions 

P (z) = CF
1 + z2

1− z
σ(1) =

αs

2π

�
dz

� Q2

λ2

dk2
⊥

k2
⊥

P (z)
�
σ(0)(zp̂)− σ(0)(p̂)

�
,
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The plus prescription

Partonic cross-section: 

σ(1) =
CF αs

2π

� Q2

λ2

dk2
⊥

k2
⊥

� 1

0
dz P (z)

�
σ(0)(zp̂)− σ(0)(p̂)

�αs
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The plus prescription

Partonic cross-section: 

σ(1) =
CF αs

2π

� Q2

λ2

dk2
⊥

k2
⊥

� 1

0
dz P (z)

�
σ(0)(zp̂)− σ(0)(p̂)

�αs

Plus prescription makes the universal cancelation of soft singularities 

explicit � 1

0
dzf+(z)g(z) ≡

� 1

0
f(z) (g(z)− g(1))
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The plus prescription

Partonic cross-section: 

σ(1) =
CF αs

2π

� Q2

λ2

dk2
⊥

k2
⊥

� 1

0
dz P (z)

�
σ(0)(zp̂)− σ(0)(p̂)

�αs

Plus prescription makes the universal cancelation of soft singularities 

explicit � 1

0
dzf+(z)g(z) ≡

� 1

0
f(z) (g(z)− g(1))

The partonic cross section becomes

Collinear singularities still there, but they factorize.

P (z) = CF

�
1 + z2

1− z

�
σ(1) =

αs

2π

�
dz

� Q2

λ2

dk2
⊥

k2
⊥

P+(z)σ(0)(zp̂) ,
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Factorization scale

Schematically use ln
Q

λ2
= ln

Q

µ2
F

+ ln
µF

λ2

σ = σ(0) + σ(1) =
�

1 +
αs

2π
ln

µ2
F

λ2
P+

�
×

�
1 +

αs

2π
ln

Q2

µ2
F

P+

�
σ(0)
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Factorization scale

Schematically use 

So we define

σ̂(p, µF ) =
�

1 +
αs

2π
ln

Q2

µ2
F

P (0)
qq

�
σ(0)(p)fq(x, µF ) = fq(x)×

�
1 +

αs

2π
ln

µ2
F

λ2
P (0)

qq

�

ln
Q

λ2
= ln

Q

µ2
F

+ ln
µF

λ2

σ = σ(0) + σ(1) =
�

1 +
αs

2π
ln

µ2
F

λ2
P+

�
×

�
1 +

αs

2π
ln

Q2

µ2
F

P+

�
σ(0)
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Factorization scale

Schematically use 

So we define

σ̂(p, µF ) =
�

1 +
αs

2π
ln

Q2

µ2
F

P (0)
qq

�
σ(0)(p)fq(x, µF ) = fq(x)×

�
1 +

αs

2π
ln

µ2
F

λ2
P (0)

qq

�

• universality, i.e. the PDF redefinition does not depend on the process

• choice of μF ∼ Q avoids large logarithms in partonic cross-sections

• PDFs and hard cross-sections don’t evolve independently

• the factorization scale acts as a cut-off, it allows to move the divergent 

contribution into non-pertubative parton distribution functions 

NB:

ln
Q

λ2
= ln

Q

µ2
F

+ ln
µF

λ2

σ = σ(0) + σ(1) =
�

1 +
αs

2π
ln

µ2
F

λ2
P+

�
×

�
1 +

αs

2π
ln

Q2

µ2
F

P+

�
σ(0)
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Improved parton model

σ =
�

dx1dx2f
(P1)
1 (x1, µ

2)f (P2)
2 (x2, µ

2)σ̂(x1x2s, µ
2)

σ =
�

dx1dx2f
(P1)
1 (x1)f

(P2)
2 (x2)σ̂(x1x2s) ŝ = x1x2s

Naive parton model:

After radiative corrections:
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• With initial state parton collinear singularities don’t cancel

• Initial state emissions with k⊥ below a given scale are included in PDFs

• This procedure introduces a scale μF, the so-called factorization scale 

which factorizes the low energy (non-perturbative) dynamics from the 

perturbative hard cross-section

• As for the renormalization scale, the dependence of cross-sections on 

μF is due to the fact that the perturbative expansion has been truncated

• The dependence on μF becomes milder when including higher orders

Intermediate recap
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Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 

x’
x = z x’

(1-z)x’

x

(1-z)x’

z x
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Evolution of PDFs

A parton distribution changes when

• a different parton splits and produces it

• the parton itself splits 

x’
x = z x’

(1-z)x’

x

(1-z)x’

z x

The plus prescription
� 1

0
dzf+(z)g(z) ≡

� 1

0
dzf(z) (g(z)− g(1))

µ2 ∂f(z, µ2)
∂µ2

=
� 1

0
dx�

� 1

x
dz

αs

2π
P̂ (z)f(x�, µ2)δ(zx� − x)−

� 1

0
dz

αs

2π
P̂ (z)f(x, µ2)

=
� 1

x

dz

z

αs

2π
P̂ (z)f

�x

z
, µ2

�
−

� 1

0
dz

αs

2π
P̂ (z)f

�
x, µ2

�

=
� 1

x

dz

z

αs

2π
P (z)f

�x

z
, µ2

�
+

x
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DGLAP equation

µ2 ∂f(z, µ2)
∂µ2

=
� 1

x

dz

z

αs

2π
P (z)f

�x

z
, µ2

�

Master equation of QCD: we can not compute parton densities, but we 
can predict how they evolve from one scale to another

Universality of splitting functions: we can measure pdfs in one process 
and use them as an input for another process

 Altarelli, Parisi; Gribov-Lipatov; Dokshitzer ’77 

x

Plus prescription implicit from now on
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Conventions for splitting functions

Accounting for the different species of partons the DGLAP equations 

become:

There are various partons flavours. Standard notation:

This is a system of coupled integro/differential equations

The above convolution in compact notation: 

µ2 ∂fi(z, µ2)
∂µ2

=
�

j

� 1

x

dz

z
Pij(z)fj

�x

z
, µ2

�

µ2 ∂fi(z, µ2)
∂µ2

=
�

j

Pij ⊗ fj(µ2)

a
c

b z x

(1-z) x

x
Pba(z)

x

x
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General DGLAP equation

Pij(x) =
αs

2π
P (0)

ij +
�αs

2π

�2
P (2)

ij + . . .

Leading order splitting functions:

Evolution equations in the general case:

NB: at higher orders Pqiqj arise

µ2 ∂fi(z, µ2)
∂µ2

=
�

j

Pij ⊗ fj(µ2)

1-z

z

P (0)
qg = P (0)

q̄g = TR

�
z2 + (1− z)2

�

P (0)
qq = P (0)

q̄q̄ = CF

�
1 + z2

1− z

�

+

P (0)
gq = P (0)

gq̄ = CF
1 + (1− z)2

z

P (0)
gg = 2CA

�
z

(1− z)+
+

1− z

z
+ z(1− z)

�
+

1
6
(11CA − 4nfTR)δ(1− z)
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History of splitting functions

Pab : Altarelly, Parisi; Gribov-Lipatov; Dokshitzer (1977) 

Pab : Curci, Furmanski, Petronzio (1980) 

Pab : Moch, Vermaseren,Vogt (2004) 

☛ Pab : maybe hardest calculation ever performed in perturbative QCD 

☛ Essential input for NNLO pdfs determination (state of the art today)

(2)

(2)

(1)

(0)
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Evolution

So, in perturbative QCD we can not predict values for 

• the coupling

• the masses

• the parton densities

• ... 

What we can predict is the evolution with the Q2 of those quantities.
These quantities must be extracted at some scale from data.

• not only is the coupling scale-dependent, but partons have a scale 
dependent sub-structure

• we started with the question of how one can access the gluon pdf: 
because of the coupled DGLAP evolution we can access the gluon pdf 
indirectly, through the way it changes the evolution of quark pdfs

u

u

d u

u

g

g

d
u

dg
s

u g
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-

-

increase Q2 increase Q2
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The Hera PDF
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Typical features: 

• gluon distribution very large

• gluon and sea distributions 
grow at small x

• gluon dominates at small x

• valence distributions peak at 
x = 0.1 - 0.2

• largest uncertainties at very 
small or very large x 

Crucial property: factorization! 

Parton distributions extracted in DIS can be used at hadron colliders. 
This assumption can be checked against data
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Parton density coverage
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Figure 1: Left plot: The LHC kinematic plane (thanks to J Stirling). Right plot: PDF
distributions at Q2 = 10, 000 GeV2.

Figure 2: Top row: e−, e+ and Ae rapidity spectra for the lepton from the W decay,
generated using HERWIG + k factors and CTEQ6.1 (red), ZEUS-S (green) and MRST2001
(black) PDF sets with full uncertainties. Bottom row: the same spectra after passing through
the ATLFAST [12] detector simulation and selection cuts.(Thanks to A Tricoli)

DIS 2007

• most of the LHC x-range 
covered by Hera

• need 2-3 orders of 
magnitude Q2-evolution

• rapidity distributions probe 
extreme x-values

• 100 GeV physics at LHC: 
small-x, sea partons

• TeV physics: large x 

DGLAP

➠ Hera: key and essential input to the LHC 
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Parton densities: recent progress

Recent major progress:

• full NNLO evolution (previous approximate NNLO)

• more flexible parametrizations

• improved treatment of heavy flavors near the quark mass
[Numerically: e.g. (6-7)% effect on Drell-Yan at LHC] 

• more systematic use of uncertainties/correlations (e.g. 

dynamic tolerance, combinations of PDF + αs uncertainty)

• Neural Network (NN) PDFs 

splitting functions at NNLO: Moch, Vermaseren, A. Vogt ’04 
+ much related theory progress ’04 -’11
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Parton densities: some open issues

• heavy quark treatment theoretically 

not ‘clean’ (various schemes, ad hoc 

procedures),  but very important at 

the LHC 

NN col ’11
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W & Z at LHC:             “Heavy Quarks” play important role

Larger fraction of heavy quarks 

W/Z are “Benchmark” Cross Sections

... will be measured in early run

dσ/dy(W+) at Tevatron dσ/dy(W+) at LHC

8

HEAVY  is a relative term

• heavy quark treatment theoretically 

not ‘clean’ (various schemes, ad hoc 

procedures),  but very important at 

the LHC 

NN col ’11
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quark treatment 
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Parton densities: some open issues

• heavy quark treatment theoretically 

not ‘clean’ (various schemes, ad hoc 

procedures),  but very important at 

the LHC 

• inconsistency between PDFs  using 

different data sets / different heavy 

quark treatment 

• treatment of theory uncertainties 

(parameterizations, scheme for HQ, 

higher orders ... )

NN col ’11
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Parton densities: benchmark processes

Uncertainty from pdfs and αs on benchmark processes NN col. 1107.2652 

4) different αs 

Differences due to: 
1) different data in fits
2) different methodology
    [parametrization, theory]
3) treatment of heavy quarks
4) different αs
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Intermediate recap. 

There are infrared and collinear divergences ⇒	 not all quantities can 
be computed in PT, only IRsafe ones

Parton model: incoherent sum of all partonic cross-sections 

Sum rules (momentum, charge, flavor conservation)

Determination of parton densities (electron & neutrino scattering in 
DIS, Drell-Yan ... )

Radiative corrections: failure of parton model 

Factorization of initial state divergences into scale dependent parton 
densities

DGLAP evolution of parton densities ⇒	 measure gluon PDF

Issues in today’s determination of PDFs
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Next: Perturbative calculations

Next, we will focus on perturbative calculations

LO, NLO, NLO+MC, NNLO

techniques, issues with divergences

current status, sample results 

101



Next: Perturbative calculations

Next, we will focus on perturbative calculations

LO, NLO, NLO+MC, NNLO

techniques, issues with divergences

current status, sample results 

Perturbative calculations rely on the idea of an order-by-order expansion 
in the small coupling

σ ∼ A + Bαs + Cα2
s + Dα3

s + . . .

LO NLO NNLO NNNLO
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Perturbative calculations

• Perturbative calculations = fixed order expansion in the coupling 
constant, or more refined expansions that include terms to all orders

• Perturbative calculations are possible because the coupling is small at 
high energy 

• In QCD (or in a generic QFT) the coupling depends on the energy 
(renormalization scale)

• So changing scale the result changes. By how much? What does this 
dependence mean? 

• Let’s consider some examples 
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

σLO

njets(µ) = αs(µ)nA(pi, �i, . . .)
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

σLO

njets(µ) = αs(µ)nA(pi, �i, . . .)

• Instead, choosing a scale µ’ one gets 

So the change of scale is a NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 

σLO

njets(µ
�) = αs(µ�)nA(pi, �i, . . .) = αs(µ)n

�
1 + n b0 αs(µ) ln

µ2

µ�2 + . . .

