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“Harmonic oscillator” of AdS/CFT: Maldacena ’97

N = 4 SU(Nc) SYM ⇐⇒ IIB strings in AdS5 × S5 geometry

YM coupling gYM ⇐⇒ string coupling gs =
g2

YM
4π

’t Hooft coupling λ = g2
YMNc ⇐⇒ String tension R2

2πα′ ≡ g =
√
λ

2π

SYM operators ⇐⇒ String states

Scaling dimension ∆(λ) = String energy E(g)

Exact spectra of N = 4 SYM and strings on AdS5 × S5
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From sigma models to four-dimensional QFT

Non-linear
Sigma Model

in 2D

Quantum 
Field Theory 

in 4D

Planar scaling dimensions ∆(λ) in Yang-Mills theory should be computable by string

theory! Simultaneously, this would test the conjecture.

Green-Schwarz superstring Metsaev, Tseytlin ’98

S = −g
2

∫
dτdσ

√
−hhαβ∂αX M∂βX NGMN(X ) + fermions

L.c. string sigma model : E − J =
∫ J/2
−J/2Hl.c. Arutyunov, Frolov ’04
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Anti-de Sitter space
Space of constant negative curvature

String energy E is a conserved Noether charge corresponding to the
SO(2) subgroup of the conformal group SO(4,2)
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J

J is a conserved Noether charge corresponding to one of the
Cartan generators of SO(6)
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From sigma models to four-dimensional QFT

Non-linear
Sigma Model

in 2D

Quantum 
Field Theory 

in 4D

Planar scaling dimensions ∆(λ) in Yang-Mills theory should be computable by string

theory! Simultaneously, this would test the conjecture.

Green-Schwarz superstring Metsaev, Tseytlin ’98

S = −g
2

∫
dτdσ

√
−hhαβ∂αX M∂βX NGMN(X ) + fermions

L.c. string sigma model : E − J =
∫ J/2
−J/2 Hl.c. Arutyunov, Frolov ’04

To compute E(g) and therefore ∆(g), one needs to solve the
2-dim quantum sigma model on a cylinder!

String integrability is the key to the solution
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N=4 super Yang-Mills theory

Maximally supersymmetric gauge theory in 4dim:

Aµ, Φi , i = 1, . . . ,6 and 4 Weyl fermions

Introduce X = Φ1 + iΦ2, Y = Φ3 + iΦ4, Z = Φ5 + iΦ6, D = D+

The sl(2)-sector consists of linear combinations of operators

Tr

(
J∏

k=1

Dnk Z

)
,

J∑
k=1

nk = N , nk ≥ 0

J is the twist, and N is the spin.

These operators are dual to N-particle states of l.c. string theory.

Spin-2 operators

Tr(Z J−1D2Z ) , Tr(Z k−2DZ Z J−k DZ )

If N = 2 and J = 2 only one operator is unprotected, and it is a
susy descendent of the Konishi operator

Tr Φ2
i
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Summary of the TBA approach

Gauge Theory String Sigma
Model

Mirror Theory TBA

Gauge-String
Correspondence

Matsubara
Transform

Thermodynamic
Limit

Spectrum



Mirror TBA Excited states Two-particle states Summary

String theory and N=4 SYM results

Semi-classical strings
Berenstein, Maldacena,Nastase ’02;

Gubser, Klebanov, Polyakov ’02;
Frolov, Tseytlin ’02, ’03;

Bena, Polchinski, Roiban ’03;
Kazakov, Marshakov, Minahan, Zarembo ’04;

L.c. strings in AdS5 × S5 Arutyunov, Frolov ’04, ’05; Frolov, Plefka, Zamaklar ’06;
Arutyunov, Frolov, Plefka, Zamaklar ’06;

Decompactification: J →∞ Ambjorn, Janik, Kristjansen ’05; Janik ’06;
Arutyunov, Frolov ’06; Hofman, Maldacena ’06;

