Mirror TBA

Excited states

Two-particle states

Summary

Scaling dimensions from the mirror TBA

Sergey Frolov

Hamilton Mathematics Institute and School of Mathematics Trinity College Dublin

Workshop on Fields and Strings, Corfu, September 15, 2011

Mirror	TBA
	0000000

Excited states

Two-particle states

Summary

Outline

Mirror TBA ●000000000	Excited states		Two-particle states	Summary 00
"Harmonic osc	illator" of AdS/0	CFT:	Maldacena '	97
$\mathcal{N}=4$ SU(N _c	(s) SYM \iff	IIB s	trings in $AdS_5 \times S^5$ geometry	У
YM	coupling g _{YM}	\iff	string coupling $g_{s}=rac{g_{YM}^{2}}{4\pi}$	
't Hooft couplir	ng $\lambda = g_{YM}^2 N_c$.	\iff	String tension $\frac{R^2}{2\pi \alpha'} \equiv g = \frac{\sqrt{2}}{2\pi}$	<u>.</u>
S	YM operators	\iff	String states	
Scaling din	nension $\Delta(\lambda)$	=	String energy $E(g)$	

Exact spectra of $\mathcal{N}=4$ SYM and strings on $\mathrm{AdS}_5\times\mathrm{S}^5$

Planar scaling dimensions $\Delta(\lambda)$ in Yang-Mills theory should be computable by string theory! Simultaneously, this would test the conjecture.

Green-Schwarz superstring
 Metsaev, Tseytlin

 $S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$

• L.c. string sigma model : $E - J = \int_{-J/2}^{J/2} \mathcal{H}_{l.c.}$

Arutyunov, Frolov '04

Planar scaling dimensions $\Delta(\lambda)$ in Yang-Mills theory should be computable by string theory! Simultaneously, this would test the conjecture.

Green-Schwarz superstring

Metsaev, Tseytlin '98

 $S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$

• L.c. string sigma model : $E - J = \int_{-J/2}^{J/2} \mathcal{H}_{l.c.}$

Arutyunov, Frolov '04

Mirror TBA

Excited states

Two-particle states

Summary 00

Anti-de Sitter space Space of constant negative curvature

String energy *E* is a conserved Noether charge corresponding to the SO(2) subgroup of the conformal group SO(4, 2)

J is a conserved Noether charge corresponding to one of the Cartan generators of SO(6)

Planar scaling dimensions $\Delta(\lambda)$ in Yang-Mills theory should be computable by string theory! Simultaneously, this would test the conjecture.

Green-Schwarz superstring

Metsaev, Tseytlin '98

 $S = -\frac{g}{2} \int d\tau d\sigma \sqrt{-h} h^{\alpha\beta} \partial_{\alpha} X^{M} \partial_{\beta} X^{N} G_{MN}(X) + \text{fermions}$

- L.c. string sigma model : $E J = \int_{-J/2}^{J/2} H_{I.c.}$ Arutyunov, Frolov '04
- To compute *E*(*g*) and therefore ∆(*g*), one needs to solve the 2-dim quantum sigma model on a cylinder!
- String integrability is the key to the solution

0000000000	00000	0000000000	00
N=4 super Yan	ig-Mills theory		

• Maximally supersymmetric gauge theory in 4dim:

 A_{μ} , Φ^i , $i = 1, \dots, 6$ and 4 Weyl fermions

- Introduce $X = \Phi^1 + i\Phi^2$, $Y = \Phi^3 + i\Phi^4$, $Z = \Phi^5 + i\Phi^6$, $D = D_+$
- The sl(2)-sector consists of linear combinations of operators

$$\operatorname{Tr}\left(\prod_{k=1}^{J}D^{n_{k}}Z\right), \qquad \sum_{k=1}^{J}n_{k}=N, \quad n_{k}\geq 0$$

J is the twist, and N is the spin.

These operators are dual to *N*-particle states of I.c. string theory.Spin-2 operators

$\operatorname{Tr}(Z^{J-1}D^2Z), \quad \operatorname{Tr}(Z^{k-2}DZZ^{J-k}DZ)$

 If N = 2 and J = 2 only one operator is unprotected, and it is a susy descendent of the Konishi operator

 $\operatorname{Tr} \Phi_i^2$

N=4 super Van	a-Mille theory		
Mirror TBA	Excited states	Two-particle states	Summary

• Maximally supersymmetric gauge theory in 4dim:

 A_{μ} , Φ^i , $i = 1, \dots, 6$ and 4 Weyl fermions

- Introduce $X = \Phi^1 + i\Phi^2$, $Y = \Phi^3 + i\Phi^4$, $Z = \Phi^5 + i\Phi^6$, $D = D_+$
- The sl(2)-sector consists of linear combinations of operators

$$\operatorname{Tr}\left(\prod_{k=1}^{J}D^{n_{k}}Z\right), \qquad \sum_{k=1}^{J}n_{k}=N, \quad n_{k}\geq 0$$

J is the twist, and N is the spin.

- These operators are dual to N-particle states of I.c. string theory.
- Spin-2 operators

 $\operatorname{Tr}(Z^{J-1}D^2Z), \quad \operatorname{Tr}(Z^{k-2}DZZ^{J-k}DZ)$

 If N = 2 and J = 2 only one operator is unprotected, and it is a susy descendent of the Konishi operator

 $\operatorname{Tr} \Phi_i^2$

Mirror TBA	
00000000000	0

Excited states

Two-particle states

Summary

Summary of the TBA approach

Mirror TBA

Excited states

Two-particle states

Summary

String theory and N=4 SYM results

- Semi-classical strings
- L.c. strings in $AdS_5 \times S^5$
- Decompactification: $J \to \infty$
- Symmetry algebra
- Dispersion relations
- S-matrix

Dressing factor and crossing eqs

Bethe ansatz

Berenstein, Maldacena, Nastase '02; Gubser, Klebanov, Polyakov '02; Frolov, Tseytlin '02, '03; Bena, Polchinski, Roiban '03; Kazakov, Marshakov, Minahan, Zarembo '04;

Arutyunov, Frolov '04, '05; Frolov, Plefka, Zamaklar '06; Arutyunov, Frolov, Plefka, Zamaklar '06;

Ambjorn, Janik, Kristjansen '05; Janik '06; Arutyunov, Frolov '06; Hofman, Maldacena '06;

Beisert '05, '06; Arutyunov, Frolov, Plefka, Zamaklar '06;

Beisert, Dippel, Staudacher '04; Beisert '05; N.Dorey '06;

Staudacher '04; Beisert '05; Arutyunov, Frolov, Zamaklar '06;

Arutyunov, Frolov, Staudacher '04; Beisert, Tseytlin '05; Janik '06; Hernandez, Lopez '06; Arutyunov, Frolov '06; Beisert, Hernandez, Lopez '06; Beisert, Eden, Staudacher '06;

Minahan, Zarembo '02; Beisert, Dippel, Staudacher '04; Arutyunov, Frolov, Staudacher '04; Staudacher '04; Beisert, Staudacher '06; Beisert, Eden, Staudacher '06;

Comparison o	hart		
Mirror TBA oooooooooooo	Excited states	Two-particle states	Summary 00

	Strings	Mirrors
Dispersion relation	$\mathcal{E}_Q = \sqrt{Q^2 + 4g^2 \sin^2 rac{ ho}{2}}$	$\widetilde{\mathcal{E}}_Q = 2 \operatorname{arcsinh} \left(\frac{1}{2g} \sqrt{Q^2 + \widetilde{p}^2} \right)$
Momentum	$-\pi \leq oldsymbol{ ho} < \pi$	$-\infty<\widetilde{oldsymbol{ ho}}<\infty$
Type of theory	Lattice model	Continuum model
Giant magnon	Soliton in $\mathbf{R} \times \mathbf{S}^5$	Soliton in AdS ₅
Bound states	Symmetric irrep	Antisymmetric irrep
	su(2) sector	sl(2) sector
Physical region	"Fish" (?)	"Leaf" (?)
S – matrix	$S(z_1, z_2)$	$S(z_1+rac{\omega_2}{2},z_2+rac{\omega_2}{2})$
Bethe – Yang eqs	BS; $P = 0$	extra $\sqrt{x^+/x^-}$
Dressing factor	$\sigma(1,2)^*\sigma(1,2)=1$	$\sigma(1,2)^* \sigma(1,2) = \frac{x_1^+}{x_1^-} \frac{x_2^-}{x_2^+}$