�
A(pi, �i, . . .)
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Leading order n-jet cross-section

• Consider the cross-section to produce n jets.  The leading order result at 
scale µ result will be

σLO

njets(µ) = αs(µ)nA(pi, �i, . . .)

σLO
njets

(µ)
σLO

njets
(µ�)

=
�

αs(µ)
αs(µ�)

�n

• Notice that at Leading Order the normalization is not under control:

• Instead, choosing a scale µ’ one gets 

So the change of scale is a NLO effect (∝αs), but this becomes more 
important when the number of jets increases (∝n) 

σLO

njets(µ
�) = αs(µ�)nA(pi, �i, . . .) = αs(µ)n

�
1 + n b0 αs(µ) ln

µ2

µ�2 + . . .

�
A(pi, �i, . . .)
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NLO n-jet cross-section

Now consider an n-jet cross-section at NLO.  At scale µ the result reads 

• So the NLO result compensates the LO scale dependence. The residual 
dependence is NNLO.

• Notice also that a good scale choice automatically resums large 
logarithms to all orders, while a bad one spuriously introduces large 
logs and ruins the PT expansion 

• Scale dependence and normalization start being under control only 
at NLO, since a compensation mechanism kicks in  

• Scale variation is conventionally used to estimate the theory uncertainty, 
but the validity of this procedure should not be overrated (see later) 

σNLO

njets(µ) = αs(µ)nA(pi, �i, . . . ) + αs(µ)n+1

�
B(pi, �i, . . . )− nb0 ln

µ2

Q2
0

�
+ . . .
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Leading order: Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Leading order: Feynman diagrams

1. draw all Feynman diagrams

2. put in the explicit Feynman rules and get the amplitude

3. do some algebra, simplifications

4. square the amplitude

5. integrate over phase space + flux factor + sum/average over outgoing/

incoming states 

Get any LO cross-section from the Lagrangian

Bottlenecks  

a) number of Feynman diagrams diverges factorially

b) algebra becomes more cumbersome with more particles

But given enough computer power everything can be computed at LO

Automated tools for (1-3): FeynArts/Qgraf, Mathematica/Form etc. 
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

× = +× ×∑ ∑
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Techniques beyond Feynman diagrams 

✓Berends-Giele relations: compute 
helicity amplitudes recursively 
using off-shell currents

Berends, Giele ’88

✓CSW relations: compute helicity 
amplitudes by sewing together 
MHV amplitudes [- - + + ... + ]

Cachazo, Svrcek, Witten ’04
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✓BCF relations: compute helicity 
amplitudes via on-shell recursions 
(use complex momentum shifts)

Britto, Cachazo, Feng ’04
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+
-

× = +× ×∑ ∑
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Matrix element generators

Fully automated calculation of leading order cross-sections: 

‣ generation of tree level matrix elements

- Feynman diagrams [CompHEP/CalcHEP, Madgraph/Madevent, 
HELAS, Sherpa, ... ]

- Helicity amplitudes + off-shell Berends-Giele recursion [ALPHA/
ALPGEN, Helac, Vecbos]

‣ phase space integration

‣ interface to parton showers (see later) 

All these codes are currently used extensively in analysis of LHC data  
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Benefits and drawbacks of LO

fastest option; often the only one

test quickly new ideas with fully exclusive description (new physics)

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision 

Benefits of LO:

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

⇒ all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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Example:  W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

large scale dependences, reflecting large theory uncertainty

no control on normalization

poor control on shapes

poor modeling of jets

Drawbacks of LO:
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Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible
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small scale dependence at LO can be very misleading (see later), small 
dependence at NLO robust sign that PT is under control 

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!"
 dijet

  (rad)

1/
#

di
je

t  d
#

di
je

t / 
d!
"  d

ije
t

pT
     max     > 180 GeV  ($8000)

130 < pT
     max    < 180 GeV  ($400)

100 < pT
     max    < 130 GeV  ($20)

  75 < pT
     max    < 100 GeV

LO

NLO

NLOJET++   (CTEQ6.1M)

µr = µf = 0.5 pT
     max

DØ

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

10
5

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

through loop effects get indirect information about sectors not 
directly accessible

• reduce dependence on unphysical scales (renormalization/
factoriaztion) 
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Benefits of next-to-leading order (NLO)

large NLO correction or large dependence at NLO robust sign 
that neglected other higher order are important
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Concrete examples follow in few slides, first let’s discuss briefly how 
one does NLO calculations 
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Ingredients at NLO

A full N-particle NLO calculation requires:
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set of subtraction terms to cancel divergences  

Ingredients at NLO

tree graph rates with N+1 partons 
➔ soft/collinear divergences 

A full N-particle NLO calculation requires:

virtual correction to N-leg process 
➔ divergence from loop integration,
    use e.g.  dimensional regularization bottleneck

We won’t have time to do detailed NLO calculations, but let’s 
look a bit more in detail at the issue of divergences/subtraction
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Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 
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Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

�
d4l

(2π)4
→ µ2�

�
ddl

(2π)d
, d = 4− 2� < 4
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Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

�
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• N.B. to preserve the correct dimensions a mass scale µ is needed
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Regularization: a way to make intermediate divergent quantities meaningful 

• This procedure works both for UV divergences and IR divergences

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.

�
d4l

(2π)4
→ µ2�

�
ddl

(2π)d
, d = 4− 2� < 4

• N.B. to preserve the correct dimensions a mass scale µ is needed

• Divergences show up as intermediate poles 1/ε
� 1

0

dx

x
→

� 1

0

dx

x1−�
=

1
�

111



Regularization in QCD

Regularization: a way to make intermediate divergent quantities meaningful 

• This procedure works both for UV divergences and IR divergences

Alternative regularization schemes: photon mass (EW), cut-offs, Pauli-Villard ... 
Compared to those methods, dimensional regularization has the big virtue that it leaves 
the regularized theory Lorentz invariant, gauge invariant, unitary etc. 

• In QCD dimensional regularization is today the standard procedure, 
based on the fact that d-dimensional integrals are more convergent if 
one reduces the number of dimensions.
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Renormalization schemes

Renormalization: a global redefinition of couplings and masses which 
absorbs all UV divergences.  Several schemes are possible (MS, MS, OS ...)
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• Take two different renormalization schemes of the QCD bare 
coupling as 
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Renormalization: a global redefinition of couplings and masses which 
absorbs all UV divergences.  Several schemes are possible (MS, MS, OS ...)

• Take two different renormalization schemes of the QCD bare 
coupling as 

αren,A
s = ZAα0

s , αren,B
s = ZBα0

s

αren,B
s = αren,A

s (1 + c1α
ren,A
s + . . . )

• Infinite parts of renormalization constants must be the same, therefore 
renormalized constants must be related by a finite renormalization 
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Renormalization schemes

Renormalization: a global redefinition of couplings and masses which 
absorbs all UV divergences.  Several schemes are possible (MS, MS, OS ...)

• Take two different renormalization schemes of the QCD bare 
coupling as 

αren,A
s = ZAα0

s , αren,B
s = ZBα0

s

αren,B
s = αren,A

s (1 + c1α
ren,A
s + . . . )

• Infinite parts of renormalization constants must be the same, therefore 
renormalized constants must be related by a finite renormalization 

• Note that as a consequence of this, the first two coefficients of the  
β-function do not change under such a transformation, i.e. they are 
scheme independent. This it not true for higher order coefficients.
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The MS scheme

• Today standard scheme is the modified minimal subtraction scheme,  
MS

• After regularizing integrals via the dimensional regularization, poles 
appear always in the combination   

• Therefore in the MS-scheme, instead of subtracting poles minimally 
(MS scheme), one always subtracts that combination, and replaces 
the bare coupling with the renormalized one  

1
�

+ ln(4π)− γE

• It is then standard to quote the coupling and ΛQCD in this scheme, 
the current value is 

206MeV < ΛMS(5) < 231MeV

• Uncertainties in this quantity propagate in the QCD cross-sections 
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Subtraction and slicing methods

• Consider e.g. an n-jet cross-section with some arbitrary infrared safe jet 
definition.  At NLO, two divergent integrals, but the sum is finite 

• Since one integrates over a different number of particles in the final 
state, real and virtual need to be evaluated first, and combined then 

• This means that one needs to find a way of removing divergences before 
evaluating the phase space integrals

• Two main techniques to do this
- phase space slicing ⇒ obsolete because of practical/numerical issues

- subtraction method ⇒ most used in recent applications

σJ
NLO =

�

n+1

dσJ
R +

�

n
dσJ

V
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

dσJ
R = dφn+1|Mn+1|2F J

n+1(p1, . . . , pn+1)
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

dσJ
R = dφn+1|Mn+1|2F J

n+1(p1, . . . , pn+1)
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Subtraction method

• The real cross-section can be written schematically as 

where FJ is the arbitrary jet-definition 

• The matrix element has a non-integrable divergence 

|Mn+1|2 =
1
x
M(x)

where x vanishes in the soft/collinear divergent region  

2 Re{MV · M∗
0} =

1
�
V

• IR divergences in the loop integration regularized by taking D=4-2ε 

dσJ
R = dφn+1|Mn+1|2F J

n+1(p1, . . . , pn+1)
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• The n-jet cross-section becomes 

Subtraction method

σJ
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) +
1
�
VF J

n
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• The n-jet cross-section becomes 

Subtraction method

σJ
NLO =

� 1
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dx
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1
�
VF J

n

• Infrared safety of the jet definition implies 

lim
x→0

F J
n+1(x) = F J

n

116



• The n-jet cross-section becomes 

Subtraction method

• KLN cancelation guarantees that 
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• The n-jet cross-section becomes 

Subtraction method

• KLN cancelation guarantees that 

lim
x→0

M(x) = V

σJ
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x) +
1
�
VF J

n

• Infrared safety of the jet definition implies 

lim
x→0

F J
n+1(x) = F J

n

• One can then add and subtract the analytically computed divergent part 

σJ
NLO =

� 1

0

dx

x1+�
M(x)F J

n+1(x)−
� 1

0

dx

x1+�
VF J

n +
� 1

0

dx

x1+�
VF J

n +
1
�
VF J

n
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Subtraction method

• This can be rewritten exactly as 

σJ
NLO =

� 1

0

dx

x1+�
M(x)

�
F J

1 (x)− VF J
0

�
+O(1)VF J

0

⇒ Now both terms are finite and can be evaluated numerically

• Subtracted cross-section must be calculated separately for each process 
(but mostly automated now). It must be valid everywhere in phase space 

• Systematized in the seminal papers of Catani-Seymour (dipole 
subtraction, ’96) and Frixione-Kunszt-Signer (FKS method, ’96) 

• Subtraction used in all recent NLO applications and public codes 
(Event2, Disent, MCFM, NLOjet++, ... ) 

117



Approaches to virtual (loop) part of NLO

Two complementary approaches:

‣ Numerical/traditional Feynman diagram methods: 
use robust computational methods [integration by parts, reduction 
techniques...], then let the computer do the work for you  

Bottleneck: 
factorial growth, 2 → 4 doable, very difficult to go beyond
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Approaches to virtual (loop) part of NLO

Two complementary approaches:

‣ Numerical/traditional Feynman diagram methods: 
use robust computational methods [integration by parts, reduction 
techniques...], then let the computer do the work for you  

Bottleneck: 
factorial growth, 2 → 4 doable, very difficult to go beyond

‣ Analytical approaches: 
improve understanding of field theory [e.g.  unitarity, onshell 
methods, OPP, recursion relations, twistor methods, ... ]

Bottleneck: 
still lack of complete automation, fermions in general more difficult 
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Britto, Cachazo, Feng ’04

1) “... we show how to use generalized unitarity to read off the (box) 
coefficients. The generalized cuts we use are quadrupole cuts ...”

NB: non-zero 
because cut gives 
complex momenta

Aim: NLO loop integral without doing the integration

Two breakthrough ideas

Quadrupole cuts:  4 on-shell conditions on 4 dimensional loop 
momentum) freezes the integration. But rational part of the amplitude, 
coming from D=4-2ε not 4, computed separately
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Aim: NLO loop integral without doing the integration

Ossola, Pittau, Papadopolous ’06

2) The OPP method: “We show how to extract the coefficients of 4-, 3-, 2- and 
1-point one-loop scalar integrals....”