Symmetry algebra Beisert ’05, ’06; Arutyunov, Frolov, Plefka, Zamaklar ’06;

Dispersion relations Beisert, Dippel, Staudacher ’04; Beisert ’05; N.Dorey ’06;

S-matrix
Staudacher ’04;

Beisert ’05;
Arutyunov, Frolov, Zamaklar ’06;

Dressing factor and crossing eqs

Arutyunov, Frolov, Staudacher ’04;
Beisert, Tseytlin ’05;

Janik ’06;
Hernandez, Lopez ’06;
Arutyunov, Frolov ’06;

Beisert, Hernandez, Lopez ’06;
Beisert, Eden, Staudacher ’06;

Bethe ansatz

Minahan, Zarembo ’02;
Beisert, Dippel, Staudacher ’04;

Arutyunov, Frolov, Staudacher ’04;
Staudacher ’04;

Beisert, Staudacher ’05;
Beisert, Eden, Staudacher ’06;
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Comparison chart Arutyunov, Frolov ’07

Strings Mirrors

Dispersion relation EQ =

√
Q2 + 4g2 sin2 p

2
ẼQ = 2 arcsinh

(
1

2g

√
Q2 + p̃2

)
Momentum −π ≤ p < π −∞ < p̃ <∞

Type of theory Lattice model Continuum model

Giant magnon Soliton in R× S5 Soliton in AdS5

Bound states Symmetric irrep Antisymmetric irrep
su(2) sector sl(2) sector

Physical region “Fish′′ (?) “Leaf′′ (?)

S−matrix S(z1, z2) S(z1 + ω2
2 , z2 + ω2

2 )

Bethe− Yang eqs BS; P = 0 extra
√

x+/x−

Dressing factor σ(1,2)∗ σ(1,2) = 1 σ(1,2)∗ σ(1,2) =
x+

1

x−1

x−2
x+

2
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Mirror TBA

Ground state energy is related to the free energy of the mirror
theory at temperature T = 1/J Al. Zamolodchikov ’90

E(J) = J F(J)

Mirror TBA for the ground state is a set of nonlinear integral
equations on Y–functions. Its solution computes the free energy

TBA eqs follow from the string hypothesis Takahashi ’72

for the mirror model Arutyunov, Frolov ’09(a)

A Bethe string leads to a Y–function (Q = 1,2, . . .)

Y (−)
Q|w ,Y

(−)
Q|vw ,Y

(−)
+ ,Y (−)

− ,YQ ,Y
(+)
− ,Y (+)

+ ,Y (+)
Q|vw ,Y

(+)
Q|w

Ground state energy

E − J = − 1
2π

∞∑
Q=1

∫ ∞
−∞

dp̃ log(1 + YQ)︸ ︷︷ ︸
finite−size contribution
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Mirror TBA

TBA eqs can be written in various forms

Canonical Arutyunov, Frolov ’09(b)
Bombardelli, Fioravanti, Tateo ’09

Simplified Arutyunov, Frolov ’09(b), ’09(d)

Hybrid Arutyunov, Frolov, Suzuki ’09

Quasi-local Balog,Hegedus ’11

TBA eqs for excited states via the contour deformation trick
(inspired by P. Dorey, Tateo ’96) Gromov, Kazakov, Kozak, Vieira ’09v3

Arutyunov, Frolov, Suzuki ’09

or via the Y-system and jump discontinuities (following
Bazhanov, Lukyanov, Zamolodchikov ’96) Cavaglia, Fioravanti, Tateo ’10;

Balog, Hegedus ’11
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Excited states TBA and CDT Arutyunov, Frolov, Suzuki ’09

Inspired by P. Dorey, Tateo ’96

Q-particles (sum over α = −,+):

log YQ = −L eEQ + log (1 + YM ) ?CM
(K MQ

sl(2) + 2 s ? K M−1,Q
vwx )

+ log(1 + Y (α)
1|vw ) ?