Mirror TBA ○○○○○○○○●○	Excited states	Two-particle states	Summary 00
Mirror TBA			

• Ground state energy is related to the free energy of the mirror theory at temperature T = 1/J AI. Zamolodchikov '90

 $E(J) = J \mathcal{F}(J)$

- Mirror TBA for the ground state is a set of nonlinear integral equations on Y–functions. Its solution computes the free energy
- TBA eqs follow from the string hypothesis
 Takaha
 for the mirror model
 Arutyunov, Frolow
- A Bethe string leads to a Y–function (Q = 1, 2, ...)

$$Y_{Q|w}^{(-)}, Y_{Q|w}^{(-)}, Y_{+}^{(-)}, Y_{-}^{(-)}, Y_{Q}, Y_{-}^{(+)}, Y_{+}^{(+)}, Y_{Q|vw}^{(+)}, Y_{Q|w}^{(+)}$$

• Ground state energy

$$E - J = -\underbrace{\frac{1}{2\pi}\sum_{Q=1}^{\infty}\int_{-\infty}^{\infty}\mathrm{d}\widetilde{p}\,\log(1+Y_Q)}_{\text{for a single contribution}}$$

finite-size contribution

Mirror TBA ○○○○○○○○○	Excited states	Two-particle states	Summary 00
Mirror TBA			

• Ground state energy is related to the free energy of the mirror theory at temperature T = 1/J AI. Zamolodchikov '90

 $E(J) = J \mathcal{F}(J)$

- Mirror TBA for the ground state is a set of nonlinear integral equations on Y–functions. Its solution computes the free energy
- TBA eqs follow from the string hypothesis
 for the mirror model
 Arutyunov, Frolov '09(a)
- A Bethe string leads to a Y–function (Q = 1, 2, ...)

$$Y_{Q|w}^{(-)}, Y_{Q|vw}^{(-)}, Y_{+}^{(-)}, Y_{-}^{(-)}, Y_{Q}, Y_{-}^{(+)}, Y_{+}^{(+)}, Y_{Q|vw}^{(+)}, Y_{Q|w}^{(+)}$$

Ground state energy

$$E - J = -\underbrace{\frac{1}{2\pi}\sum_{Q=1}^{\infty}\int_{-\infty}^{\infty}d\widetilde{\rho}\log(1+Y_Q)}_{\text{finite-size contribution}}$$

Mirror TBA

TBA eqs can be written in various forms

- Canonical
- Simplified
- Hybrid
- Quasi-local

Arutyunov, Frolov '09(b) Bombardelli, Fioravanti, Tateo '09 Arutyunov, Frolov '09(b), '09(d) Arutyunov, Frolov, Suzuki '09 Baloo,Heoedus '11

- TBA eqs for excited states via the contour deformation trick (inspired by P. Dorey, Tateo '96)
 Gromov, Kazakov, Kozak, Vieira '09v3 Arutyunov, Frolov, Suzuki '05
- or via the Y-system and jump discontinuities (following Bazhanov, Lukyanov, Zamolodchikov '96)
 Cavaglia, Fioravanti, Tateo '10 Baloo, Hegedus '11

Mirror TBA

• TBA eqs can be written in various forms

 Canonical 	Arutyunov, Frolov '09(b) Bombardelli, Fioravanti, Tateo '09
 Simplified Hybrid 	Arutyunov, Frolov '09(b), '09(d)
Quasi-local	Balog,Hegedus '11

- TBA eqs for excited states via the contour deformation trick (inspired by P. Dorey, Tateo '96)
 Gromov, Kazakov, Kozak, Vieira '09v3 Arutyunov, Frolov, Suzuki '09
- or via the Y-system and jump discontinuities (following Bazhanov, Lukyanov, Zamolodchikov '96)
 Cavaglia, Fioravanti, Tateo '10; Balog, Hegedus '11

00000000000			oo
Excited state	s TBA and CDT		
Inspired by P. Dore	ey, lateo '96		
Q-particle	s (sum over $\alpha = -, +)$:		
log Y ₀	$Q = -L\widetilde{\mathcal{E}}_Q + \log(1 + Y_M) \star_{C_M} (F_M)$	$K_{\mathfrak{sl}(2)}^{MQ} + 2 s \star K_{vwx}^{M-1,Q})$	
	$+\log(1+Y_{1 vw}^{(\alpha)})\star_{C_{1 vw}^{(\alpha)}}s\hat{\star}K_{y}$	$_Q$ + log(1 + $Y^{(\alpha)}_{Q-1 vw}$) $\star_{C^{(\alpha)}_{Q-1 vw}} s$	
— log	$\frac{1-Y_{-}^{(\alpha)}}{1-Y_{+}^{(\alpha)}} \star_{\mathcal{C}_{\pm}^{(\alpha)}} s \star K_{vwx}^{1Q} + \log \left(\frac{1}{2}\right)$	$1 - \frac{1}{\underline{Y}_{-}^{(\alpha)}}) \star_{\mathcal{C}_{-}^{(\alpha)}} \mathcal{K}_{-}^{\mathcal{YQ}} + \log \big(1 - \frac{1}{\underline{Y}_{+}^{(\alpha)}}\big)$	$\star_{\mathcal{C}^{(\alpha)}_+} \kappa^{yQ}_+$
y-particles	$: \log \frac{Y_{+}^{(\alpha)}}{Y_{-}^{(\alpha)}} = \log(1 + Y_Q) \star_{C_Q} K_Q$	Ογ,	
$\log Y_{+}^{(\alpha)} Y_{-}^{(\alpha)} =$	$= 2 \log \frac{1 + Y_{1 vw}^{(\alpha)}}{1 + Y_{1 w}^{(\alpha)}} \star_{C_{1 (v)w}^{(\alpha)}} s - \log (s)$	$(1+Y_Q) \star_{C_Q} K_Q + 2\log(1+Y_Q) \star_{C_Q} K_X^C$	21 v * S
● M vw-strin log }	regs: $\chi^{(\alpha)}_{M vw} = \log \frac{(1 + Y^{(\alpha)}_{M-1 vw})(1 + Y)}{1 + Y_{M+1}}$	$ \stackrel{(\alpha)}{\xrightarrow{M+1 vw}} *_{\mathcal{C}} s + \delta_{M1} \log \frac{1 - Y_{-}^{(\alpha)}}{1 - Y_{+}^{(\alpha)}} *_{\mathcal{C}_{\pm}}^{\mathcal{C}(\alpha)} $	S
M w-string	gs: $\log Y_{M w}^{(\alpha)} = \log(1 + Y_{M-1 w}^{(\alpha)})($	$1 + Y_{M+1 w}^{(\alpha)} \star_{C} s + \delta_{M1} \log \frac{1 - \frac{1}{Y_{-}^{(\alpha)}}}{1 - \frac{1}{1 - \frac{1}{X_{+}}}} \star_{C}$	(α) S
Ground	state energy $E = J - \frac{1}{2\pi}$	$\sum_{Q=1}^{\infty} \int_{C_Q} \mathrm{d}\tilde{\rho} \log(1+Y_Q)$	±
		finite-size corr.	