Contents

−gµν + kµkν

k2 − m2
→

∑
εν(k)εµ(k)δ(k2 − m2) (1)

AN = +
∑

[i1|i4]

(
di1i2i3i4 I(D)

i1i2i3i4

)

+
∑

[i1|i3]

(
ci1i2i3 I(D)

i1i2i3

)
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(
bi1i2 I(D)
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)
+ R (2)

AN =
∑

[i1|i4]

(
di1i2i3i4 I(D)

i1i2i3i4

)
+

∑

[i1|i3]

(
ci1i2i3 I(D)

i1i2i3

)
+

∑

[i1|i2]

(
bi1i2 I(D)

i1i2

)
+ R (3)

R =
∑

[i1|i4]

−
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∑
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+
c(2,0)
i1i2i3

2
+

∑

[i1|i2]

−
b(2,0)
i1i2

6
q2
i1,i2 (4)

1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a good
understanding of the standard model signals to carry out a successful search for the Higgs
particle and physics beyond the standard model. At these hadron colliders QCD plays an
essential role. From the lessons learned at the TEVATRON we need fixed order calculations
matched with parton shower Monte Carlo’s and hadronization models for a successful
understanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed order
amplitudes one needs to take into account the so-called complexity of the algorithm. That
is, how does the evaluation time grows with the number of external particles. An algo-
rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can be
successfully implemented in efficient and reliable numerical procedures. This can lead to
rather different methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have been
constructed using algebraic manipulation programs to calculate the tree amplitudes directly
from Feynman diagrams. However, such a direct approach leads to an algorithm of double
factorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Two breakthrough ideas

Coefficients can be determined by solving system of equations: no 
loops, no twistors, just algebra!
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Status in 2005

Table 41: Other 2 → 4 (5) calculations.

2→ 4 (5): special models, specific helicity amplitudes, special kinematics.

process references comments

N-photon helicity amplitudes [502] only specific helicity configurations

6- and 7 - gluon amplitudes [503, 504] for non-Susy Yang-Mills only specific

helicity configurations

6- gluon amplitude [505] Result for one phase space point

(only virtual corrections)

6-scalar amplitudes in the Yukawa model [506]

2-photon 4-scalar amplitudes [507] only specific helicity configurations

in the Yukawa model

some of the complex final states listed here may be limited and (at least in the early days) must be known

from NLO theory. NLO is the first order at which both the normalization and shape can be calculated

with any degree of confidence.

Table 42: The LHC “priority” wishlist for which a NLO computation seems now feasible.

process relevant for

(V ∈ {Z,W, γ})

1. pp → V V jet tt̄H , new physics
2. pp → tt̄ bb̄ tt̄H
3. pp → tt̄ + 2 jets tt̄H
4. pp → V V bb̄ VBF→ H → V V , tt̄H , new physics
5. pp → V V + 2 jets VBF→ H → V V
6. pp → V + 3 jets various new physics signatures

7. pp → V V V SUSY trilepton

• pp → VV + jet: One of the most promising channels for Higgs production in the low mass range

is through the H → WW ∗ channel, with the W’s decaying semi-leptonically. It is useful to look

both in theH → WW exclusive channel, along with theH → WW+jet channel. The calculation

of pp → WW+jet will be especially important in understanding the background to the latter.

• pp → ttbb and pp → tt + 2 jets: Both of these processes serve as background to ttH , where the
Higgs decays into a bb pair. The rate for ttjj is much greater than that for ttbb and thus, even if 3
b-tags are required, there may be a significant chance for the heavy flavor mistag of a ttjj event to
contribute to the background.

• pp → V V bb: Such a signature serves as non-resonant background to tt production as well as to
possible new physics.

• pp → VV + 2 jets: The process serves as a background to VBF production of a Higgs boson.

• pp → V + 3 jets: The process serves as background for tt production where one of the jets may not
be reconstructed, as well as for various new physics signatures involving leptons, jets and missing

transverse momentum.

172

The QCD, EW & Higgs Working group report hep-ph/0604120
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The 2007 update
Process Comments

(V ∈ {Z,W, γ})
Calculations completed since Les Houches 2005

1. pp → V V jet WW jet completed by Dittmaier/Kallweit/Uwer [3];

Campbell/Ellis/Zanderighi [4]

and Binoth/Karg/Kauer/Sanguinetti (in progress)

2. pp → Higgs+2jets NLO QCD to the gg channel
completed by Campbell/Ellis/Zanderighi [5];

NLO QCD+EW to the VBF channel

completed by Ciccolini/Denner/Dittmaier [6, 7]

3. pp → V V V ZZZ completed by Lazopoulos/Melnikov/Petriello [8]

andWWZ by Hankele/Zeppenfeld [9]

Calculations remaining from Les Houches 2005

4. pp → tt̄ bb̄ relevant for tt̄H
5. pp → tt̄+2jets relevant for tt̄H
6. pp → V V bb̄, relevant for VBF→ H → V V , tt̄H
7. pp → V V +2jets relevant for VBF→ H → V V

VBF contributions calculated by

(Bozzi/)Jäger/Oleari/Zeppenfeld [10–12]

8. pp → V +3jets various new physics signatures

NLO calculations added to list in 2007

9. pp → bb̄bb̄ Higgs and new physics signatures

Calculations beyond NLO added in 2007

10. gg → W ∗W ∗ O(α2α3
s) backgrounds to Higgs

11. NNLO pp → tt̄ normalization of a benchmark process

12. NNLO to VBF and Z/γ+jet Higgs couplings and SM benchmark

Calculations including electroweak effects

13. NNLO QCD+NLO EW forW/Z precision calculation of a SM benchmark

Table 1: The updated experimenter’s wishlist for LHC processes

5

}

The NLO multi-leg Working 
group report 0803.0494

with Feynman diagrams

}with Feynman diagrams or 
unitarity/onshell methods
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Status of NLO today

2 → 2: all known (or easy) in SM and beyond

2 → 3: essentially all SM processes known 

[but: often do not include decays, codes private]

2 → 4: a number of calculations performed in the last 1- or 2 years 
[W/Z+3jets, WW+2jets, WWbb, tt+2jets, ttbb, bbbb].      
Calculations done using different techniques 

2 → 5: only dominant corrections for two processes [W/Z+4jets] 

Status of NLO:
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Top-pair production

Basic production mechanisms: initiated from quarks or gluons

What is the dominant 
production mechanism, at 

the Tevatron / LHC ?
[And why ?] 
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Top-pair production: Tevatron 

Running the program MCFM gives 
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Top-pair production: pp @ 1.96 TeV 

Running the program MCFM gives 
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Top-pair production: LHC 

Running the program MCFM gives 
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Top-asymmetry 

At the Tevatron, one interesting top measurement is its asymmetry

Afb =
Ntop(η > 0)−Ntop(η < 0)
Ntop(η > 0) + Ntop(η < 0)
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Top-asymmetry 

At the Tevatron, one interesting top measurement is its asymmetry

Afb =
Ntop(η > 0)−Ntop(η < 0)
Ntop(η > 0) + Ntop(η < 0)

At O(αs3) the asymmetry is non-zero, an NLO calculation gives

ANLO

fb = 0.050± 0.015
Kuehn et al. ’99
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Top-asymmetry 

At the Tevatron, one interesting top measurement is its asymmetry

Afb =
Ntop(η > 0)−Ntop(η < 0)
Ntop(η > 0) + Ntop(η < 0)

At O(αs3) the asymmetry is non-zero, an NLO calculation gives

ANLO

fb = 0.050± 0.015
Kuehn et al. ’99

But CDF & D0 measurements give  

Aexp.
fb = 0.193± 0.065 (stat.)± 0.024 (syst.)

⇒ more than 2-sigma deviation from NLO
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Top-asymmetry: recent update 

7.5 pb

0.068 fb�GeV

15.8�

47.5�theory
total

Σs �dΣs�dMt t�� AFB
t �AFBt ��

0.5

1.0

2.0

5.0

O
ex
p�O SM

CDF 1101.0034

2.7σ / 4.2σ away from the NLO+NNLL theory. Seen both by CDF and 
D0, CDF effect enhanced at large Mtt, also in dilepton channel

Asymmetry is 0 at LO, but theoretical arguments and partial higher 
orders suggest that NLO is robust under higher-order corrections 

Almeida et al. 0805.1885; Melnikov and Schulze 1004.3284; Ahrens et al. 1106.6051 ...

Various new models try to explain data, but difficult to preserve good 
agreement with symmetric cross-section, like-sign top decays, ...

Tension between symmetric 
and asymmetric cross-section
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Top at the LHC

Large Yukawa coupling and prominent decay product in many new-physics 
models. The place where new physics will show up ?

Good agreement between LHC data and 
NLO (and approx. NNLO) QCD
The frontier of NNLO

Motivation for NNLO 
• constrain gluon pdf
• top mass from cross-section
• top FB asymmetry

[ . . . ]
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‣ improved stability of NLO result [but no decays]

4 P.Uwer
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Figure 1. Scale dependence of the LO and NLO cross sections for tt̄+ 1-jet production at the Tevatron (left) and
the LHC (right) as taken from Ref. [34], with the renormalization scale (µr) and the factorization scale (µf ) set to µ.

section contributions !(yt >
< 0) correspond to top-

quarks in the forward or backward hemispheres, re-

spectively, where incoming protons fly into the for-

ward direction by definition. Denoting the corre-

sponding NLO contributions to the cross sections by

"!±NLO, we define the asymmetry at NLO by

AtFB,NLO =
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i.e. via a consistent expansion in #s. Note, however,

that the LO cross sections in Eq. (2) are evaluated in

the NLO setup (PDFs, #s). The results for the asym-

metry for different scale choices are shown in Fig. 2.

At LO we find an asymmetry of about −8%. The
scale dependence is rather small. This is a conse-

quence of the fact that #s cancels exactly between the

numerator and the denominator. In addition the resid-

ual factorization scale dependence also cancels to a

large extent in the ratio. At NLO we find a large cor-

rection compared to the LO result. The asymmetry

is almost washed out at NLO. The scale dependence

is increased in NLO which seems natural given the

small dependence in LO. To investigate the origin of

the large NLO corrections to the asymmetry we stud-

ied the dependence on pcutT , the minimal pT used to

resolve the additional jet. The results are shown in

Tab. 1. A strong dependence of the cross section on

pcutT is observed. For all pcutT values we find that the

NLO corrections to the cross section are of moderate
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Figure 2. Scale dependence of the LO and NLO

forward–backward charge asymmetry of the top-

quark in pp̄→ tt̄+jet+X at the Tevatron as taken from
Ref. [34] with µ= µf = µr.
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tt+1jet

‣ forward-backward asymmetry at the Tevatron compatible with zero

‣ essential ingredient of NNLO tt production (hot topic)

Dittmaier, Kallweit, Uwer ’07-’08

Calculation done with Feynman diagrams

131



W + 3jets 
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FIG. 2: The measured cross section dσ(W → eν+ ≥ n-jets)/dEnth-jet
T

compared to NLO predictions for n = 2, 3. In the upper
panels the NLO distribution is the solid (black) histogram, and CDF data points are the (red) points, whose inner and outer
error bars denote the statistical and total uncertainties on the measurements. The LO predictions are shown as dashed (blue)
lines. The lower panels show the distribution normalized to an NLO prediction, the full one for n = 2 and the leading-color
one for n = 3, in the experimental bins (that is, averaging over several bins in the upper panel). The scale uncertainty bands
are shaded (gray) for NLO and cross-hatched (brown) for LO. In the n = 2 case, the dotted (black) line shows the ratio of the
leading-color approximation to the full-color calculation.

as CDF, replacing the /ET cut by one on the neutrino
ET , and ignoring the lepton–jet ∆R cut removed by
acceptance. We approximate the Cabibbo-Kobayashi-
Maskawa matrix by the unit matrix, express the W cou-
pling to fermions using the Standard Model parame-
ters αQED = 1/128.802 and sin2 θW = 0.230, and use
mW = 80.419 GeV and ΓW = 2.06 GeV. We use the
CTEQ6M [31] parton distribution functions (PDFs) and
an event-by-event common renormalization and factor-
ization scale, µ =

√

m2
W + p2

T (W ). To estimate the scale
dependence we choose five values in the range (1

2
, 2)×µ.

We do not include PDF uncertainties. For W + 1, 2-jet
production these uncertainties have been estimated in
ref. [2]. In general they are smaller than the scale uncer-
tainties at low ET but larger at high ET . The LO calcula-
tion uses the CTEQ6L1 PDF set. For n = 1, 2 jets, NLO
total cross sections agree with those from MCFM [30], for
various cuts. As our calculation is a parton-level one, we
do not apply corrections due to non-perturbative effects
such as induced by the underlying event or hadronization.
Such corrections are expected to be under ten percent [2].

In table I, we collect the results for the total cross
section, comparing CDF data to the NLO theoretical
predictions computed using BlackHat and SHERPA.
The columns labeled “LC NLO” and “NLO” show respec-
tively the results for our leading-color approximation to
NLO, and for the full NLO calculation. The leading-color
NLO and full NLO cross-sections for W + 1- and W + 2-

jet production agree to within three percent. We thus
expect only a small change in the results for W + 3-jet
production once the missing subleading-color contribu-
tions are incorporated.