C(α)
1|vw

s ?̂ KyQ + log(1 + Y (α)
Q−1|vw ) ?

C(α)
Q−1|vw

s

− log
1− Y (α)

−

1− Y (α)
+

?
C(α)
±

s ? K 1Q
vwx + log

`
1−

1

Y (α)
−

´
?

C(α)
−

K yQ
− + log

`
1−

1

Y (α)
+

´
?

C(α)
+

K yQ
+

y -particles: log
Y (α)

+

Y (α)
−

= log(1 + YQ ) ?CQ
KQy ,

log Y (α)
+ Y (α)

− = 2 log
1+Y (α)

1|vw

1+Y (α)
1|w

?
C(α)

1|(v)w
s − log

`
1 + YQ

´
?CQ

KQ + 2 log(1 + YQ ) ?CQ
K Q1

xv ? s

M|vw-strings:

log Y (α)
M|vw = log

(1 + Y (α)
M−1|vw )(1 + Y (α)

M+1|vw )

1 + YM+1
?C s + δM1 log

1− Y (α)
−

1− Y (α)
+

?
C(α)
±

s

M|w-strings: log Y (α)
M|w = log(1 + Y (α)

M−1|w )(1 + Y (α)
M+1|w ) ?C s + δM1 log

1− 1

Y (α)
−

1− 1

Y (α)
+

?
C(α)
±

s

Ground state energy
E = J −

1
2π

∞X
Q=1

Z
CQ

dep log(1 + YQ)

| {z }
finite−size corr.
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Excited states TBA and CDT Arutyunov, Frolov, Suzuki ’09

Inspired by P. Dorey, Tateo ’96

- 1.0 - 0.5 0.5 1.0

- 1

1

2

3

4

Y (z    ) = -11 *k

Integration contour

TBA equations for excited states differ from each other only by a choice of
the integration contour =⇒ contour deformation trick
If Y (z∗) = −1 (or∞) then taking the contour back to real mirror line produces
driving term − log S(z∗, z) from log(1 + Y ) ? K ; K (w , z) = 1

2πi
d

dw log S(w , z)

log(1 + Y ) ? K =⇒
1

2πi

I
z∗

log(1 + Y (w))
d

dw
log S(w, z) =

= −
1

2πi

I
z∗

d

dw
log(w − z∗) log S(w, z) = − log S(z∗, z)| {z }

new driving term



Mirror TBA Excited states Two-particle states Summary

Exact Bethe equations

The spectrum of excited states

E = J +
N∑

k=1

E(pk )︸ ︷︷ ︸
Bethe−Yang

− 1
2π

∞∑
Q=1

∫ ∞
−∞

dp̃ log(1 + YQ)︸ ︷︷ ︸
finite−size contribution

Momenta pk (or rapidities uk ) are found from the exact Bethe
equations (quantization cond.)

Bazhanov, Lukyanov, Zamolodchikov ’96; P. Dorey, Tateo ’96

Y1∗(pk ) = −1

The EBE work fine for real pk .
Do they need a modification for complex ones?



Mirror TBA Excited states Two-particle states Summary

Exact Bethe equations

The spectrum of excited states

E = J +
N∑

k=1

E(pk )︸ ︷︷ ︸
Bethe−Yang

− 1
2π

∞∑
Q=1

∫ ∞
−∞

dp̃ log(1 + YQ)︸ ︷︷ ︸
finite−size contribution

Momenta pk (or rapidities uk ) are found from the exact Bethe
equations (quantization cond.)

Bazhanov, Lukyanov, Zamolodchikov ’96; P. Dorey, Tateo ’96

Y1∗(pk ) = −1

The EBE work fine for real pk .
Do they need a modification for complex ones?