00000000000	
Arutyun	ov, Frolov, Suzuki '09
	oooooooooooooooooooooooooooooooooooooo

- If Y(z_{*}) = −1 (or ∞) then taking the contour back to real mirror line produces driving term − log S(z_{*}, z) from log(1 + Y) ★ K; K(w, z) = 1/2πi dw log S(w, z)

$$\log(1+Y) \star K \implies \frac{1}{2\pi i} \oint_{Z_*} \log(1+Y(w)) \frac{d}{dw} \log S(w,z) =$$
$$= -\frac{1}{2\pi i} \oint_{Z_*} \frac{d}{dw} \log(w-Z_*) \log S(w,z) = -\log S(Z_*,z)$$
new driving term

Mirror TBA	Excited states	Two-particle states	Summary 00
Exact Bethe equa	tions		

The spectrum of excited states

$$E = J + \underbrace{\sum_{k=1}^{N} \mathcal{E}(p_k)}_{\text{Bethe-Yang}} - \underbrace{\frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d\widetilde{p} \log(1 + Y_Q)}_{\text{finite-size contribution}}$$

Momenta p_k (or rapidities u_k) are found from the *exact Bethe equations* (quantization cond.)

Bazhanov, Lukyanov, Zamolodchikov '96; P. Dorey, Tateo '96

$$Y_{1_*}(p_k) = -1$$

The EBE work fine for *real* p_k . Do they need a modification for *complex* or

Mirror TBA	Excited states	Two-particle states	Summary
Exact Bethe e	quations		

The spectrum of excited states

$$E = J + \underbrace{\sum_{k=1}^{N} \mathcal{E}(p_k)}_{\text{Bethe-Yang}} - \underbrace{\frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d\widetilde{p} \log(1 + Y_Q)}_{\text{finite-size contribution}}$$

Momenta p_k (or rapidities u_k) are found from the *exact Bethe equations* (quantization cond.)

Bazhanov, Lukyanov, Zamolodchikov '96; P. Dorey, Tateo '96

$$Y_{1_*}(p_k) = -1$$

The EBE work fine for *real* p_k .

Do they need a modification for *complex* ones?

Mirror TBA	Excited states	Two-particle states	Summary
	00000		

Bajnok-Janik asymptotic solution (large J or small g and finite J)

Generalized Lüscher formulae give the large J asymptotic solution Bajnok, Janik '08

$$Y_Q^o(v) = \Upsilon_Q(v) T_{Q,-1}(v|\vec{u}) T_{Q,1}(v|\vec{u})$$

$$\Upsilon_Q(v) = e^{-J\tilde{\mathcal{E}}_Q(v)} \prod_{i=1}^N S_{s1(2)}^{Q1_*}(v, u_i) \quad \leftarrow \text{ exp suppressed}$$

• $T_{Q,1}$ is an eigenvalue of a properly normalized $\mathfrak{su}(2|2)_C$ transfer matrix

$$\mathcal{T}_{Q,1}(v|\vec{u}) = \operatorname{str}_{A} S_{A1}^{Q,1}(v, u_{1}) S_{A2}^{Q,1}(v, u_{2}) \cdots S_{AN}^{Q,1}(v, u_{N}),$$

conjectured by and derived by

Beisert '06 Arutyunov, de Leeuw, Suzuki, Torrieli '09

• The BY equations (in the $\mathfrak{sl}(2)$ sector) follow from $\widetilde{\mathcal{E}}_{1_*}(u_k) = -i p_k$ and

$$T_{1_*,\pm 1}(u_k|\vec{u}) = 1 \implies -1 = e^{iJp_k} \prod_{j=1}^N S^{1_*1_*}_{\mathfrak{sl}(2)}(u_k,u_j)$$

 All auxiliary Y^o-functions are fixed by Y^o_Q and (almost) agree with

Arutyunov, Frolov '11 Gromov, Kazakov, Vieira '09(a)

Mirror TBA	Excited states	Two-particle states	Summary
	00000		

Bajnok-Janik asymptotic solution (large J or small g and finite J)

Generalized Lüscher formulae give the large J asymptotic solution Bajnok, Janik '08

$$Y_Q^o(v) = \Upsilon_Q(v) T_{Q,-1}(v|\vec{u}) T_{Q,1}(v|\vec{u})$$

$$\Upsilon_Q(v) = e^{-J\tilde{\mathcal{E}}_Q(v)} \prod_{i=1}^N S_{si(2)}^{Q1_*}(v, u_i) \leftarrow \text{exp suppressed}$$

• $T_{Q,1}$ is an eigenvalue of a properly normalized $\mathfrak{su}(2|2)_C$ transfer matrix

$$\mathcal{T}_{Q,1}(v|\vec{u}) = \operatorname{str}_{A} S_{A1}^{Q,1}(v, u_{1}) S_{A2}^{Q,1}(v, u_{2}) \cdots S_{AN}^{Q,1}(v, u_{N}),$$

conjectured by and derived by

Beisert '06

Arutyunov, de Leeuw, Suzuki, Torrieli '09

• The BY equations (in the $\mathfrak{sl}(2)$ sector) follow from $\widetilde{\mathcal{E}}_{1_*}(u_k) = -i p_k$ and

$$T_{1_*,\pm 1}(u_k|\vec{u}) = 1 \implies -1 = e^{i J \rho_k} \prod_{j=1}^N S^{1_*1_*}_{\mathfrak{sl}(2)}(u_k, u_j)$$

 All auxiliary Y^o-functions are fixed by Y^o_Q and (almost) agree with Arutyunov, Frolov '11 Gromov, Kazakov, Vieira '09(a)

Known ovoito			
	00000		
Mirror TBA	Excited states	Two-particle states	Summary

Known excited state TBA equations

Almost all states are from the sl(2) sector

$$\operatorname{Tr}\left(\prod_{k=1}^{J}D^{n_{k}}Z\right), \qquad \sum_{k=1}^{J}n_{k}=N, \quad n_{k}\geq 0$$

J is the twist, and N is the spin or the number of particles.

• Canonical TBA eqs for two-particle Konishi-like states, $\lambda < \lambda_{cr}$

Gromov, Kazakov, Kozak, Vieira '09v3;

- Hybrid, simplified and canonical TBA eqs for arbitrary two-particle states
 Arutyunov, Frolov, Suzuki '09;
- Hybrid TBA eqs for twist-2 *N*-particle lightest state, $\lambda < \lambda_{cr}$

Balog, Hegedus '10;

• TBA eqs for a subsector of the sl(2) sector, $\lambda < \lambda_{cr}$

Balog, Hegedus '11;

• TBA eqs for the two states not from the sl(2) sector which are degenerate asymptotically, $\lambda < \lambda_{cr}$ Sfondrini, van Tongeren. '11;

		•0000000000	
Two-narticle	states in nerturhati	on theory	

dual to spin-2 operators

 $\operatorname{Tr}(Z^{J-1}D^2Z)$, $\operatorname{Tr}(Z^{k-2}DZZ^{J-k}DZ)$

• Log of the BY equation for two-particle states with $p_1 + p_2 = 0$

$$ip(J+1) - \log \frac{1 + \frac{1}{x+2}}{1 + \frac{1}{x-2}} - 2i \underbrace{\theta(p, -p)}_{\text{dressing phase}} = 2\pi i n, \quad n > 0$$

• At $g \rightarrow 0$ the momentum is

$$p_{J,n}^{o} = \frac{2\pi n}{J+1}, \quad n = 1, \dots, \left[\frac{J+1}{2}\right],$$

The corresponding rapidity

$$u_{J,n} \rightarrow \frac{1}{g} u_{J,n}^o, \quad u_{J,n}^o = \cot \frac{\pi n}{J+1}$$

• At large *g* the integer *n* coincides with the string level

• For Konishi J = 2 and n = 1

Mirror TBA	Excited states	Two-particle states	Summary 00
Two-particle	states in perturbation	on theory	

dual to spin-2 operators

 $\operatorname{Tr}(Z^{J-1}D^2Z)$, $\operatorname{Tr}(Z^{k-2}DZZ^{J-k}DZ)$

• Log of the BY equation for two-particle states with $p_1 + p_2 = 0$

$$ip(J+1) - \log \frac{1 + \frac{1}{x^{+2}}}{1 + \frac{1}{x^{-2}}} - 2i \underbrace{\theta(p, -p)}_{\text{dressing phase}} = 2\pi i n, \quad n > 0$$