We have also compared the ET distribution of the nth

jet in CDF data to the NLO predictions for W + 1, 2, 3-
jet production. For W + 2, 3-jets these comparisons are
shown in fig. 2, including scale-dependence bands ob-
tained as described above. For reference, we also show
the LO distributions and corresponding scale-dependence
band. (The calculations matching to parton showers [29]
used in ref. [2] make different choices for the scale varia-
tion and are not directly comparable to the parton-level
predictions shown here.) The NLO predictions match the
data very well, and uniformly in all but the highest ET

bin. The central value of the LO predictions, in contrast,
have different shapes from the data. The scale depen-
dence of the NLO predictions are substantially smaller
than of the LO ones, decreasing by about a factor of five
in the W + 3-jet case. In the W + 2-jet case, we also show
the ratio of the leading-color approximation to the full-
color result within the NLO calculation: the two results
differ by less than three percent over the entire trans-
verse energy range, considerably smaller than the scale
dependence (and experimental uncertainties).

In fig. 3, we show the distribution for the total trans-
verse energy HT , given by the scalar sum of the jet and
lepton transverse energies, HT =

∑

j Ejet
T,j + Ee

T + /ET .

Berger et al. ’09 Ellis et al. ’09

☺ Small K=1.0-1.1, reduced uncertainty: 50% (LO) → 10% (NLO)

☺ First applications of new techniques to 2 → 4 LHC processes

Measured at the Tevatron + of primary importance at the LHC: 
background to model- independent new physics searches using jets + MET 
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W + 4 jets at NLO

Berger et al. ‘10

*Leading color calculation (OK to within 3% for lower multiplicities); missing W + 6q channels (also very small)

Sample diagrams*

• first pp → 5

• expected reduction of theoretical 
uncertainties

• key to top physics analyses: main 
background to tt in semi-leptonic 
channel 

HT =
�

j

pT,j + pT,e + pT,miss
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Z + 4 jets at NLO

Ita et al. ’11
4 jets + MET: important background to SUSY searches

additional 
jets 

steeper

LO/NLO not 
always flat

Z/W+: flat u(x)/u(x) Z/W-: u(x)/d(x) enhancement

ratios: excellent 
PT control 
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General NLO features?

grows further, it may prove necessary to adopt as well new approaches and methods. At the 2007 session

of Les Houches, several such approaches were under discussion and development, primarily those based

on the general analytic structure of amplitudes. These methods include recursive techniques at both

tree and loop level; the use of (generalized) unitarity in four dimensions, and in 4 − 2ε dimensions
(the latter in the context of dimensional regularization); and automated solutions for coefficients of one-

loop integrals, which is also connected with generalized unitarity. Complex final states possess intricate

kinematic regions in which either the amplitude itself becomes singular, or a particular representation of

it becomes numerically unstable. The general identification of such regions, and methods for dealing with

potential instabilities, are also areas of active interest, which are not unrelated to the use of analyticity to

construct loop amplitudes.

Even with the rapid progress we have been seeing in the last few years, there are NLO cross sec-

tions of interest that will not be completed in a timely manner for the LHC. One question is whether

we can provide any approximations/estimates of the uncalculated NLO matrix elements based on expe-

riences with simpler calculations. Table 2 shows the K-factors (NLO/LO) tabulated for some important

processes at the Tevatron and LHC. Of course, K-factors are a simplified way of presenting the effects

of NLO corrections (depending on both scale choice and PDF used for example), but the table provides

some interesting insights. For example, it appears that processes that involve a large color annihilation

(for example gg → Higgs) tend to have large K-factors for scales typically chosen to evaluate the matrix

elements. The addition of extra legs in the final state tends to result in a smaller K-factor. For example,

the K-factor for Higgs+2jets is smaller than for Higgs+1jet, which in turn is smaller than that for inclu-

sive Higgs production. The same is true for the K-factor for W+2jet being less than that for W+1jet

and the K-factor for tt̄+1jet being less than that for tt̄. Can we generalize this to estimate that the NLO
corrections forW+3jets and tt̄+2jets will be smaller still?

Typical scales Tevatron K-factor LHCK-factor

Process µ0 µ1 K(µ0) K(µ1) K′(µ0) K(µ0) K(µ1) K′(µ0)

W mW 2mW 1.33 1.31 1.21 1.15 1.05 1.15

W+1jet mW pjet
T 1.42 1.20 1.43 1.21 1.32 1.42

W+2jets mW pjet
T 1.16 0.91 1.29 0.89 0.88 1.10

WW+jet mW 2mW 1.19 1.37 1.26 1.33 1.40 1.42

tt̄ mt 2mt 1.08 1.31 1.24 1.40 1.59 1.48

tt̄+1jet mt 2mt 1.13 1.43 1.37 0.97 1.29 1.10

bb̄ mb 2mb 1.20 1.21 2.10 0.98 0.84 2.51

Higgs mH pjet
T 2.33 – 2.33 1.72 – 2.32

Higgs via VBF mH pjet
T 1.07 0.97 1.07 1.23 1.34 1.09

Higgs+1jet mH pjet
T 2.02 – 2.13 1.47 – 1.90

Higgs+2jets mH pjet
T – – – 1.15 – –

Table 2: K-factors for various processes at the Tevatron and the LHC calculated using a selection of input parameters. In all

cases, the CTEQ6M PDF set is used at NLO.K uses the CTEQ6L1 set at leading order, whilstK′ uses the same set, CTEQ6M,

as at NLO. For most of the processes listed, jets satisfy the requirements pT > 15 GeV/c and |η| < 2.5 (5.0) at the Tevatron

(LHC). For Higgs+1,2jets, a jet cut of 40 GeV/c and |η| < 4.5 has been applied. A cut of pjet
T > 20 GeV/c has been applied

for the tt̄+jet process, and a cut of pjet
T > 50 GeV/c for WW+jet. In the W (Higgs)+2jets process the jets are separated by

∆R > 0.52, whilst the VBF calculations are performed for a Higgs boson of mass 120 GeV. In each case the value of the K-

factor is compared at two often-used scale choices, where the scale indicated is used for both renormalization and factorization

scales.

6

[NLO report 0803.0494]

‣ color annihilation, gluon dominated ⇒ large K factors ? 

‣ extra legs in the final state ⇒ smaller K-factors ? 

But be careful, only full calculations can really tell! 

General features: 

K =
NLO

LO
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NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- master example: Higgs production
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when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- master example: Higgs production

when high precision is needed to match small experimental error

- W/Z hadro-production, heavy-quark hadro-production, αs from 
event shapes in e+e- ...
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NNLO: when is NLO not good enough?

when NLO corrections are large (NLO correction ∼ LO)
This may happens when

- process involve very different scales → large logarithms of ratio of 
scales appear 

- new channels open up at NLO (at NLO they are effectively LO)

- master example: Higgs production

when high precision is needed to match small experimental error

- W/Z hadro-production, heavy-quark hadro-production, αs from 
event shapes in e+e- ...

when a reliable error estimate is needed 
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Collider processes known at NNLO

Collider processes known at NNLO today: 

(a) Drell-Yan (Z,W)                   

(b) Higgs, also associated HV 

(c) 3-jets in e+e- 
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Drell-Yan processes

Drell-Yan processes: Z/W production (W → lν , Z → l+l-)

Very clean, golden-processes in QCD because

✓dominated by quarks in the initial state

✓no gluons or quarks in the final state (QCD corrections small)

✓ leptons easier experimentally (clear signature) 

⇒	 as clean as it gets at a hadron collider

P1

P2

fq(x1)

fq(x2)
x2P2

x1P1

γ∗, Z

l−

l+
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  NLO

Drell-Yan processes 

most important and precise test of the SM at the LHC
best known process at the LHC: spin-correlations, finite-width 
effects, γ-Z interference, fully differential in lepton momenta 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06Figure 4: More general variations of the renormalization and factorization scales, for production
of an on-shell Z boson at the LHC, at central rapidity Y = 0. For each order in perturbation
theory (LO, NLO, NNLO), three curves are shown. The solid curves depict common variation of
the renormalization and factorization scales, µF = µR = µ, as used in the rest of the paper, but
extending the range of variation to M/5 < µ < 5M . The dashed curves represent variation of the
factorization scale alone, holding the renormalization scale fixed at M . The dotted curves result
from varying the renormalization scale instead, holding the factorization scale fixed at M .

sections. These corrections are the dσ(2)/dY terms defined in Eq. (4.1) (after renormal-

ization and mass factorization), convoluted with the MRST PDFs and with all partonic

channels included. We vary the scale in these terms, and normalize this variation to the

NLO cross section. We find that the NNLO corrections contribute a scale dependence

of ≈ 5% at central rapidities. When we form the complete NNLO cross section, which

requires adding these corrections to the convolution of the dσ(0)/dY and dσ(1)/dY terms

of Eq. (4.1) with NNLO PDFs, the width of this band is decreased to less than 1%. This

demonstrates a remarkable interplay between NNLO calculations and parton distribution

functions.

The small size of the NNLO corrections is partly due to large cancellations between

the various partonic channels. To illustrate this, we present in Fig. 6 the fractional contri-

butions of the various NNLO partonic corrections to the entire NNLO cross section, at Run

I of the Tevatron. We include the qg and qiqj channels (the latter includes qq and qq̄ inital

states); the gg subprocess is numerically unimportant in this process. The magnitude of

each order α2
s partonic correction, δσij , can be 7–8% of the complete NNLO cross section,

– 30 –
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HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure their
properties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20
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Scale stability and sensitivity to PDFs
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NNLO

Drell-Yan processes 

Figure 4: More general variations of the renormalization and factorization scales, for production
of an on-shell Z boson at the LHC, at central rapidity Y = 0. For each order in perturbation
theory (LO, NLO, NNLO), three curves are shown. The solid curves depict common variation of
the renormalization and factorization scales, µF = µR = µ, as used in the rest of the paper, but
extending the range of variation to M/5 < µ < 5M . The dashed curves represent variation of the
factorization scale alone, holding the renormalization scale fixed at M . The dotted curves result
from varying the renormalization scale instead, holding the factorization scale fixed at M .
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channels included. We vary the scale in these terms, and normalize this variation to the
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of ≈ 5% at central rapidities. When we form the complete NNLO cross section, which

requires adding these corrections to the convolution of the dσ(0)/dY and dσ(1)/dY terms

of Eq. (4.1) with NNLO PDFs, the width of this band is decreased to less than 1%. This

demonstrates a remarkable interplay between NNLO calculations and parton distribution

functions.

The small size of the NNLO corrections is partly due to large cancellations between

the various partonic channels. To illustrate this, we present in Fig. 6 the fractional contri-

butions of the various NNLO partonic corrections to the entire NNLO cross section, at Run
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Drell-Yan: rapidity distributions 

Anastasiou, Dixon, Melnikov, Petriello ’03, ’05; Melnikov, Petriello ’06

Gauge boson production at the LHC

Gold-plated process

Anastasiou, Dixon, Melnikov, Petriello (03)

At LHC NNLO perturbative accuracy better than 1%

⇒ could use to determine parton-parton luminosities at the LHC

Recent developments in QCD – p. 32

☛ LHC: perturbative accuracy of the order of 1%.  This is absolutely unique!
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NNLO vs LHC data

E. g. with 1fb−1: 

- O(106) W and O(105) Z events per experiment and lepton channel
- O(100) WW and O(10) ZZ per experiment including all lepton channels

σ(W ) · B(W → eν) ∼ 10 nb σ(Z) · B(Z → e+e−) ∼ 1 nb

σ(WW ) · B(W → lν)2 ∼ 100 fb σ(ZZ) · B(W → l+l−)2 ∼ 10 fb
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NNLO vs LHC data

CMS PAS EWK-10-005, similar results from ATLAS not shown here

Impressive agreement between experiment and NNLO theory  

Theory error 
completely 

dominated by 
PDFs
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NNLO vs LHC data

• remarkable agreement 
with theory

• precise measurement of 
W/Z properties (also 
notice measurement of 
sin2θW)

• achieved control and 
precision already allows 
improvements on PDFs  

Spectacular experimental achievements in very little time !
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Charge asymmetry

Natural extension of the inclusive cross-section is the RW = W+/W- ratio. 
Study RW as a function of kinematics variables, e.g. charge asymmetry as a 
function of lepton rapidity

A(η) =
RW (η)− 1
RW (η) + 1

• measurement very sensitive to 
PDFs since many uncertainties 
cancel in ratios

• good agreement with various 
PDFs but very sensitive to 
shape details 

• similar results by CMS   
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Charge asymmetry

Effect of ATLAS and CMS lepton charge asymmetry on NNPDF global fit

NB: 
LHCb data at larger rapidities probe larger and smaller values of x that are less constraint, 
they will have a larger impact than ATLAS/CMS soon

Reduction of uncertainty of the order of 10-30% in the range x=10−3 − 10−1 
Similar results for d-quark and other sea distributions NNPDF 1108.1758
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Inclusive NNLO Higgs production

Inclusive Higgs production via gluon-gluon fusion in the large mt-limit:

NNLO corrections known since few years now:

virtual-virtual real-virtual real-real
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Inclusive NNLO Higgs production

3

the soft pieces are given in Eq. (25) of Ref. [2], while the

hard pieces, σ̂(n),h
ij (to order (1 − x)1) are:

σ̂(2),h
gg = σ0

{

1453

12
− 147 ζ2 − 351 ζ3 + nf

(

−
77
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)
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[

−
1193

4
+ 180 ζ2 +

101

12
nf

]
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,

(9)

and

σ̂(2),h
qq̄,NS = σ̂(2),h

qq̄,S = σ̂(2),h
qq,NS = σ̂(2),h

qq,S =

σ0

{

(1 − x)

[

20

9
−

16

9
L(x) +

16

9
L2(x) −

16

9
ζ2

]

+ . . .