Mirror TBA Excited states Two-particle states Summary

Bajnok-Janik asymptotic solution ( large J or small g and finite J )

Generalized Lüscher formulae give the large J asymptotic solution Bajnok, Janik ’08

Y o
Q(v) = ΥQ(v) TQ,−1(v |~u) TQ,1(v |~u)

ΥQ(v) = e−J eEQ (v)
NY

i=1

SQ1∗
sl(2)

(v , ui ) ← exp suppressed

TQ,1 is an eigenvalue of a properly normalized su(2|2)C transfer matrix

TQ,1(v |~u) = strA SQ,1
A1 (v , u1)SQ,1

A2 (v , u2) · · ·SQ,1
AN (v , uN ) ,

conjectured by Beisert ’06

and derived by Arutyunov, de Leeuw, Suzuki, Torrieli ’09

The BY equations (in the sl(2) sector) follow from eE1∗ (uk ) = −i pk and

T1∗,±1(uk |~u) = 1 =⇒ −1 = ei J pk

NY
j=1

S1∗1∗
sl(2)

(uk , uj )

All auxiliary Y o-functions are fixed by Y o
Q Arutyunov, Frolov ’11

and (almost) agree with Gromov, Kazakov, Vieira ’09(a)
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Known excited state TBA equations

Almost all states are from the sl(2) sector

Tr

(
J∏

k=1

Dnk Z

)
,

J∑
k=1

nk = N , nk ≥ 0

J is the twist, and N is the spin or the number of particles.

Canonical TBA eqs for two-particle Konishi-like states, λ < λcr

Gromov, Kazakov, Kozak, Vieira ’09v3;

Hybrid, simplified and canonical TBA eqs for arbitrary
two-particle states Arutyunov, Frolov, Suzuki ’09;

Hybrid TBA eqs for twist-2 N-particle lightest state, λ < λcr

Balog, Hegedus ’10;

TBA eqs for a subsector of the sl(2) sector, λ < λcr

Balog, Hegedus ’11;

TBA eqs for the two states not from the sl(2) sector which are
degenerate asymptotically, λ < λcr Sfondrini, van Tongeren. ’11;
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Two-particle states in perturbation theory

dual to spin-2 operators

Tr(Z J−1D2Z ) , Tr(Z k−2DZ Z J−k DZ )

Log of the BY equation for two-particle states with p1 + p2 = 0

ip(J + 1)− log
1 + 1

x+2

1 + 1
x−2

− 2i θ(p,−p)| {z }
dressing phase

= 2πi n , n > 0

At g → 0 the momentum is

po
J,n =

2πn
J + 1

, n = 1 , . . . ,
»

J + 1
2

–
,

The corresponding rapidity

uJ,n →
1
g

uo
J,n , uo

J,n = cot
πn

J + 1

At large g the integer n coincides with the string level
For Konishi J = 2 and n = 1
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Types of states

At g ∼ 0 the following classification of two-particle states in the sl(2)-sector
takes place Arutyunov, Frolov, Suzuki ’09

Type of a state Y-functions Number of zeros

I Y1|vw 2

II Y1|vw , Y2|vw 2+2

III Y1|vw , Y2|vw , Y3|vw 4+2+2

IV Y1|vw , Y2|vw , Y3|vw , Y4|vw 4+4+2+2
...

...
...

k →∞ Y1|vw , Y2|vw , . . . 4+4+ . . .

Type of a state depends on how many Yvw-functions have zeroes in the
rescaled analyticity strip |Im(u)| < 1
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Evolution of asymptotic Y-functions

Arutyunov, Frolov, Suzuki ’09

Initial cond. → Y1|vw , Y2|vw 2+2

Y1|vw , Y2|vw , Y3|vw 4+2+2

g ↓ Y1|vw , Y2|vw , Y3|vw , Y4|vw 4+4+2+2

Y1|vw , Y2|vw , Y3|vw , Y4|vw , Y5|vw 4+4+4+2+2
...

...
...

Y1|vw , Y2|vw , . . . 4+4+ . . .