• At $g \rightarrow 0$ the momentum is

$$p_{J,n}^{o} = \frac{2\pi n}{J+1}, \quad n = 1, \dots, \left[\frac{J+1}{2}\right],$$

The corresponding rapidity

$$u_{J,n} \rightarrow \frac{1}{g} u_{J,n}^o, \quad u_{J,n}^o = \cot \frac{\pi n}{J+1}$$

• At large *g* the integer *n* coincides with the string level

• For Konishi J = 2 and n = 1

Mirror TBA	Excited states	Two-particle states	Summary 00
Types of states			

At $g \sim 0$ the following classification of two-particle states in the $\mathfrak{sl}(2)$ -sector takes place Arutyunov, Frolov, Suzuki '09

Type of a state	Y-functions	Number of zeros
I	Y _{1 vw}	2
II	$Y_{1 vw}, Y_{2 vw}$	2+2
	$Y_{1 vw}, Y_{2 vw}, Y_{3 vw}$	4+2+2
IV	$Y_{1 vw}, Y_{2 vw}, Y_{3 vw}, Y_{4 vw}$	4+4+2+2
•	:	:
$k ightarrow \infty$	$Y_{1 vw}, Y_{2 vw}, \ldots$	4+4+

Type of a state depends on how many Y_{vw} -functions have zeroes in the rescaled analyticity strip |Im(u)| < 1

Mirror	TBA

Excited states

Two-particle states

Summary

Evolution of asymptotic Y-functions

Arutyunov, Frolov, Suzuki '09

Initial cond. \rightarrow	$Y_{1 vw}, Y_{2 vw}$	2+2
	$Y_{1 vw}, Y_{2 vw}, Y_{3 vw}$	4+2+2
<i>g</i> ↓	$Y_{1 vw}, Y_{2 vw}, Y_{3 vw}, Y_{4 vw}$	4+4+2+2
	$Y_{1 vw}, Y_{2 vw}, Y_{3 vw}, Y_{4 vw}, Y_{5 vw}$	4+4+4+2+2
÷	:	÷
	$Y_{1 vw}, Y_{2 vw}, \ldots$	4+4+

The change of analytic properties of Y's in the analyticity strip changes the TBA equations. This leads to the issue of critical values of the coupling.

Otran a secol			
0000000000	00000	00000000000	00
Mirror TBA	Excited states	Two-particle states	Summary

Strong coupling expansion

$$E_{(J,n)}(\lambda) = c_{-1}\sqrt[4]{n^2\lambda} + c_0 + \frac{c_1}{\sqrt[4]{n^2\lambda}} + \frac{c_2}{\sqrt{n^2\lambda}} + \frac{c_3}{(n^2\lambda)^{3/4}} + \frac{c_4}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{5/4}} + \cdots$$

- Expansion is in $1/\sqrt[4]{n^2\lambda}$, *n* is the string level of a 2-particle state
- C₋₁ = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov '98 and BYE Arutyunov, Frolov, Staudacher '04
- $c_0 = 0$ from BYE and free fermion model
- Other coefficients are functions of J and n
- $c_2 = 0$??? due to supersymmetry
- $C_{2k} = 0$!?!?!?

Roiban, Tseytlin '09

$$E_{(J,n)}(\lambda) = \sqrt[4]{n^2\lambda} \left(2 + \frac{c_1}{\sqrt{n^2\lambda}} + \frac{c_3}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{3/2}} + \cdots \right)$$

Ctropp a coupli			
		0000000000	
Mirror TBA	Excited states	Two-particle states	Summary

Strong coupling expansion

$$E_{(J,n)}(\lambda) = c_{-1}\sqrt[4]{n^2\lambda} + c_0 + \frac{c_1}{\sqrt[4]{n^2\lambda}} + \frac{c_2}{\sqrt{n^2\lambda}} + \frac{c_3}{(n^2\lambda)^{3/4}} + \frac{c_4}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{5/4}} + \cdots$$

- Expansion is in $1/\sqrt[4]{n^2\lambda}$, *n* is the string level of a 2-particle state
- $c_{-1} = 2$ from the flat space string spectrum Gubser, Klebanov, Polyakov '98 and BYE Arutyunov, Frolov, Staudacher '04
- $c_0 = 0$ from BYE and free fermion model
- Arutyunov, Froiov
- Other coefficients are functions of J and n
- $c_2 = 0$??? due to supersymmetry
- $C_{2k} = 0$!?!?!?

Rolban, Eseytiin 09

$$E_{(J,n)}(\lambda) = \sqrt[4]{n^2\lambda} \left(2 + \frac{c_1}{\sqrt{n^2\lambda}} + \frac{c_3}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{3/2}} + \cdots \right)$$

		0000000000	
Strong couplin	ng expansion		

$$E_{(J,n)}(\lambda) = c_{-1}\sqrt[4]{n^2\lambda} + c_0 + \frac{c_1}{\sqrt[4]{n^2\lambda}} + \frac{c_2}{\sqrt{n^2\lambda}} + \frac{c_3}{(n^2\lambda)^{3/4}} + \frac{c_4}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{5/4}} + \cdots$$

- Expansion is in $1/\sqrt[4]{n^2\lambda}$, *n* is the string level of a 2-particle state
- $c_{-1} = 2$ from the flat space string spectrum Gubser, Klebanov, Polyakov '98 and BYE Arutyunov, Frolov, Staudacher '04
- $c_0 = 0$ from BYE and free fermion model

Arutyunov, Frolov '05

- Other coefficients are functions of *J* and *n*
- $c_2 = 0$??? due to supersymmetry

• $C_{2k} = 0$!?!?!?

$$E_{(J,n)}(\lambda) = \sqrt[4]{n^2\lambda} \left(2 + \frac{c_1}{\sqrt{n^2\lambda}} + \frac{c_3}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{3/2}} + \cdots \right)$$

	00000	0000000000	00
Strong coupli	ing expansion		

$$E_{(J,n)}(\lambda) = c_{-1}\sqrt[4]{n^2\lambda} + c_0 + \frac{c_1}{\sqrt[4]{n^2\lambda}} + \frac{c_2}{\sqrt{n^2\lambda}} + \frac{c_3}{(n^2\lambda)^{3/4}} + \frac{c_4}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{5/4}} + \cdots$$

- Expansion is in $1/\sqrt[4]{n^2\lambda}$, *n* is the string level of a 2-particle state
- $c_{-1} = 2$ from the flat space string spectrum Gubser, Klebanov, Polyakov '98 and BYE Arutyunov, Frolov, Staudacher '04
- $c_0 = 0$ from BYE and free fermion model
- Other coefficients are functions of J and n
- $c_2 = 0$??? due to supersymmetry
- $C_{2k} = 0$!?!?!?

Roiban, Tseytlin '09

Arutvunov, Frolov '05

$$E_{(J,n)}(\lambda) = \sqrt[4]{n^2\lambda} \left(2 + \frac{c_1}{\sqrt{n^2\lambda}} + \frac{c_3}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{3/2}} + \cdots \right)$$

Olympic a suppli			
Mirror TBA	Excited states	Two-particle states ○○○●○○○○○○○	Summary 00

$$E_{(J,n)}(\lambda) = c_{-1}\sqrt[4]{n^2\lambda} + c_0 + \frac{c_1}{\sqrt[4]{n^2\lambda}} + \frac{c_2}{\sqrt{n^2\lambda}} + \frac{c_3}{(n^2\lambda)^{3/4}} + \frac{c_4}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{5/4}} + \cdots$$

- Expansion is in $1/\sqrt[4]{n^2\lambda}$, *n* is the string level of a 2-particle state
- $c_{-1} = 2$ from the flat space string spectrum Gubser, Klebanov, Polyakov '98 and BYE Arutyunov, Frolov, Staudacher '04
- $c_0 = 0$ from BYE and free fermion model
- Other coefficients are functions of J and n
- $c_2 = 0$??? due to supersymmetry

Roiban, Tseytlin '09

Arutvunov, Frolov '05

• $C_{2k} = 0$!?!?!?