}

.

(10)

For the sake of brevity, we have suppressed explicitly
scale dependent terms by setting µF = µR = MH (they
can be readily reconstructed using scale invariance) and
displayed terms only to order (1 − x)1. Terms to order
(1−x)1 dominate the corrections (see Fig. (2)), but we in-
clude terms to order (1−x)16 for all sub-processes in our
numerical analysis. The labels “NS” and “S” in Eq. (10)
denote the flavor non-singlet and singlet quark contribu-
tions, respectively. The four contributions are equal only
to order (1− x)1; their expansions differ at higher orders

of (1 − x) (except that σ̂(2),h
qq̄,S = σ̂(2),h

qq,S exactly). We note
in passing that our explicit calculation confirms the value

for the coefficient c(2)
03 for the gluon-gluon subprocess de-

rived in Ref. [4].

HADRONIC RESULTS

The hadronic cross section σ is related to the partonic
cross section through a convolution with the parton dis-

tribution functions. It has been argued [10] that conver-
gence is improved by pulling out a factor of x from σ̂ij

before expanding in (1 − x). We indeed observe a more
stable behavior at low orders of (1 − x) and will adopt
this prescription in what follows. Beyond fifth order,
however, it is irrelevant which is used.

In Fig. (1), we show the cross section at LO, NLO and
NNLO. At each order, we use the corresponding MRST

parton distribution set [16] [11, 12]. The NNLO distri-
butions are based upon approximations of the three-loop
splitting functions [13]. Studies using other parton distri-
butions, including the NNLO distributions of Alekhin [14]
will be presented elsewhere.
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FIG. 1: LO (dotted), NLO (dashed) and NNLO (solid) cross
sections for Higgs production at the LHC (µF = µR = MH).
In each case, we weight the cross section by the ratio of the
LO cross section in the full theory (Mt = 175 GeV) to the LO
cross section in the effective theory (Eq. (2)).

We next look at the quality of the expansion that we
use for the evaluation of the NNLO corrections. Fig. (2)
shows the NNLO K-factor (KNNLO ≡ σNNLO/σLO) for
the LHC starting from the purely soft limit ∝ (1 − x)−1

and adding successively higher orders in the expansion in
(1− x) up to order (1− x)16. Clearly, the convergence is
very good: beyond order (1−x)1, the curves differ by less
than 1%. Observe that the purely soft contribution un-
derestimates the true result by about 10-15%, while the
next term in the expansion, ∝ (1 − x)0, overestimates it
by about 5%. Note that the approximation up to (1−x)0

is not the same as the “soft+sl”-result of Ref. [2] or
the “SVC”-result of Ref. [3], since these include only the
ln3(1 − x) terms at that order.

We next consider the renormalization scale (µR) and
factorization scale (µF ) dependence of the K-factors. At
the LHC, we observe that the µF and µR dependence has
the opposite sign. In order to arrive at a conservative
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FIG. 2: K-factor for Higgs production at the LHC. Each line
corresponds to a different order in the expansion in (1 − x).
The renormalization and factorization scales are set to MH .

estimate of the scale dependence, we display two curves
corresponding to the values (µR, µF ) = (2MH , MH/2)
and (MH/2, 2MH) (see Fig. (3)). The scale dependence
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FIG. 3: Scale dependence at the LHC. The lower curve of
each pair corresponds to µR = 2MH , µF = MH/2, the upper
to µR = MH/2, µF = 2MH . The K-factor is computed with
respect to the LO cross section at µR = µF = MH .

is reduced when going from NLO to NNLO and, in con-
trast to the results in Ref. [2], the perturbative series up
to NNLO appears to be well behaved. The reason is that
both the newly calculated contributions from hard ra-
diation and the effect of the previously unavailable set
of NNLO parton distribution functions reduce the NNLO

cross section. Detailed studies of the individual effects

will be presented in a forthcoming paper.

Fig. 4 shows the results for the Tevatron at a center-of-
mass energy of

√
s = 2 TeV. Here the dependence on µR
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FIG. 4: Scale dependence for Tevatron Run II. The lower
curve of each pair corresponds to µR = µF = 2MH , the upper
to µR = µF = MH/2.

and µF has the same sign, so we set µR = µF ≡ µ and
vary µ between MH/2 and 2MH . The K-factor is larger
than for the LHC, but the perturbative convergence and
the scale dependence are satisfactory.

CONCLUSIONS

We have computed the NNLO corrections to inclusive
Higgs production at hadron colliders. We find reasonable
perturbative convergence and reduced scale dependence.
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Higgs searches: status
slide taken from G. Altarelli, EPS 2011



NNLO 3-jets in e+e-

Motivation: error on αs from jet-observables

NNLO 3-jet calculation in e+e- completed in 2007

Bethke ’06

Method: developed antenna subtraction at NNLO

First application: NNLO fit of αs from event-shapes

➥ dominated by theoretical uncertainty

αs(MZ) = 0.121± 0.001 (exp.)± 0.005 (th.)
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Event shapes

T = max
�n

�
i �pi · �n�
i |�pi|

1− T � 1 1− T ∼ 1

Candle example in e+e-:  The thrust 

Event-shapes and jet-rates: infrared safe observables describing the 
energy and momentum flow of the final state. 

Pencil-like event: Planar event:
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αs from event shapes at NNLO

Dissertori, Gehrmann-DeRidder, Gehrmann, Glover, Heinrich, Stenzel  ’07
Gehrmann, Luisoni, Stenzel ’08
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Figure 9: The measurements of the strong coupling constant  s for the six event shapes, at√
s = MZ, when using QCD predictions at di erent approximations in perturbation theory.

Once again, Fig. 6 shows that the NNLO perturbative uncertainty is reduced by about
30% compared to NLO+NLLA.

It is also remarkable that the  s values obtained from fits to di erent event shapes
with NNLO predictions are considerably more self-consistent than those found with either
NLO or NLO+NLLA expansions. Not only are the extracted values of  s more precise,
but the spread obtained from the di erent observables is smaller. This is clearly shown for
the data set at

√
s = MZ in Fig. 9. The key to this dramatic improvement is the rather

di erent size of the NNLO corrections to the various observables.

Despite these improvements our final combined result on  s(M 2
Z) still appears to be

larger than the world average [5]. We recall that the value of  s(M 2
Z) obtained from fits

with NLO+NLLA predictions is smaller than that obtained with pure NLO calculations
alone. Here we observe that when going from NLO to NNLO there is also a trend in the
direction of lower values of  s(M 2

Z).

Clearly, resummed predictions are mandatory in the two-jet region. Figures 4 and
5 clearly show the improvement achieved with NLO+NLLA predictions in the two-jet
region. Measurements of  s using NLO+NLLA approximations profit from an extended fit
range in this region. While a consistent matching of NNLLA predictions to NNLO would
require the analytic resummation of next-to-next-to-leading logarithmic terms, which are

– 17 –

‣ scale variation reduced by a factor 2

‣ scatter between αs from different 

event-shapes reduced

‣ better    , central value closer to 
world average

χ2

αs(M2
Z) = 0.1240 ± 0.0008 (stat) ± 0.0010 (exp) ± 0.0011 (had) ± 0.0029 (theo)
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NNLO on the horizon

  Single-jet production
• constrain gluon PDF 
• matrix elements known for some time
• subtraction in progress

  Top pair production
• needed for more precise mt determination
• possibly for further constraining PDFs
• top asymmetry

  Vector boson pair production
• NLO corrections are large 
• study gauge structure of SM (triple gauge couplings) 
• most important and irreducible background for Higgs production 

in intermediate mass region 
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Recap of higher orders 

Leading order

• everything can be computed in principle today (practical edge: 8 
particles in the final state), many public codes

• techniques: standard Feynman diagrams or recursive methods 
(Berends-Giele, BCF, CSW ... ) 

Next-to-leading order

• current frontier 2→5 in the final state

• many new, promising techniques

Next-to-next-to-leading order 

• few 2→1 processes available (Higgs, Drell-Yan) 

• 3-jets in e+e- 

• expect 2→2 calculations soon
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Next

Next will focus on 

parton showers and Monte Carlo methods

matching of parton showers and fixed order calculations

jets
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Parton shower & Monte Carlo methods

today at the frontier of NLO calculations are processes with 4 or 5 
particles in the final state. Difficult to expect much more in the coming 
years. However, typical LHC processes have much larger multiplicity
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Parton shower & Monte Carlo methods

today at the frontier of NLO calculations are processes with 4 or 5 
particles in the final state. Difficult to expect much more in the coming 
years. However, typical LHC processes have much larger multiplicity

we have also seen that large logarithms can spoil the convergence of 
PT, NLO results become unreliable

instead, one can seek for an approximate result such that soft and 
collinear enhanced terms are taken into account to all orders
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this leads to a  ‘parton shower’ picture, which is implemented in 
computer simulations, usually called Monte Carlo programs or event 
generators 



Angular ordering

When a soft gluon is radiated from a (pipj) dipole one gets a universal 
eikonal factor 

ωij =
pipj

pik pjk
=

1− vivj cos θij

ω2
k(1− vi cos θik)(1− vj cos θjk)

Massless emitting lines vi=vj=1, then 

ωij = ω[i]
ij + ω[j]

ij ω[i]
ij =

1
2

�
ωij +

1
1− cos θik

− 1
1− cos θjk

�
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Angular ordering

When a soft gluon is radiated from a (pipj) dipole one gets a universal 
eikonal factor 

ωij =
pipj

pik pjk
=

1− vivj cos θij

ω2
k(1− vi cos θik)(1− vj cos θjk)

Massless emitting lines vi=vj=1, then 

ωij = ω[i]
ij + ω[j]

ij ω[i]
ij =

1
2

�
ωij +

1
1− cos θik

− 1
1− cos θjk

�

� 2π

0

dφ

2π
ω[i]

ij =
� 1

ω2
k(1−cos θik)

0
θik < θij

θik > θij

Angular ordering

This function has remarkable property of angular ordering. Write angular
integration in polar coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq . Performing

azimuthal integration, we find

Z 2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij , otherwise 0.

i

j

Thus, after azimuthal averaging, contribution from W i
ij is confined to

cone, centred on direction of i, extending in angle to direction of j. Sim-

ilarly, W j
ij , averaged over φjq , is confined to cone centred on line j ex-

tending to direction of i.

Quantum Chromodynamics at the LHCLecture I: Proton structure and Parton Showers – p.49/58

Proof: see e.g. QCD and collider physics, Ellis, Stirling, Webber
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Angular ordering & coherence

A. O. is a manifestation of coherence of radiation in gauge theories 

In QED 
suppression of soft bremsstrahlung from an e+e- pair (Chudakov effect)  
At large angles the e+e- pair is seen coherently as a system without total 
charge ⇒ radiation is suppressed 

e+

e+

e−

e−

Herwig use the angle as an evolution variable, therefore has coherence 
built in. Other Parton showers force angular ordering in the evolution.
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Parton showers at the LHC

159

Standard parton shower programs
• hard (2→2) scattering
• parton shower (in the soft-collinear approximation) 
• hadronization model + underlying event model 

PS differ in the ordering variable of the shower, e.g. angle Herwig, 
transverse momentum Ariadne and Pythia (new), virtuality Pythia (old),  
in U.E. model, in the hadronization model 

Every LHC analysis will make use of one or more PS simulation for

• the signal and/or the background
• underlying event / non-perturbative corrections
• pile-up 
• efficiency studies / detector response

[Ariadne, Pythia, Herwig, Isajet ...]   