The change of analytic properties of Y’s in the analyticity strip
changes the TBA equations. This leads to the issue of critical values
of the coupling.
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Strong coupling expansion

E(J,n)(λ) = c−1
4
√

n2λ+c0+
c1

4
√

n2λ
+

c2√
n2λ

+
c3

(n2λ)3/4 +
c4

n2λ
+

c5

(n2λ)5/4 +· · ·

Expansion is in 1/ 4
√

n2λ, n is the string level of a 2-particle state

c−1 = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov ’98

and BYE Arutyunov, Frolov, Staudacher ’04

c0 = 0 from BYE and free fermion model Arutyunov, Frolov ’05

Other coefficients are functions of J and n

c2 = 0 ??? due to supersymmetry Roiban, Tseytlin ’09

c2k = 0 !?!?!? Gromov, Kazakov, Vieira ’09(b)

E(J,n)(λ) =
4
√

n2λ

(
2 +

c1√
n2λ

+
c3

n2λ
+

c5

(n2λ)3/2 + · · ·
)



Mirror TBA Excited states Two-particle states Summary

Strong coupling expansion

E(J,n)(λ) = c−1
4
√

n2λ+c0+
c1

4
√

n2λ
+

c2√
n2λ

+
c3

(n2λ)3/4 +
c4

n2λ
+

c5

(n2λ)5/4 +· · ·

Expansion is in 1/ 4
√

n2λ, n is the string level of a 2-particle state

c−1 = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov ’98

and BYE Arutyunov, Frolov, Staudacher ’04

c0 = 0 from BYE and free fermion model Arutyunov, Frolov ’05

Other coefficients are functions of J and n

c2 = 0 ??? due to supersymmetry Roiban, Tseytlin ’09

c2k = 0 !?!?!? Gromov, Kazakov, Vieira ’09(b)

E(J,n)(λ) =
4
√

n2λ

(
2 +

c1√
n2λ

+
c3

n2λ
+

c5

(n2λ)3/2 + · · ·
)



Mirror TBA Excited states Two-particle states Summary

Strong coupling expansion

E(J,n)(λ) = c−1
4
√

n2λ+c0+
c1

4
√

n2λ
+

c2√
n2λ

+
c3

(n2λ)3/4 +
c4

n2λ
+

c5

(n2λ)5/4 +· · ·

Expansion is in 1/ 4
√

n2λ, n is the string level of a 2-particle state

c−1 = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov ’98

and BYE Arutyunov, Frolov, Staudacher ’04

c0 = 0 from BYE and free fermion model Arutyunov, Frolov ’05

Other coefficients are functions of J and n

c2 = 0 ??? due to supersymmetry Roiban, Tseytlin ’09

c2k = 0 !?!?!? Gromov, Kazakov, Vieira ’09(b)

E(J,n)(λ) =
4
√

n2λ

(
2 +

c1√
n2λ

+
c3

n2λ
+

c5

(n2λ)3/2 + · · ·
)



Mirror TBA Excited states Two-particle states Summary

Strong coupling expansion

E(J,n)(λ) = c−1
4
√

n2λ+c0+
c1

4
√

n2λ
+

c2√
n2λ

+
c3

(n2λ)3/4 +
c4

n2λ
+

c5

(n2λ)5/4 +· · ·

Expansion is in 1/ 4
√

n2λ, n is the string level of a 2-particle state

c−1 = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov ’98

and BYE Arutyunov, Frolov, Staudacher ’04

c0 = 0 from BYE and free fermion model Arutyunov, Frolov ’05

Other coefficients are functions of J and n

c2 = 0 ??? due to supersymmetry Roiban, Tseytlin ’09

c2k = 0 !?!?!? Gromov, Kazakov, Vieira ’09(b)

E(J,n)(λ) =
4
√

n2λ

(
2 +

c1√
n2λ

+
c3

n2λ
+

c5

(n2λ)3/2 + · · ·
)