$$E_{(J,n)}(\lambda) = \sqrt[4]{n^2\lambda} \left(2 + \frac{c_1}{\sqrt{n^2\lambda}} + \frac{c_3}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{3/2}} + \cdots \right)$$

Mirror TBA	Excited states	Two-particle states ○○○●○○○○○○○	Summary 00
Strong coupline	a expansion		

$$E_{(J,n)}(\lambda) = c_{-1}\sqrt[4]{n^2\lambda} + c_0 + \frac{c_1}{\sqrt[4]{n^2\lambda}} + \frac{c_2}{\sqrt{n^2\lambda}} + \frac{c_3}{(n^2\lambda)^{3/4}} + \frac{c_4}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{5/4}} + \cdots$$

- Expansion is in $1/\sqrt[4]{n^2\lambda}$, *n* is the string level of a 2-particle state
- $c_{-1} = 2$ from the flat space string spectrum Gubser, Klebanov, Polyakov '98 and BYE Arutyunov, Frolov, Staudacher '04
- $c_0 = 0$ from BYE and free fermion model
- Other coefficients are functions of J and n
- $c_2 = 0$??? due to supersymmetry

101010

Arutvunov, Frolov '05

Roiban, Tsevtlin '09

•
$$c_{2k} = 0$$
 !?!?!? Gromov, Kazakov, Vieira '09(b)
$$E_{(J,n)}(\lambda) = \sqrt[4]{n^2\lambda} \left(2 + \frac{c_1}{\sqrt{n^2\lambda}} + \frac{c_3}{n^2\lambda} + \frac{c_5}{(n^2\lambda)^{3/2}} + \cdots \right)$$

Mirror TBA	Excited states	Two-particle states 0000●0000000	Summary 00
Konishi dime	nsion from TBA		
TBA eqs we	ere solved numerically	y up to $g=$ 7.2 (\lambdapprox 2047)	Frolov '10
12			
10	·····	dots – numerics red – $2\sqrt[4]{\lambda}$,	3
8		brown – $E_{\rm asym} = 2 + 2\sqrt{1 + 4g^2}$	$\frac{2}{2}\sin^2\frac{p_{asym}}{2}$
5	00 1000 1500		
Up to g	$g=$ 4.1 ($\lambda pprox$ 664) agr	reement with Gromov, Kazakov	, Vieira '09(b)

• Setting $c_0 = c_2 = c_4 = 0$, one gets $c_1 = 2$ from GKV numerics

$$\overline{E}_{K}^{GKV}(\lambda) = \sqrt[4]{\lambda} \left(2.0004 + \frac{1.988}{\sqrt{\lambda}} - \frac{2.60}{\lambda} + \frac{6.2}{\lambda^{3/2}} \right)$$

Mirror TBA	Excited states	Two-particle states ooooooooooo	Summary 00
Large λ expansion	from numerics		

$$2\frac{1-e^{100-\sqrt{\lambda+1}}}{1+e^{100-\sqrt{\lambda+1}}}\sqrt[4]{\lambda+1} \rightarrow 2\sqrt[4]{\lambda}$$

- We have to assume that exponentially suppressed terms become very small already at the values of λ we are dealing with.
- If λ is not large enough then one needs to make an assumption about the structure of the large λ expansion, for example to decide if the series contains all possible terms or some of them vanish.
- Fitting numerical data one should decide how many terms to keep in an asymptotic series, and what fitting interval to use.
- A function can approach its asymptotic series monotonically or in oscillations, and it does not seem possible to single out one from numerics. In fact, using the standard least-square fitting procedure would always lead to an oscillating behavior of numerical data about a fitting function.

Mirror TBA	Excited states	Two-particle states ooooooooooo	Summary 00
Large λ expansion	from numerics		

$$2\frac{1-e^{100-\sqrt{\lambda+1}}}{1+e^{100-\sqrt{\lambda+1}}}\sqrt[4]{\lambda+1} \rightarrow 2\sqrt[4]{\lambda}$$

- We have to assume that exponentially suppressed terms become very small already at the values of λ we are dealing with.
- If λ is not large enough then one needs to make an assumption about the structure of the large λ expansion, for example to decide if the series contains all possible terms or some of them vanish.
- Fitting numerical data one should decide how many terms to keep in an asymptotic series, and what fitting interval to use.
- A function can approach its asymptotic series monotonically or in oscillations, and it does not seem possible to single out one from numerics. In fact, using the standard least-square fitting procedure would always lead to an oscillating behavior of numerical data about a fitting function.

Mirror TBA	Excited states	Two-particle states ooooooooooo	Summary 00
Large λ expansion	from numerics		

$$2\frac{1-e^{100-\sqrt{\lambda+1}}}{1+e^{100-\sqrt{\lambda+1}}}\sqrt[4]{\lambda+1} \rightarrow 2\sqrt[4]{\lambda}$$

- We have to assume that exponentially suppressed terms become very small already at the values of λ we are dealing with.
- If λ is not large enough then one needs to make an assumption about the structure of the large λ expansion, for example to decide if the series contains all possible terms or some of them vanish.
- Fitting numerical data one should decide how many terms to keep in an asymptotic series, and what fitting interval to use.
- A function can approach its asymptotic series monotonically or in oscillations, and it does not seem possible to single out one from numerics. In fact, using the standard least-square fitting procedure would always lead to an oscillating behavior of numerical data about a fitting function.

Mirror TBA	Excited states	Two-particle states ooooooooooo	Summary 00
Large λ expansion	from numerics		

$$2\frac{1-e^{100-\sqrt{\lambda+1}}}{1+e^{100-\sqrt{\lambda+1}}}\sqrt[4]{\lambda+1} \rightarrow 2\sqrt[4]{\lambda}$$

- We have to assume that exponentially suppressed terms become very small already at the values of λ we are dealing with.
- If λ is not large enough then one needs to make an assumption about the structure of the large λ expansion, for example to decide if the series contains all possible terms or some of them vanish.
- Fitting numerical data one should decide how many terms to keep in an asymptotic series, and what fitting interval to use.
- A function can approach its asymptotic series monotonically or in oscillations, and it does not seem possible to single out one from numerics. In fact, using the standard least-square fitting procedure would always lead to an oscillating behavior of numerical data about a fitting function.

Mirror TBA	Excited states	Two-particle states ooooooooooo	Summary 00
Large λ expansion	from numerics		

$$2\frac{1-e^{100-\sqrt{\lambda+1}}}{1+e^{100-\sqrt{\lambda+1}}}\sqrt[4]{\lambda+1} \rightarrow 2\sqrt[4]{\lambda}$$

- We have to assume that exponentially suppressed terms become very small already at the values of λ we are dealing with.
- If λ is not large enough then one needs to make an assumption about the structure of the large λ expansion, for example to decide if the series contains all possible terms or some of them vanish.
- Fitting numerical data one should decide how many terms to keep in an asymptotic series, and what fitting interval to use.
- A function can approach its asymptotic series monotonically or in oscillations, and it does not seem possible to single out one from numerics. In fact, using the standard least-square fitting procedure would always lead to an oscillating behavior of numerical data about a fitting function.