An example with Herwig

Select the initial state, e.g. pp collisiosn at 14 TeV
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An example with Herwig

Select the hard process of interest, e.g. Z+ jet production 
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An example with Herwig

Then Herwig dresses the process for you, both with initial state and 
final state shower 

Add hadronization + U.E. then perform your desired physics study
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Accuracy of Monte Carlos

Formally, Monte Carlos are Leading Logarithmic (LL) showers
• because they don’t include any higher order corrections to the 1→2 

splitting
• because they don’t have any 1→3 splittings
• .... 
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However, they fare better than analytic Leading Log calculations, because

• they have energy conservation (NLO effect) implemented 
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• they provide an exclusive description of the final state  
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Accuracy of Monte Carlos

Formally, Monte Carlos are Leading Logarithmic (LL) showers
• because they don’t include any higher order corrections to the 1→2 

splitting
• because they don’t have any 1→3 splittings
• .... 

However, they fare better than analytic Leading Log calculations, because

• they have energy conservation (NLO effect) implemented 

• they have coherence

• they have optimized choices for the coupling

• they provide an exclusive description of the final state  

So, despite not guaranteeing any formal accuracy, they fare better than LL  
calculations.  The problem is that we don’t know the uncertainty. Often 
comparison between different PS is the only way to estimate the uncertainty
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Parton shower vs data

164

Example: 
five-jet resolution parameter y45

• Agreement over 3 orders of 
magnitudes for a variable that 
describes a multi-jet final state

• Surprising since MCs rely on the 
soft-collinear approximation + a 
model for hadronization

• Note however that MCs have 
been tuned to LEP data



Accuracy of parton showers
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1984 redux

Unfortunately the plot

is completely wrong!

The culprit (again):

misuse of Monte

Carlo tools outside

their region of

validity.

SUSY
SM (Pythia) • SUSY: position of the peak 

determined by the mass spectrum
• Pure PS predict steeply falling SM 

background
• With matrix element calculation: SM 

and SUSY comparable size and shape
• In this example: SUSY search much 

more difficult than originally thought   

Meff = total transverse energy in the event



Accuracy of parton showers
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• SUSY: position of the peak 
determined by the mass spectrum

• Pure PS predict steeply falling SM 
background

• With matrix element calculation: SM 
and SUSY comparable size and shape

• In this example: SUSY search much 
more difficult than originally thought   

Lesson to take away 
- PS fail to describe hard radiation and it is difficult to understand the 

uncertainty of their predictions
- techniques and public code (Alpgen, Sherpa, Madgraph ...) exist to 

match matrix element calculations with Monte Carlos

Meff = total transverse energy in the event



NLO + parton shower

Two working examples: 

Even better than LO matrix element + shower is NLO + shower. 
This combines the best features: correct rates (NLO) and hadron-level 
description of events (PS) 
Difficult because need to avoid double counting 

‣MC@NLO  ‣POWHEG (POWHEG-BOX)
Frixione&Webber ’02 and later refs. Nason ’04 and later refs.
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Processes implemented:

- W/Z boson production
- WW, WZ, ZZ production
- inclusive Higgs production
- heavy quark production
- V + 1 jet

- single-top
- dijets
- Wbb 
- W+W+ + dijets ...
-  .... 



MC@NLO

‣ H1,2 denote nucleon and antinucleon

‣ The “Spin” indicates whether spin 
correlations in vector boson fusion 
or top decays are included (✓), 
neglected (✕) or absent (void entry)

‣ The values of IV, IL, IL1, and IL2 
control the identities of vector 
bosons and leptons

IPROC IV IL1 IL2 Spin Process

–1350–IL ! H1H2 → (Z/γ∗ →)lIL l̄IL + X

–1360–IL ! H1H2 → (Z →)lIL l̄IL + X

–1370–IL ! H1H2 → (γ∗ →)lIL l̄IL + X

–1460–IL ! H1H2 → (W+ →)l+ILνIL + X

–1470–IL ! H1H2 → (W− →)l−ILν̄IL + X

–1396 × H1H2 → γ∗(→
∑

i fif̄i) + X

–1397 × H1H2 → Z0 + X

–1497 × H1H2 → W+ + X

–1498 × H1H2 → W− + X

–1600–ID H1H2 → H0 + X

–1705 H1H2 → bb̄ + X

–1706 7 7 × H1H2 → tt̄ + X

–2000–IC 7 × H1H2 → t/t̄ + X

–2001–IC 7 × H1H2 → t̄ + X

–2004–IC 7 × H1H2 → t + X

–2030 7 7 × H1H2 → tW−/t̄W+ + X

–2031 7 7 × H1H2 → t̄W+ + X

–2034 7 7 × H1H2 → tW− + X

–2600–ID 1 7 × H1H2 → H0W+ + X

–2600–ID 1 i ! H1H2 → H0(W+ →)l+i νi + X

–2600–ID -1 7 × H1H2 → H0W− + X

–2600–ID -1 i ! H1H2 → H0(W− →)l−i ν̄i + X

–2700–ID 0 7 × H1H2 → H0Z + X

–2700–ID 0 i ! H1H2 → H0(Z →)li l̄i + X

–2850 7 7 × H1H2 → W+W− + X

–2860 7 7 × H1H2 → Z0Z0 + X

–2870 7 7 × H1H2 → W+Z0 + X

–2880 7 7 × H1H2 → W−Z0 + X

Table 1: Some of the processes implemented in MC@NLO 3.4 (see also table 2). H1,2 represent
nucleons or antinucleons. H0 denotes the Standard Model Higgs boson and the value of ID controls
its decay, as described in the HERWIG manual and in the text. The values of IV, IL, IL1, and IL2

control the identities of vector bosons and leptons, as described in the text. In single-t production,
the value of IC controls the production processes (s- and/or t-channel), as described in the text.
For more details on Wt production, see sect. 3.4. IPROC–10000 generates the same processes as
IPROC, but eliminates the underlying event. A void entry indicates that the corresponding variable
is unused. The ‘Spin’ column indicates whether spin correlations in vector boson or top decays are
included (!), neglected (×) or absent (void entry); when included, spin correlations are obtained
by direct integration of the relevant NLO matrix elements. Spin correlations in Higgs decays to
vector boson pairs (e.g. H0 → W+W− → l+νl−ν̄) are included in HERWIG versions 6.520 and
higher.

– 4 –

IPROC IV IL1 IL2 Spin Process

–1706 i j ! H1H2 → (t →)bkfif ′
i(t̄ →)b̄lfjf ′

j + X

–2000–IC i ! H1H2 → (t →)bkfif ′
i/(t̄ →)b̄kfif ′

i + X

–2001–IC i ! H1H2 → (t̄ →)b̄kfif ′
i + X

–2004–IC i ! H1H2 → (t →)bkfif ′
i + X

–2030 i j ! H1H2 → (t →)bkfif ′
i(W

− →)fjf ′
j/

(t̄ →)b̄kfif ′
i(W

+ →)fjf ′
j + X

–2031 i j ! H1H2 → (t̄ →)b̄kfif ′
i(W

+ →)fjf ′
j + X

–2034 i j ! H1H2 → (t →)bkfif ′
i(W

− →)fjf ′
j + X

–2850 i j ! H1H2 → (W+ →)l+i νi(W− →)l−j ν̄j + X

Table 2: Some of the processes implemented in MC@NLO 3.4 (see also table 1). H1,2 represent
nucleons or antinucleons. For more details on Wt production, see sect. 3.4. Spin correlations for
the processes in this table are implemented according to the method presented in ref. [20]. bα (b̄α)
can either denote a b (anti)quark or a generic down-type (anti)quark. fα and f ′

α can denote a
(anti)lepton or an (anti)quark. See sects. 3.3 and 3.5 for fuller details.

In the case of vector boson pair production, the process codes are the negative of those

adopted in MC@NLO 1.0 (for which the Les Houches interface was not yet available),

rather than those of standard HERWIG.

Furthermore, in the case of tt̄, single-t, H0W±, H0Z and W+W− production, the value

of IPROC alone may not be sufficient to fully determine the process type (including decay

products), and variables IV, IL1, and IL2 are also needed (see tables 1 and 2). In the case

of top decays (and of the decay of the hard W in Wt production), the variables IL1 and

IL2 have a more extended range of values than that of the variable IL, which is relevant to

lepton pair production and to which they are analogous (notice, however, that in the latter

case IL is not an independent variable, and its value is included via IPROC). In addition,

ILα=7 implies that spin correlations for the decay products of the corresponding particle

are not taken into account, as indicated in table 1. More details are given in sect. 3.5.

Apart from the above differences, MC@NLO and HERWIG behave in exactly the same

way. Thus, the available user’s analysis routines can be used in the case of MC@NLO.

One should recall, however, that MC@NLO always generates some events with negative

weights (see refs. [1]); therefore, the correct distributions are obtained by summing weights

with their signs (i.e., the absolute values of the weights must NOT be used when filling the

histograms).

With such a structure, it is natural to create two separate executables, which we

improperly denote as NLO and MC. The former has the sole scope of creating the event

file; the latter is just HERWIG, augmented by the capability of reading the event file.

1.3 Package files

The package consists of the following files:

• Shell utilities

MCatNLO.Script

– 5 –
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MC@NLO: W+W- production (LHC)

HERWIG

W+

W−

d

u

u

+  

parton shower

Herwig too soft in 
the high-pt region
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NLO

W+

W−

d

u

u

g

MC@NLO: W+W- production (LHC)

NLO divergent 
in the soft region
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MC@NLO

W+

W−

d

u

u

g

+  

parton shower

W+

W−

d

u

u

g

MC@NLO: W+W- production (LHC)

MC@NLO correctly interpolates 
between the two regimes
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Wbb/Zbb in MC@NLO

172

Frederix et al. 1106.6019

LO: gg channel present only for 
Zbb. Most differences Wbb vs Zbb 
due to this

Accuracy: NLO+PS, with spin correlations, heavy-quark mass effects 

Wbb/Zbb:    ≈ 2≈ 5             

Example: signal & background 
with the same accuracy  

Also in POWHEG: Oleari, Reina 1105.4488

Irreducible background to pp→ H W and pp→ HZ, with H→ bb   

Reason: gg enhancement in Zbb at the LHC



Jets: five years ago

Cones are IR 
unsafe!

IR unsafety affects jet 
cross-sections by less 
than 1%, so don’t need 

to care!

Jet area not well 
defined in kt: U.E. and 
pile-up subtraction too 

difficult!

kt collects too 
much soft 
radiation! 

The Cone 
is too 
rigid!

After all, if D=1.35 R 
Cone and kt are 

practically the same 
thing....

Cones have a 
well-defined 
circular area!

What 
about dark 
towers??
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Where do jets enter ?

Essentially everywhere at colliders!

Jets are an essential tool for a variety of studies:

top reconstruction 

mass measurements

most Higgs and NP searches 

instrumental for QCD studies, e.g. inclusive-jet measurements 
⇒ important input for PDF determinations 

general tool to attribute structure to an event
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Jets

Jets provide a way of projecting away the multiparticle dynamics of an 
event ⇒ leave a simple quasi-partonic picture of the hard scattering

The projection is fundamentally ambiguous ⇒ jet physics is a rich subject
Phenomenology: lecture 4 (75/101)

Understanding jets Understanding jets

Previous lecture

Divergent matrix element for
emission of soft and collinear
gluons.

‘Good’ observables are
insensitive to this — infrared
and collinear safe.

But complex event structure is
still present (and must be
understood for many practical
uses of QCD).

This lecture

Try to see how event structure builds up.

See when that information is relevant

Phenomenology: lecture 4 (75/101)

Understanding jets Understanding jets

Previous lecture

Divergent matrix element for
emission of soft and collinear
gluons.

‘Good’ observables are
insensitive to this — infrared
and collinear safe.

But complex event structure is
still present (and must be
understood for many practical
uses of QCD).

This lecture

Try to see how event structure builds up.

See when that information is relevantAmbiguities: 
1) Which particles should belong to a same jet ?
2) How does recombine the particle momenta to give the jet-momentum? 
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Jet developments

Jet progress, G. Salam (p. 3)

Introduction Jet Definition History

! Periodic key developments in jet definitions spurred by
ever-increasing experimental sophistication.

! Approach of LHC provides motivation for taking a new,
fresh, systematic look at jets.

! This talk: some of the discoveries along the way

 1975  1980  1985  1990  1995  2000  2005

Tev Run II wkshp
(midpoint cone)Sterman

Weinberg

UA1+2 cones

Jade, seq. rec.
Snowmass (cone)

kt
Cambridge

Aachen

Definitions shown are those with widest exptl. impact

NB: also ARCLUS, OJF, . . .

fast-kt, SISCone, anti-kt, 
jet-areas, jet-flavour, non-

perturbative effects, 
quality measures, jet-
substructure, boosted 

jets ... 
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Two broad classes of jet algorithms

Cone type
(UA1,JetCLU, Midpoint, 

SISCone..)