Mirror TBA Excited states Two-particle states Summary

Strong coupling expansion

E(J,n)(λ) = c−1
4
√

n2λ+c0+
c1

4
√

n2λ
+

c2√
n2λ

+
c3

(n2λ)3/4 +
c4

n2λ
+

c5

(n2λ)5/4 +· · ·

Expansion is in 1/ 4
√

n2λ, n is the string level of a 2-particle state

c−1 = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov ’98

and BYE Arutyunov, Frolov, Staudacher ’04

c0 = 0 from BYE and free fermion model Arutyunov, Frolov ’05

Other coefficients are functions of J and n

c2 = 0 ??? due to supersymmetry Roiban, Tseytlin ’09

c2k = 0 !?!?!? Gromov, Kazakov, Vieira ’09(b)

E(J,n)(λ) =
4
√

n2λ

(
2 +

c1√
n2λ

+
c3

n2λ
+

c5

(n2λ)3/2 + · · ·
)



Mirror TBA Excited states Two-particle states Summary

Strong coupling expansion

E(J,n)(λ) = c−1
4
√

n2λ+c0+
c1

4
√

n2λ
+

c2√
n2λ

+
c3

(n2λ)3/4 +
c4

n2λ
+

c5

(n2λ)5/4 +· · ·

Expansion is in 1/ 4
√

n2λ, n is the string level of a 2-particle state

c−1 = 2 from the flat space string spectrum Gubser, Klebanov, Polyakov ’98

and BYE Arutyunov, Frolov, Staudacher ’04

c0 = 0 from BYE and free fermion model Arutyunov, Frolov ’05

Other coefficients are functions of J and n

c2 = 0 ??? due to supersymmetry Roiban, Tseytlin ’09

c2k = 0 !?!?!? Gromov, Kazakov, Vieira ’09(b)

E(J,n)(λ) =
4
√

n2λ

(
2 +

c1√
n2λ

+
c3

n2λ
+

c5

(n2λ)3/2 + · · ·
)



Mirror TBA Excited states Two-particle states Summary

Konishi dimension from TBA

TBA eqs were solved numerically up to g = 7.2 (λ ≈ 2047) Frolov ’10

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

500 1000 1500 2000
Λ

6

8

10

12

EKHΛL

dots – numerics,
red – 2 4√

λ,
brown –

Easym = 2 + 2
q

1 + 4g2 sin2 pasym
2

Up to g = 4.1 (λ ≈ 664) agreement with Gromov, Kazakov, Vieira ’09(b)

Setting c0 = c2 = c4 = 0, one gets c1 = 2 from GKV numerics

E
GKV
K (λ) =

4
√
λ

(
2.0004 +

1.988√
λ
− 2.60

λ
+

6.2
λ3/2

)



Mirror TBA Excited states Two-particle states Summary

Large λ expansion from numerics

In general an asymptotic series cannot be found reliably from numerical data

2
1− e100−

√
λ+1

1 + e100−
√
λ+1

4
p
λ+ 1 → 2 4√

λ

From numerics one would conclude that it asymptotes to −2 4√
λ

We have to assume that exponentially suppressed terms become very small
already at the values of λ we are dealing with.

If λ is not large enough then one needs to make an assumption about the
structure of the large λ expansion, for example to decide if the series contains all
possible terms or some of them vanish.

Fitting numerical data one should decide how many terms to keep in an
asymptotic series, and what fitting interval to use.

A function can approach its asymptotic series monotonically or in oscillations,
and it does not seem possible to single out one from numerics. In fact, using the
standard least-square fitting procedure would always lead to an oscillating
behavior of numerical data about a fitting function.
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Large λ expansion from numerics

Fitting the data for g ∈ [1.4, 7.2], one gets Frolov ’10

No condition on ci
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c−1 = 2, c0 = 0

EK (λ) = 2 4√
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+ 0.15√
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− 4.01
λ3/4 + 4.15
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+ 2.79
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c−1 = 2, c0 = 0, c1 = 2