00000000000	00 00000	000000000000000000000000000000000000000	00
Large λ	expansion from numeric	s	
Fittin	g the data for $g \in [1.4, 7.2]$, one gets	;	Frolov '10
۹	No condition on <i>c</i> _i		
	$\overline{E}_{\mathcal{K}}(\lambda) = 1.99\sqrt[4]{\lambda} + 0.21 - \frac{0.06}{\sqrt[4]{\lambda}} +$	$\frac{10.43}{\sqrt{\lambda}} - \frac{31.78}{\lambda^{3/4}} + \frac{42.20}{\lambda} - \frac{17.56}{\lambda^{5/4}}$	1
۲	c_1 = 2		
	$\overline{E}_{K}(\lambda) = 2\sqrt[4]{\lambda} - 0.027 + \frac{2.59}{\sqrt[4]{\lambda}} - \frac{5.5}{\sqrt{\lambda}}$		
۲	$c_{-1} = 2, c_0 = 0$		
	$\overline{E}_{K}(\lambda) = 2\sqrt[4]{\lambda} + \frac{1.99}{\sqrt[4]{\lambda}} + \frac{0.15}{\sqrt{\lambda}} - \frac{4.01}{\lambda^{3/4}}$		
۲	$c_{-1} = 2, c_0 = 0, c_1 = 2$		
	$\overline{E}_{K}(\lambda) = 2\sqrt[4]{\lambda} + \frac{2}{\sqrt[4]{\lambda}} - \frac{0.034}{\sqrt{\lambda}} - \frac{2.8}{\lambda^{3/2}}$		
۲	$c_{-1} = 2, c_0 = 0, c_1 = 2, c_2 = 0$		
	$\overline{E}_{K}(\lambda) = 2\sqrt[4]{\lambda} + \frac{2}{\sqrt[4]{\lambda}} - \frac{3.28}{\lambda^{3/4}} + \frac{2.68}{\lambda}$		
۲	$c_0 = 0, c_2 = 0, c_4 = 0$		
	$\overline{E}_{\mathcal{K}}(\lambda) = 2.00005 \sqrt[4]{\lambda} + \frac{1.99237}{4\sqrt{5}} - \frac{2}{5}$		
	$c_1 = 2$ was confirmed ??? by		

Two particle states

00000000000	Excited states Iwo-particle states 0 000000 0000000	Summary 00
Large λ	expansion from numerics	
Fitting	the data for $g \in [1.4, 7.2]$, one gets	Frolov '10
٩	No condition on <i>c_i</i>	
	$\overline{E}_{\mathcal{K}}(\lambda) = 1.99\sqrt[4]{\lambda} + 0.21 - \frac{0.06}{\sqrt[4]{\lambda}} + \frac{10.43}{\sqrt{\lambda}} - \frac{31.78}{\lambda^{3/4}} + \frac{42.20}{\lambda} - \frac{17.5}{\lambda^{5/4}}$	<u>6</u> 4
۲	$c_{-1} = 2$	
	$\overline{E}_{\mathcal{K}}(\lambda) = 2\sqrt[4]{\lambda} - \frac{0.027}{\sqrt[4]{\lambda}} + \frac{2.59}{\sqrt[4]{\lambda}} - \frac{5.16}{\sqrt{\lambda}} + \frac{18.86}{\lambda^{3/4}} - \frac{44.17}{\lambda} + \frac{42.89}{\lambda^{5/4}}$	
۲	$c_{-1} = 2, c_0 = 0$	
	$\overline{E}_{\mathcal{K}}(\lambda) = 2\sqrt[4]{\lambda} + \frac{1.99}{\sqrt[4]{\lambda}} + \frac{0.15}{\sqrt{\lambda}} - \frac{4.01}{\lambda^{3/4}} + \frac{4.15}{\lambda} + \frac{2.79}{\lambda^{5/4}}$	
•	$c_{-1} = 2, c_0 = 0, c_1 = 2$	
	$\overline{E}_{\mathcal{K}}(\lambda) = 2\sqrt[4]{\lambda} + rac{2}{\sqrt[4]{\lambda}} - rac{0.034}{\sqrt{\lambda}} - rac{2.85}{\lambda^{3/4}} + rac{0.92}{\lambda} + rac{6.08}{\lambda^{5/4}} ,$	
۲	$c_{-1} = 2, c_0 = 0, c_1 = 2, c_2 = 0$	
	$\overline{E}_{\mathcal{K}}(\lambda) = 2\sqrt[4]{\lambda} + rac{2}{\sqrt[4]{\lambda}} - rac{3.28}{\lambda^{3/4}} + rac{2.68}{\lambda} + rac{3.76}{\lambda^{5/4}}$	
۲	$c_0 = 0, c_2 = 0, c_4 = 0$	
	$\overline{E}_{K}(\lambda) = 2.00005\sqrt[4]{\lambda} + \frac{1.99237}{4\sqrt{2}} - \frac{2.72847}{\lambda^{3/4}} + \frac{7.45145}{\lambda^{5/4}}$	
	$c_1 = 2$ was confirmed ??? by	

000000000000000000000000000000000000000	00000	000000000000000000000000000000000000000	00
Large λ e	expansion from numerics		
Fitting t	the data for $g \in [1.4, 7.2]$, one gets		Frolov '10
• N	No condition on <i>c_i</i>		
Ē	$\overline{\overline{\overline{z}}}_{\kappa}(\lambda) = 1.99\sqrt[4]{\lambda} + 0.21 - rac{0.06}{\sqrt[4]{\lambda}} + rac{10}{\sqrt{\lambda}}$	$\frac{1.43}{\sqrt{\lambda}} - \frac{31.78}{\lambda^{3/4}} + \frac{42.20}{\lambda} - \frac{17.50}{\lambda^{5/2}}$	<u>5</u>
• c	$c_{-1} = 2$		
Ē	$\overline{\overline{z}}_{\kappa}(\lambda) = 2\sqrt[4]{\lambda} - 0.027 + rac{2.59}{\sqrt[4]{\lambda}} - rac{5.16}{\sqrt{\lambda}}$	$+ \frac{18.86}{\lambda^{3/4}} - \frac{44.17}{\lambda} + \frac{42.89}{\lambda^{5/4}}$	
C	$c_{-1} = 2, c_0 = 0$		
Ē	$\overline{\overline{E}}_{\mathcal{K}}(\lambda) = 2\sqrt[4]{\lambda} + rac{1.99}{\sqrt[4]{\lambda}} + rac{0.15}{\sqrt{\lambda}} - rac{4.01}{\lambda^{3/4}}$	$+ \frac{4.15}{\lambda} + \frac{2.79}{\lambda^{5/4}}$	
0 0	$c_{-1}=2, c_0=0, c_1=2$		
	$\overline{\overline{E}}_{\mathcal{K}}(\lambda)=2\sqrt[4]{\lambda}+rac{2}{\sqrt[4]{\lambda}}-rac{0.034}{\sqrt{\lambda}}-rac{2.85}{\lambda^{3/4}}$		
0 0	$c_{-1} = 2, c_0 = 0, c_1 = 2, c_2 = 0$		
	$\overline{\overline{E}}_{K}(\lambda)=2\sqrt[4]{\lambda}+rac{2}{\sqrt[4]{\lambda}}-rac{3.28}{\lambda^{3/4}}+rac{2.68}{\lambda}+rac{2.68}{\lambda}$		
• c	$c_0 = 0, c_2 = 0, c_4 = 0$		
	$\overline{E}_{K}(\lambda) = 2.00005\sqrt[4]{\lambda} + \frac{1.99237}{\sqrt[4]{\lambda}} - \frac{2.7}{\lambda}$		