Sequential
 (kt-type, Jade, Cambridge/

Aachen...)
⤷⤶

top down approach:
cluster particles according to 
distance in coordinate-space
Idea: put cones along dominant 
direction of energy flow 

bottom up approach: cluster 
particles according to distance 
in momentum-space
Idea: undo branchings occurred 
in the PT evolution

Jet algorithms

Today many extensions of the original Sterman-Weinberg jets. 
Modern jet-algorithms divided into two broad classes
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Jet requirements

(7) = -m(tanti/Z))) and azimuth (4) (CDF, UAI, DO, UA2). B is the polar 

angle with respect to the beamline. The (~,c5) metric has the virtue of tak- 

ing into account the Lorentz boosts of jet systems, and is an integral part of 

most new calorimeter designs [5] [6]. 

Several important properties that should be met by a jet definition are 

[31: 

1. Simple to implement in an experimental analysis; 

2. Simple to implement in the theoretical calculation; 

3. Defined at any order of perturbation theory; 

4. Yields finite cross section at any order of perturbation theory; 

5. Yields a cross section that is relatively insensitive to hadronization. 

We have studied various jet cluster definitions and have reached an agree- 

ment on a standard definition. As a starting point for experimental data, it is 

assumed that a cluster of energy has been identified in a segmented calorime- 

ter. The theoretical starting point is that partons have been identified with 

some separation in the 7 - 4 metric. 

We propose to use a standard jet definition using cones in n-4 space. This 

has the advantage that it is related to the prescription for handling radiation 

in QCD introduced by Sterman and Weinberg [7]. The cone algorithms in 

pp collisions were first explored by the UAl collaboration [S]. This technique 

is to be contrasted to nearest neighbor algorithms where clusters are formed 

from contiguous towers above some energy threshold. Clusters are defined ss 

separate if some local minimum can be found between peaks of energy [9]. 

A cone of a radius R. is used to define the energy associated with the jet. 

Calorimeter cells or partons have a distance from the jet center defined by the 

radius R G (+i - &.)s + (vi - q,,)‘, where 4. and 71~ represent the center of 

the cone and 4i and vi are the coordinates of the parton or the center of the 

calorimeter tower. Either partons or the energy found in calorimeter towers 

are associated with the jet if they lie inside the cone, that is, R 5 R,,. 

There is no precise guidance for the choice of the value of R., but studies 

involving the simulation of jet fragmentation at transverse energies in excess 

of 20 GeV indicate that values between 0.4 and 1.0 yield results where the 
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Inclusive kt/Durham-algorithm
Catani et. al ’92-’93; Ellis&Soper ’93

1. For any pair of final state particles i,j define the distance 

dij =
∆y2

ij + ∆φ2
ij

R2
min{k2

ti, k
2
tj}

Inclusive algorithm:
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diB = k2
ti

2. For each particle i define a distance with respect to the beam 

1. For any pair of final state particles i,j define the distance 

dij =
∆y2
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ij
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min{k2

ti, k
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tj}

Inclusive algorithm:

179

3. Find the smallest distance. If it is a dij recombine i and j into a new 
particle (⇒ recombination scheme); if it is diB declare i to be a jet and 
remove it from the list of particles 

NB: if                                    then partons (ij) are 
always recombined, so R sets the minimal interjet angle   

∆Rij ≡ ∆y2
ij + ∆φ2

ij < R22
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4. repeat the procedure until no particles are left 

3. Find the smallest distance. If it is a dij recombine i and j into a new 
particle (⇒ recombination scheme); if it is diB declare i to be a jet and 
remove it from the list of particles 

NB: if                                    then partons (ij) are 
always recombined, so R sets the minimal interjet angle   

∆Rij ≡ ∆y2
ij + ∆φ2

ij < R22



Exclusive kt/Durham-algorithm

180

Inclusive algorithm gives a variable number of jets per event, according to 
the specific event topology  



Exclusive kt/Durham-algorithm

180

Exclusive version:  run the inclusive algorithm but stop when either 

• all dij, diB > dcut or 

• when reaching the desired number of jets n

Inclusive algorithm gives a variable number of jets per event, according to 
the specific event topology  



 kt/Durham-algorithm in e+e-

kt originally designed in e+e- , most 
widely used algorithm in e+e- (LEP)

Théorie des jets (p. 14)

Mainstream jet algorithms

Sequential recombination
kt/Durham algorithm features

! Gives hierarchy to event and jets
Event can be specified

by y23, y34, y45.

! Resolution parameter related to
minimal transverse momentum
between jets

Most widely-used jet algorithm in e+e−

! Collinear safe: collinear particles recombined early on

! Infrared safe: soft particles have no impact on rest of clustering seq.

• can classify events using y23, y34, 
y45, y56 ...

• resolution parameter related to 
minimum transverse momentum 
between jets

yij = 2min{E2
i , E2

j }
�
1− cos θ2

ij

�
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 kt/Durham-algorithm in e+e-

kt originally designed in e+e- , most 
widely used algorithm in e+e- (LEP)

Théorie des jets (p. 14)

Mainstream jet algorithms

Sequential recombination
kt/Durham algorithm features

! Gives hierarchy to event and jets
Event can be specified

by y23, y34, y45.

! Resolution parameter related to
minimal transverse momentum
between jets

Most widely-used jet algorithm in e+e−

! Collinear safe: collinear particles recombined early on

! Infrared safe: soft particles have no impact on rest of clustering seq.

• can classify events using y23, y34, 
y45, y56 ...

• resolution parameter related to 
minimum transverse momentum 
between jets

yij = 2min{E2
i , E2

j }
�
1− cos θ2

ij

�

1. Collinear safe: collinear particles recombine early on 
2. Infrared safe: soft particles do not influence the clustering sequence

⇒	 collinear + infrared safety important: it means that cross-sections can be 
computed at higher order in pQCD (no divergences)! 

Satisfies fundamental requirements:  
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The CA and the anti-kt algorithm

The Cambridge/Aachen: sequential algorithm like kt, but uses only 

angular properties to define the distance parameters 

∆R2
ij = (φi − φj)2 + (yi − yj)2dij =

∆R2
ij

R2
diB = 1

Dotshitzer et. al ’97; Wobisch &Wengler ’99
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The Cambridge/Aachen: sequential algorithm like kt, but uses only 

angular properties to define the distance parameters 

∆R2
ij = (φi − φj)2 + (yi − yj)2dij =

∆R2
ij

R2
diB = 1

Dotshitzer et. al ’97; Wobisch &Wengler ’99

The anti-kt algorithm: designed not to recombine soft particles together 

dij = min{1/k2
ti, 1/k2

tj}∆R2
ij/R2 diB = 1/k2

ti

Cacciari, Salam, Soyez ’08
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anti-kt is the default algorithm for ATLAS and CMS



Cone algorithms 

1. A particle i at rapidity and azimuthal angle (yi, Φi) ⊂ cone C iff 
�

(yi − yC)2 + (φi − φC)2 ≤ Rcone

Théorie des jets (p. 23)

Mainstream jet algorithms

Cone
Cone basics

Modern cone algs have two main steps:

! Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

! Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

[Blazey et al. ’00 (Run II jet physics)]
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Cone algorithms 

φ̄C ≡
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i∈C φi · pT,i�
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2. Define
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Cone basics

Modern cone algs have two main steps:

! Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

! Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

[Blazey et al. ’00 (Run II jet physics)]
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Cone algorithms 
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i∈C φi · pT,i�
i∈C pT,i

ȳC ≡
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i∈C yi · pT,i�
i∈C pT,i

2. Define

1. A particle i at rapidity and azimuthal angle (yi, Φi) ⊂ cone C iff 
�

(yi − yC)2 + (φi − φC)2 ≤ Rcone

3. If weighted and geometrical averages coincide                                                          
a stable cone (⇒ jet) is found, otherwise set                           & iterate 

(yC ,φC) = (ȳC , φ̄C)
(yC ,φC) = (ȳC , φ̄C)

4. Stable cones can overlap. Run a split-merge on overlapping jets: merge 
jets if they share more than an energy fraction f, else split them and 
assign the shared particles to the cone whose axis they are closer to.
Remark: too small f (<0.5) creates hugh jets, not recommended 

Théorie des jets (p. 23)

Mainstream jet algorithms

Cone
Cone basics

Modern cone algs have two main steps:

! Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

! Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

[Blazey et al. ’00 (Run II jet physics)]
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Cone algorithms 

• The question is where does one start looking for stable cone ? 

• The direction of these trial cones are called seeds 

• Ideally, place seeds everywhere, so as not to miss any stable cone

• Practically, this is unfeasible. Speed of recombination grows fast with the 
number of seeds. So place only some seeds, e.g. at the (y, Φ)-location of 

particles. 
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Cone algorithms 

• The question is where does one start looking for stable cone ? 

• The direction of these trial cones are called seeds 

• Ideally, place seeds everywhere, so as not to miss any stable cone

• Practically, this is unfeasible. Speed of recombination grows fast with the 
number of seeds. So place only some seeds, e.g. at the (y, Φ)-location of 

particles. 

Seeds make cone algorithms infrared unsafe 
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Jets: infrared unsafety of cones

3 hard ⇒ 2 stable cones 3 hard + 1 soft  ⇒ 3 stable cones

 Soft emission changes the hard jets ⇒ algorithm is IR unsafe
➟(a)
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Figure 1: Stable cones found by the midpoint algorithm for a 3-particle event (left) and for
the same event with an additional infinitely soft gluon (right).

SISCone as a replacement for the midpoint algorithm. Let us consider the
3-particle event displayed in Fig. 1(a). When clustered with the midpoint algorithm, 2
stable cones are found, leading to two jets: one with particles 1 and 2 and a second one with
particle 3. If one adds to that hard event an infinitely soft gluon as shown in Fig. 1(b),
a third stable cone is found and the three hard particles are clustered in a single jet. This
change in the jet structure upon addition of soft particles, a phenomenon which happens
with infinite probability in perturbative QCD, gives rise to divergences in the perturbative
expansion and proves that the midpoint algorithm is infrared unsafe.

This problem arises from the fact that the seeded approach misses stable cones — here
the one containing particles 2 and 3 in Fig. 1(a). The workaround to restore IR safety
is thus to find a seedless method that provably identifies all the stable cones. This is
notoriously complex: a naive approach testing the stability of all subsets of particles [4] has
a complexity of order N2N for N particles which is much slower than the O(N3) complexity
of the midpoint algorithm, making this solution unusable for experimental purposes.
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Figure 2: Clustering time for SIS-
Cone compared to typical implemen-
tations of the midpoint algorithm
and the anti-kt algorithm [5].

The solution [6] is to use the geometrical obser-
vation that any enclosure in the y − φ plane can be
moved without changing its contents until it touches
two points. Browsing all pairs of particles allows thus
to enumerate all possible cones and to check their sta-
bility at an overall cost of O(N3). Additional efforts
can even bring the final complexity to O(N2 log(N))
i.e. faster than the midpoint algorithm. This is il-
lustrated on Fig. 2 where we observe that in practice
SISCone runs faster than the typical implementations
of the midpoint algorithm without a seed threshold
and at least as fast as when a 1 GeV seed threshold
is used.

This has been implemented [6, 7, 5] in a C++ code
named SISCone (Seedless Infrared Safe Cone) which
is the first cone algorithm to satisfy the SNOWMASS
requirements, that is to be at the same time IR and
collinear safe, and to be fast enough to be used in
experimental analysis.

DIS 2008

Seed!

Midpoint algorithm: take as seed position of emissions and midpoint 
between two emissions (postpones the infrared satefy problem)
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Seedless cones

Blazey ’00

Solution: 
use a seedless algorithm, i.e. consider all possible combinations of 
particles as candidate cones, so find all stable cones [⇒ jets] 
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Seedless cones

Blazey ’00

The problem: 
clustering time growth as N2N. So for an event with 100 particles need 
1017 ys to cluster the event  ⇒ prohibitive beyond PT (N=4,5)

Solution: 
use a seedless algorithm, i.e. consider all possible combinations of 
particles as candidate cones, so find all stable cones [⇒ jets] 
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Seedless cones

Blazey ’00

The problem: 
clustering time growth as N2N. So for an event with 100 particles need 
1017 ys to cluster the event  ⇒ prohibitive beyond PT (N=4,5)

Solution: 
use a seedless algorithm, i.e. consider all possible combinations of 
particles as candidate cones, so find all stable cones [⇒ jets] 

Better solution: 
SISCone recasts the problem as a computational geometry problem, the 
identification of all distinct circular enclosures for points in 2D and finds a 
solution to that  ⇒ N2 ln N time IR safe algorithm  
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Figure 3: (a) Some initial circular enclosure; (b) moving the circle in a random direction
until some enclosed or external point touches the edge of the circle; (c) pivoting the circle
around the edge point until a second point touches the edge; (d) all circles defined by pairs
of edge points leading to the same circular enclosure.