EK (λ) = 2 4√
λ+ 2

4√
λ
− 0.034√

λ
− 2.85
λ3/4 + 0.92

λ
+ 6.08
λ5/4 ,

c−1 = 2, c0 = 0, c1 = 2, c2 = 0

EK (λ) = 2 4√
λ+ 2

4√
λ
− 3.28
λ3/4 + 2.68

λ
+ 3.76
λ5/4

c0 = 0, c2 = 0, c4 = 0

EK (λ) = 2.00005 4√
λ+ 1.99237

4√
λ
− 2.72847

λ3/4 + 7.45145
λ5/4

c1 = 2 was confirmed ??? by Vallilo, Mazzucato ’11
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J=4, n=1 state Frolov ’??
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J=4, n=1 state Frolov ’??

Fitting the data for g ∈ [1.4,3.4], one gets

c0 = 0, c2 = 0, c4 = 0

E (4,1)(λ) = 2.0022 4
√
λ+

4.91748
4
√
λ

− 1.24309
λ3/4 +

9.64361
λ5/4

c−1 = 2, c0 = 0, c2 = 0, c4 = 0

E (4,1)(λ) = 2 4
√
λ+

5.00948
4
√
λ

− 2.47288
λ3/4 +

14.9027
λ5/4

Is c1 = 5 ???
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J=4, n=1 state Frolov ’??
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c1(J,n) =?, c2(J,n) = 0 ?

E(J,n)(λ) = 2 4
√

n2λ+
c1(J,n)

4
√

n2λ
+

c2(J,n)√
n2λ

+
c3(J,n)

(n2λ)3/4 + · · ·

casym
1 (J,n) = J2

4 + 1
2 from BYE and free fermions Arutyunov, Frolov ’05

From TBA Frolov ’??

c2(2,1) ≈ 0, c1(2,1) ≈ 2,⇒ c1(J,1) = J2

4 + 1
If c2(3,1) = c2(4,1) = 0, then
c1(3,1) ≈ 13

4 , c1(4,1) ≈ 5⇒ c1(J,1) = J2

4 + 1

c2 ≈ 0, c1(4,2) ≈ 5, c1(5,2) ≈ 29
4 ⇒ c1(J,2) = J2

4 + 1

If c2 = 0 then

c1(6,3) ≈ 9 , c1(7,3) ≈ 49
4
⇒ c1(J,3) =

J2

4

cexact
1 (J,n) = J2

4 + c(n) ???, e.g. c(n) = n(3− n)/2
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The mirror TBA: from string hypothesis to the exact spectrum

1 Ground state TBA eqs follow from the string hypothesis

2 TBA eqs for excited states are determined by the ground state ones via the CDT

3 TBA eqs are written for the whole superconformal multiplet.
PSU(2, 2|4) invariance is built-in Arutyunov, Frolov ’11

4 TBA eqs for states composed of particles with real momenta can be obtained

5 States containing particles with complex momenta (e.g. bound states) require
special treatment Arutyunov, Frolov, van Tongeren (to appear)

6 The form of the equations depends on λ. For infinitely many states there are
critical values of λ, crossing which the TBA eqs must be modified.

7 For a given operator, is the number of critical values infinite or finite (or even 0)?

8 We found no evidence that up to the overall factor 2 4√n2λ the large λ expansion
is in powers of 1/

√
λ. Is the expansion in powers of 1/ 4√

λ?

9 The numerics we performed is not sufficient to give definite answers to (m)any
questions. Analytical methods are necessary. NLIE ???
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Assumptions

1 Quantum integrability of l.c. string theory and its mirror

2 Symmetry algebra of l.c. string theory and its mirror in the
decompactification limit Beisert ’05; Arutyunov, Frolov, Plefka, Zamaklar ’06

3 BES dressing factor Beisert, Eden, Staudacher ’06

4 Bajnok-Janik asymptotic solution Bajnok, Janik ’08

5 String hypothesis for the mirror model Arutyunov, Frolov ’09

6 Universality of the contour deformation trick

7 Universality of the exact Bethe equations Y1∗(pk ) = −1
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