Two particle states

Mirror TBA	Excited states	Two-particle states ○○○○○○●○○○○○	Summar 00
Large λ expan	sion from numeri	cs	
Fitting the data	for $g \in [1.4, 7.2]$, one get	S	Frolov '10
No cond	ition on <i>c_i</i>		
$\overline{E}_{K}(\lambda) =$	$= 1.99\sqrt[4]{\lambda} + 0.21 - \frac{0.06}{\sqrt[4]{\lambda}} + $	$\frac{10.43}{\sqrt{\lambda}} - \frac{31.78}{\lambda^{3/4}} + \frac{42.20}{\lambda} - \frac{17.50}{\lambda^{5/2}}$	<u>2</u>
● <i>c</i> _{−1} = 2			
$\overline{E}_{\mathcal{K}}(\lambda) =$	$= 2\sqrt[4]{\lambda} - 0.027 + \frac{2.59}{\sqrt[4]{\lambda}} - \frac{5}{\sqrt{\lambda}}$	$\frac{.16}{\sqrt{\lambda}} + \frac{18.86}{\lambda^{3/4}} - \frac{44.17}{\lambda} + \frac{42.89}{\lambda^{5/4}}$	
● c _{−1} = 2	$, c_0 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda) =$	$=2\sqrt[4]{\lambda}+rac{1.99}{\sqrt[4]{\lambda}}+rac{0.15}{\sqrt{\lambda}}-rac{4.0}{\lambda^{3/2}}$	$\frac{11}{\sqrt{4}} + \frac{4.15}{\lambda} + \frac{2.79}{\lambda^{5/4}}$	
● <i>c</i> _{−1} = 2	, $c_0 = 0, c_1 = 2$		
$\overline{E}_{\mathcal{K}}(\lambda) =$	$=2\sqrt[4]{\lambda}+\frac{2}{\sqrt[4]{\lambda}}-\frac{0.034}{\sqrt{\lambda}}-\frac{2.3}{\lambda^3}$	$\frac{85}{4} + \frac{0.92}{\lambda} + \frac{6.08}{\lambda^{5/4}}$,	
• $c_{-1} = 2$	$c_0 = 0, c_1 = 2, c_2 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda) =$	$=2\sqrt[4]{\lambda}+\frac{2}{\sqrt[4]{\lambda}}-\frac{3.28}{\lambda^{3/4}}+\frac{2.6}{\lambda}$		
• $c_0 = 0, c_0 = 0,$	$c_2 = 0, c_4 = 0$		
$\overline{E}_{K}(\lambda) =$	$= 2.00005\sqrt[4]{\lambda} + \frac{1.99237}{\sqrt[4]{\lambda}} -$		
$c_1 = 2 w$	as confirmed ??? by		

Mirror TBA	Excited states	Two-particle states oooooooooooo	Summar 00
Large λ expansion	nsion from numeric	S	
Fitting the data	a for $g\in [1.4,7.2]$, one gets		Frolov '10
No conc	lition on <i>c_i</i>		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 1.99\sqrt[4]{\lambda} + 0.21 - \frac{0.06}{\sqrt[4]{\lambda}} + \frac{1}{2}$	$\frac{10.43}{\sqrt{\lambda}} - \frac{31.78}{\lambda^{3/4}} + \frac{42.20}{\lambda} - \frac{17.56}{\lambda^{5/4}}$	
• $c_{-1} = 2$			
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\lambda} - 0.027 + \frac{2.59}{\sqrt[4]{\lambda}} - \frac{5.1}{\sqrt{\lambda}}$	$\frac{6}{\overline{\lambda}} + \frac{18.86}{\lambda^{3/4}} - \frac{44.17}{\lambda} + \frac{42.89}{\lambda^{5/4}}$	
● c ₋₁ = 2	$c, c_0 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\lambda} + \frac{1.99}{\sqrt[4]{\lambda}} + \frac{0.15}{\sqrt{\lambda}} - \frac{4.01}{\lambda^{3/4}}$	$+ \frac{4.15}{\lambda} + \frac{2.79}{\lambda^{5/4}}$	
● c ₋₁ = 2	$c_{0}, c_{0} = 0, c_{1} = 2$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$=2\sqrt[4]{\lambda}+\frac{2}{\sqrt[4]{\lambda}}-\frac{0.034}{\sqrt{\lambda}}-\frac{2.85}{\lambda^{3/4}}$	$rac{5}{4}+rac{0.92}{\lambda}+rac{6.08}{\lambda^{5/4}},$	
• $c_{-1} = 2$	$c_1, c_0 = 0, c_1 = 2, c_2 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\lambda} + \frac{2}{\sqrt[4]{\lambda}} - \frac{3.28}{\lambda^{3/4}} + \frac{2.68}{\lambda}$	$+ \frac{3.76}{\lambda^{5/4}}$	
• $c_0 = 0,$	$c_2 = 0, c_4 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2.00005 \sqrt[4]{\lambda} + \frac{1.99237}{\sqrt[4]{\lambda}} - \frac{2.00005}{\sqrt[4]{\lambda}}$		
$c_1 = 2 v$	vas confirmed ??? by		

Mirror TBA	Excited states	Two-particle states	Summary 00
Large λ expansion	nsion from numeric	s	
Fitting the data	a for $g\in [1.4,7.2],$ one gets		Frolov '10
No conc	lition on <i>c</i> i		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 1.99\sqrt[4]{\lambda} + 0.21 - \frac{0.06}{\sqrt[4]{\lambda}} +$	$\frac{10.43}{\sqrt{\lambda}} - \frac{31.78}{\lambda^{3/4}} + \frac{42.20}{\lambda} - \frac{17.56}{\lambda^{5/4}}$	2
• $c_{-1} = 2$	2		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\lambda} - 0.027 + \frac{2.59}{\sqrt[4]{\lambda}} - \frac{5.5}{\sqrt{2}}$	$\frac{16}{\overline{\lambda}} + \frac{18.86}{\lambda^{3/4}} - \frac{44.17}{\lambda} + \frac{42.89}{\lambda^{5/4}}$	
● c ₋₁ = 2	$c_{0} = 0$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\lambda} + \frac{1.99}{\sqrt[4]{\lambda}} + \frac{0.15}{\sqrt{\lambda}} - \frac{4.01}{\lambda^{3/4}}$	$\frac{1}{4} + \frac{4.15}{\lambda} + \frac{2.79}{\lambda^{5/4}}$	
• $c_{-1} = 2$	$c_{1}, c_{0} = 0, c_{1} = 2$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\overline{\lambda}} + \frac{2}{\sqrt[4]{\overline{\lambda}}} - \frac{0.034}{\sqrt{\overline{\lambda}}} - \frac{2.8}{\lambda^{3/2}}$	$\frac{5}{4} + \frac{0.92}{\lambda} + \frac{6.08}{\lambda^{5/4}}$,	
• $c_{-1} = 2$	2, $c_0 = 0, c_1 = 2, c_2 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2\sqrt[4]{\lambda} + \frac{2}{\sqrt[4]{\lambda}} - \frac{3.28}{\lambda^{3/4}} + \frac{2.68}{\lambda}$	$+\frac{3.76}{\lambda^{5/4}}$	
• $c_0 = 0$,	$c_2 = 0, c_4 = 0$		
$\overline{E}_{\mathcal{K}}(\lambda)$ =	$= 2.00005 \sqrt[4]{\lambda} + \frac{1.99237}{\sqrt[4]{\lambda}} - \frac{2}{2}$	$\frac{1.72847}{\lambda^{3/4}} + \frac{7.45145}{\lambda^{5/4}}$	
$c_1 = 2 v_1$	vas confirmed ??? by		Vallilo, Mazzucato '11

Mirror TBA	Excited states	Two-particle states ○○○○○○●○○○○	Summary 00

Excited states

Two-particle states

Summary

Mirror TBA	Excited states	Two-particle states oooooooooooooo	Summary 00
J=4, n=1 state			

• Fitting the data for $g \in [1.4, 3.4]$, one gets

•
$$c_0 = 0, c_2 = 0, c_4 = 0$$

$$\overline{E}_{(4,1)}(\lambda) = 2.0022\sqrt[4]{\lambda} + \frac{4.91748}{\sqrt[4]{\lambda}} - \frac{1.24309}{\lambda^{3/4}} + \frac{9.64361}{\lambda^{5/4}}$$

$$c_{-1} = 2, c_0 = 0, c_2 = 0, c_4 = 0$$

 $\overline{E}_{(4,1)}(\lambda) = 2\sqrt[4]{\lambda} + \frac{5.00948}{45} - \frac{2.47288}{45} + \frac{14.5}{45}$

$$(\lambda) = 2\sqrt{\lambda} + \frac{\sqrt{\lambda}}{\sqrt[4]{\lambda}} - \frac{\sqrt{3}}{\lambda^{3/4}} + \frac{\sqrt{5}}{\lambda^{5/4}}$$

• Is $c_1 = 5$???