4.2 The two-dimensional case

4.2.1 General approach

The solution to the full problem can be seen as a 2-dimensional generalisation of the
above procedure.6 The key idea is again that of trying to identify all distinct circular
enclosures, which we also call distinct cones (by ‘distinct’ we mean having a different point
content), and testing the stability of each one. In the one-dimensional example there was a
single degree of freedom in specifying the position of the segment and all distinct segment
enclosures could be obtained by considering all segments with an extremity defined by a
point in the set. In 2 dimensions there are two degrees of freedom in specifying the position
of a circle, and as we shall see, the solution to finding all distinct circular enclosures will
be to examine all circles whose circumference lies on a pair of points from the set.

To see in detail how one reaches this conclusion, it is useful to examine fig. 3. Box (a)
shows a circle enclosing two points, the (red) crosses. Suppose, in analogy with fig. 2 that
one wishes to slide the circle until its point content changes. One might choose a direction
at random and after moving a certain distance, the circle’s edge will hit some point in the
plane, box (b), signalling that the point content is about to change. In the 1-dimensional
case a single point, together with a binary orientation (taking it to be the left or right-hand
point) were sufficient to characterise the segment enclosure. However in the 2-dimensional
case one may orient the circle in an infinite number of ways. We can therefore pivot the
circle around the boundary point. As one does this, at some point a second point will then
touch the boundary of the circle, box (c).

The importance of fig. 3 is that it illustrates that for each and every enclosure, one
can always move the corresponding circle (without changing the enclosure contents) into
a position where two points lie on its boundary.7 Conversely, if one considers each circle

6We illustrate the planar problem rather than the cylindrical one since for R < π/2 the latter is a
trivial generalisation of the former.

7There are two minor exceptions to this: (a) for any point separated from all others by more than 2R,
the circle containing it can never have more than that one point on its edge — any such point forms a

10

Salam, Soyez ’07
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Jet area

Given an infrared safe, fast jet-algorithm, can define the jet area A as 
follows: fill the event with an infinite number of infinitely soft emissions 
uniformly distributed in η-φ and make A proportional to the # of 
emissions clustered in the jet 

Jets @LH (G. Salam, LPTHE) (p. 12)

Status and plans Jet areas – visualised

NB: new
anti-kt⤷NB: cone, 

not circular! ⤷
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1.cluster particle with an IR safe jet algorithm
2. from all jets (most are pile-up ones) in the event define the median

3. the median gives the typical pt/Aj for a given event 

4.use the median to subtract off dynamically the soft part of the  
soft events 

What jet areas are good for

jet-area ≡ catching area of the jet when adding soft emissions

⇒ use the jet area to formulate a simple area based subtraction of
    pile-up events 

Pileup = generic p-p interaction (hard, soft, single-diffractive...) overlapping with hard scattering

188

ρ =
pt,j

Aj

psub
j = pj −Ajρ



Sample 2 TeV mass reconstruction
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Sample 2 TeV mass reconstruction
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Quality measures of jets

Suppose you are searching for a heavy state (H→gg, Z’→qq, ... )

The object is reconstructed through its decay products
 ⇒ Which jet algorithm (JA) is best ? Does the choice of R matter? 

• good algo ⇔	 small Qw(JA, R) 

• ratios of Qw(JA,R): mapped to ratios of 
effective luminosity (with same           )S/

√
B

Define: Qw(JA, R) ≡ width of the smallest mass window that 
contains a fraction f of the generated massive objects  

ρL =
Qf

z (JA2, R2)
Qf

z (JA1, R1)
L2 = ρLL1

f

f

f

Introduction Quality measures Filtering Results The PileUp case

Quality measures
1. Qw

f =z (R) → The width of the smallest (reconstructed) mass window that contains a fraction f = z of

the generated massive objects:

f =

„
# reconstructed massive objects in window of width w

Total # generated massive objects

«
.

2. Qf
w=x

√
M

(R) → The max. fraction of events f in window of width w = x
√

M:

Qf
w=x

√
M

(R) ≡
 

Max # reconstructed massive objects in window of width w = x
√

M

Total # generated massive objects

!−1

,

Juan Rojo LPTHE

Quantifying the performance of jet algorithms at the LHC190



Quality measures: sample results

191

‣At 100GeV: use a Tevatron standard algo (kt, R=0.7) instead of best 
choice (SISCone, R=0.6  ⇒ lose               in effective luminosity  

‣At 2 TeV: use MZ’=100GeV Tevatron best choice instead SIScone, R=1.1
 ⇒	 lose               in effective luminosity  

A good choice of jet-algorithm can make the difference
Bad choice of jet-algorithm ⇔	 loose in discrimination power

ρL = 0.8

ρL = 0.6

Introduction Quality measures Filtering Results The PileUp case

The performance of jet algorithms - Narrow H → gg

Less favored choices for the MH = 2 TeV case:

1. Use SISCone, but R100 GeV
best = 0.6 instead of R2 TeV

best = 1.1 → ρL ∼ 0.55

2. Use R2 TeV
best , choose not SISCone, SubJet/Filtering but kT → ρL ∼ 0.6

In both cases → Lose almost half effective discriminating power Σeff !

Juan Rojo LPTHE

Quantifying the performance of jet algorithms at the LHC

NB: Here “fake Higgs”  =  narrow resonance decaying to gluons



Jets today at the LHC

192

ATLAS and CMS adopted as default jet-algorithm: anti-kt , unfortunately 
with different default R 0.4 & 0.6 [ATLAS] 0.5 & 0.7 [CMS] 

Cacciari, Salam, Soyez ’08 

Also used:  Cambridge-Aachen (CA), kt algorithm and SISCone

First time only infrared-safe algorithms are used systematically at a collider! 

Catani et al. ’92-’93; Ellis and Soper ’93;  Dokshitzer et al. ’97; Salam and Soyez ’08 

CMS PRL 105 (2010) ATLAS New J. Phys 13 (2011)

So far, at the LHC 
jets could probe the 
highest energy scales 

∼ 4 TeV 
[Tevatron ∼ 1 TeV] 

dij =
1

max(k2
ti, k

2
tj)

∆Rij

R



Z/W+ H (→bb) rescued ?

272 Chapter 10. Standard Model Higgs Bosons

The direct search in the LEP2 experiments via the process e
+
e
− → ZH yields a lower bound

of 114.4 GeV/c2 on the Higgs mass [61]. After LEP2 the search for the SM Higgs particle is
continued at the Tevatron for Higgs masses up to ∼ 130 GeV/c2 [381] and the LHC for Higgs
masses up to the theoretical upper limit [382, 383].

The Higgs decay modes can be divided into two different mass ranges. For MH � 135 GeV/c2

the Higgs boson mainly decays into bb̄ and τ+τ− pairs with branching ratios of about 85%
and 8% respectively (see Fig. 10.1, right plot). The decay modes into cc̄ and gluon pairs,
with the latter mediated by top and bottom quark loops, accumulate a branching ratio of
up to about 10%, but do not play a relevant role at the LHC. The QCD corrections to the
Higgs decays into quarks are known up to three-loop order [384–390] and the electroweak
corrections up to NLO [391–394]. The latter are also valid for leptonic decay modes. One
of the most important Higgs decays in this mass range at the LHC is the decay into photon
pairs, which is mediated by W , top and bottom quark loops. It reaches a branching fraction
of up to 2×10−3. The NLO QCD [395–401] and electroweak [402–404] corrections are known.
They are small in the Higgs mass range relevant for the LHC.

For Higgs masses above 135 GeV/c2 the main decay modes are those into WW and ZZ pairs,
where one of the vector bosons is off-shell below the corresponding kinematical threshold.
These decay modes dominate over the decay into tt̄ pairs, the branching ratio of which does
not exceed ∼ 20% as can be inferred from Fig. 10.1 (right plot). The electroweak corrections
to the WW,ZZ decays are of moderate size [391, 392, 405, 406]. The total decay width of
the Higgs boson, shown in Fig. 10.1 (left plot), does not exceed about 1 GeV/c2 below the
WW threshold. For very large Higgs masses the total decay width grows up to the order of
the Higgs mass itself so that the interpretation of the Higgs boson as a resonance becomes
questionable. This Higgs mass range coincides with the upper bound of the Higgs mass from
triviality.
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Figure 10.1: Left plot: total decay width (in GeV/c2) of the SM Higgs boson as a function of
its mass. Right plot: Branching ratios of the dominant decay modes of the SM Higgs particle.
All relevant higher-order corrections are taken into account

The dominant Higgs production mechanism at the LHC will be the gluon-fusion process

Jets, G. Salam, LPTHE (p. 2)

Intro

Low-mass Higgs search @ LHC:
complex because dominant decay
channel, H → bb, often swamped by
backgrounds.

Various production processes

! gg → H (→ γγ) feasible

! WW → H → . . . feasible

! gg → tt̄H v. hard

! qq̄ → WH,ZH
small; but gives access to

WH and ZH couplings

Currently considered impossible

⇒	 Light Higgs hard: Higgs mainly produced in association with Z/W,
     decay H→bb is dominant, but overwhelmed by QCD backgrounds
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Z/W+ H (→bb) rescued ?

Recall why searching for pp →WH(bb) is hard: 

⇒ signal extraction very difficult 

! !
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Conclusion [ATLAS TDR]: 
The extraction of a signal from H → bb 
decays in the WH channel will be very 
difficult at the LHC even under the most 
optimistic assumptions [...]

σ(pp→WH(bb)) ∼ few pb

σ(pp→Wjj) ∼ few 104pb

σ(pp→Wbb) ∼ few pb

σ(pp→ tt) ∼ 800pb σ(pp→ bb) ∼ 400pb
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Z/W+ H (→bb) rescued ?

But ingenious suggestions open up to window of opportunity

Central idea: require high-pT W and Higgs boson in the event

- leads to back-to-back events where two b-quarks are contained 
within the same jet

- high pT reduces the signal but reduces the background much more
- improve acceptance and kinematic resolution 
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Z/W+ H (→bb) rescued ?

Then use a jet-algorithm geared to exploit the specific pattern of H → 
bb vs g → gg, q → gg  

- QCD partons prefer soft emissions (hard → hard + soft)
- Higgs decay prefers symmetric splitting
- try to beat down contamination from underlying event
- try to capture most of the perturbative QCD radiation 

Jets, G. Salam, LPTHE (p. 8)

The method #3: jet filtering

Rfilt

filter

Rbb

Rbb

mass drop

b

g

b

R

UE

At moderate pt , Rbb is quite large; UE & pileup degrade mass resolution
δM ∼ R4ΛUE

pt

M [Dasgupta, Magnea & GPS ’07]

Filter the jet

! Reconsider region of interest at smaller Rfilt = min(0.3,Rbb̄/2)

! Take 3 hardest subjets b, b̄ and leading order gluon radiation

1.  cluster the event 
with e.g. CA algo 
and large-ish R

2.  undo last recomb: 
large mass drop + 
symmetric + b tags

3.filter away the UE: 
take only the 3 
hardest sub-jets
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Jets, G. Salam, LPTHE (p. 11)

Results combine HZ and HW, pt > 200 GeV

3 channels combined Common cuts

! ptV , ptH > 200 GeV

! |ηH | < 2.5

! [pt,! > 30 GeV, |η!| < 2.5]

! No extra ", b’s with |η| < 2.5

! Real/fake b-tag rates: 0.7/0.01

! S/
√

B from 16 GeV window

3 channels combined
Note excellent VZ , Z → bb̄

peak for calibration

NB: qq̄ is mostly tt̄

At 5.9σ for 30 fb−1 this looks like a possible new channel for light
Higgs discovery. Deserves serious exp. study!

Z/W+ H (→bb) rescued ?

5.9σ at 30 fb-1: VH with H → bb recovered as one of the best 
discovery channels for light Higgs

‣ with common & channel 
specific cuts: 
ptV, ptH > 200GeV ,  ...

‣ NB: very neat peak for 
WZ (Z →bb)
Important for calibration 

‣ real/fake b-tag rate: 0.7/0.01

Butterworth, Davison, Rubin, Salam ’08

Mass of the three hardest sub-jets:
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Z/W+ H (→bb) rescued ?

198

These very recent techniques already in use at the LHC !

Example relevant for WH(→bb):
single jet hadronic mass in W+1j 

Z peak evident.   Very promising 
Expect many new results with boosted 
techniques at higher statistics soon 

Presented at EPS 2011



Recap on jets

Two major jet classes: sequential (kt, CA, ...) and cones (UA1, midpoint, ...)

Jet algo is fully specified by: clustering + recombination + split merge or 
removal procedure + all parameters

Standard cones based on seeds are IR unsafe

SISCone is new IR safe cone algorithm (no seeds) and anti-kt a new 
sequential algorithm

Using IRunsafe algos you can not use perturbative QCD calculations 

With IRsafe algo: sophisticated studies e.g. jet-area for pile-up subtraction

Not all algorithms fare the same for BSM/Higgs searches: quality measures

Recent applications using boosted techniques and jet substructure (Higgs 
example)
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