Mirror TBA	Excited states	Two-particle states oooooooooooooo	Summary 00
J=4, n=1 state			

• Fitting the data for $g \in [1.4, 3.4]$, one gets

•
$$c_0 = 0, c_2 = 0, c_4 = 0$$

 $\overline{E}_{(4,1)}(\lambda) = 2.0022\sqrt[4]{\lambda} + \frac{4.91748}{\sqrt[4]{\lambda}} - \frac{1.24309}{\lambda^{3/4}} + \frac{9.64361}{\lambda^{5/4}}$

•
$$c_{-1} = 2, c_0 = 0, c_2 = 0, c_4 = 0$$

$$\overline{E}_{(4,1)}(\lambda) = 2\sqrt[4]{\lambda} + \frac{5.00948}{\sqrt[4]{\lambda}} - \frac{2.47288}{\lambda^{3/4}} + \frac{14.9027}{\lambda^{5/4}}$$

• Is $c_1 = 5$???

Mirror TBA	Excited states	Two-particle states oooooooooooooo	Summary 00
J=4, n=1 state			

• Fitting the data for $g \in [1.4, 3.4]$, one gets

•
$$c_0 = 0, c_2 = 0, c_4 = 0$$

 $\overline{E}_{(4,1)}(\lambda) = 2.0022\sqrt[4]{\lambda} + \frac{4.91748}{\sqrt[4]{\lambda}} - \frac{1.24309}{\lambda^{3/4}} + \frac{9.64361}{\lambda^{5/4}}$

•
$$c_{-1} = 2, c_0 = 0, c_2 = 0, c_4 = 0$$

$$\overline{E}_{(4,1)}(\lambda) = 2\sqrt[4]{\lambda} + \frac{5.00948}{\sqrt[4]{\lambda}} - \frac{2.47288}{\lambda^{3/4}} + \frac{14.9027}{\lambda^{5/4}}$$

• Is $c_1 = 5$???

Mirror TBA	Excited states	Two-particle states ○○○○○○○○○○	Sum oo

$$c_1(J,n) = ?, c_2(J,n) = 0 ?$$

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

- $c_1^{\text{asym}}(J,n) = \frac{J^2}{4} + \frac{1}{2}$ from BYE and free fermions Arutyunov, Frolov '05
- From TBA

Frolov '??

- $c_2(2,1) \approx 0, c_1(2,1) \approx 2, \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$ • If $c_2(3,1) = c_2(4,1) = 0$, then $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
- $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

o If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

•
$$c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$$
 ???, e.g. $c(n) = n(3-n)/2$

Mirror TBA	Excited states	Two-particle states ○○○○○○○○○○	Summary 00
$c_1(J, n) = ?, c_2$	(J, n) = 0?		

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

- $c_1^{\text{asym}}(J,n) = \frac{J^2}{4} + \frac{1}{2}$ from BYE and free fermions Arutyunov, Frolov '05 • From TBA Frolov '??
 - $c_2(2,1) \approx 0, c_1(2,1) \approx 2, \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$ • If $c_2(3,1) = c_2(4,1) = 0$, then $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
 - $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

• If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

• $c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$???, e.g. c(n) = n(3-n)/2

$\alpha(1n) - 2n$	(1 p) = 0.2		
		0000000000	
Mirror TBA	Excited states	Two-particle states	Summary

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

- $c_1^{\text{asym}}(J, n) = \frac{J^2}{4} + \frac{1}{2}$ from BYE and free fermions Arutyunov, Frolov '05
- From TBA

Frolov '??

• $c_2(2,1) \approx 0, c_1(2,1) \approx 2, \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$ • If $c_2(3,1) = c_2(4,1) = 0$, then

 $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$

• $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

• If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

•
$$c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$$
 ???, e.g. $c(n) = n(3-n)/2$

Mirror TBA	Excited states	Two-particle states ○○○○○○○○○○	Summary 00
$c_1(J, n) = ?, c_2$	(J, n) = 0?		

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

Frolov '??

- From TBA
 - $c_2(2,1) \approx 0, c_1(2,1) \approx 2, \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
 - If $c_2(3,1) = c_2(4,1) = 0$, then $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
 - $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

•
$$c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$$
 ???, e.g. $c(n) = n(3-n)/2$

Mirror TBA	Excited states	Two-particle states ○○○○○○○○○●	Summary 00
$c_1(J, n) = ?, c_2($	J. n) = 0 ?		

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

Frolov '??

- From TBA
 - $C_2(2,1) \approx 0, C_1(2,1) \approx 2, \Rightarrow C_1(J,1) = \frac{J^2}{4} + 1$
 - If $c_2(3,1) = c_2(4,1) = 0$, then $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
 - $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

• If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

 $c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$???, e.g. c(n) = n(3-n)/2

Mirror TBA	Excited states	Two-particle states	Summary 00
$\alpha(1n) = \alpha(1)$			

$$c_1(J,n) = ?, c_2(J,n) = 0 ?$$

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

Frolov '??

- From TBA
 - $c_2(2,1) \approx 0, c_1(2,1) \approx 2, \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
 - If $c_2(3,1) = c_2(4,1) = 0$, then $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
 - $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

• If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

 $c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$???, e.g. c(n) = n(3-n)/2

Mirror TBA	Excited states	Two-particle states ○○○○○○○○○●	Summary 00
$c_1(J, n) = ?, c_2($	(J, n) = 0?		

$$E_{(J,n)}(\lambda) = 2\sqrt[4]{n^2\lambda} + \frac{c_1(J,n)}{\sqrt[4]{n^2\lambda}} + \frac{c_2(J,n)}{\sqrt{n^2\lambda}} + \frac{c_3(J,n)}{(n^2\lambda)^{3/4}} + \cdots$$

Frolov '??

From TBA

- $c_2(2,1) \approx 0$, $c_1(2,1) \approx 2$, $\Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$ • If $c_2(3,1) = c_2(4,1) = 0$, then
 - $c_1(3,1) \approx \frac{13}{4}, c_1(4,1) \approx 5 \Rightarrow c_1(J,1) = \frac{J^2}{4} + 1$
- $c_2 \approx 0, c_1(4,2) \approx 5, c_1(5,2) \approx \frac{29}{4} \Rightarrow c_1(J,2) = \frac{J^2}{4} + 1$

• If
$$c_2 = 0$$
 then
 $c_1(6,3) \approx 9$, $c_1(7,3) \approx \frac{49}{4} \Rightarrow c_1(J,3) = \frac{J^2}{4}$

 $c_1^{\text{exact}}(J,n) = \frac{J^2}{4} + c(n)$???, e.g. c(n) = n(3-n)/2

rror TBA	

Excited states

The mirror TBA: from string hypothesis to the exact spectrum

- Ground state TBA eqs follow from the string hypothesis
- 2 TBA eqs for excited states are determined by the ground state ones via the CDT
- Image: Second state of the state o
- TBA eqs for states composed of particles with real momenta can be obtained
- States containing particles with complex momenta (e.g. bound states) require special treatment
 Arutyunov, Frolov, van Tongeren (to appear)
- **(b)** The form of the equations depends on λ . For infinitely many states *there are critical values of* λ , crossing which the TBA eqs must be modified.
- Por a given operator, is the number of critical values infinite or finite (or even 0)?
- **3** We found *no evidence* that up to the overall factor $2\sqrt[4]{n^2\lambda}$ the large λ expansion is in powers of $1/\sqrt{\lambda}$. Is the expansion in powers of $1/\sqrt[4]{\lambda}$?
- The numerics we performed is not sufficient to give definite answers to (m)any questions. Analytical methods are necessary. NLIE ???

Mirror TBA	Excited states	Two-particle states	Summary ○●
Assumption	ns		
1 Qua	antum integrability of I.c. str	ring theory and its mirror	
Syn dec	nmetry algebra of I.c. string ompactification limit	theory and its mirror in the Beisert '05; Arutyunov, Frolov, Plefka	1 C a, Zamaklar '06
3 BES	S dressing factor	Beisert, Eden, S	Staudacher '06
🕘 Bajr	nok-Janik asymptotic soluti	ON Ba	ijnok, Janik '08
5 Strii	ng hypothesis for the mirror	r model Arutyu	inov, Frolov '09
🗿 Univ	versality of the contour defo	ormation trick	
🗿 Univ	versalitv of the exact Bethe	equations $Y_{1*}(p_k) = -1$	

que 1*(PK) • 7