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@ Mirror TBA
9 Excited states

e Two-particle states

@ Summary
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“Harmonic oscillator” of AdS/CFT: Maldacena '97

N =4 SU(N;) SYM <= IIB strings in AdSs x S° geometry

string coupling gs = “i’%’r”

YM coupling gyum

NS

—
't Hooft coupling A = g2,,N, <= String tension % =g=
SYM operators <= String states

Scaling dimension A(\) = String energy E(g)

Exact spectra of A/ = 4 SYM and strings on AdSs x S° J
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From sigma models to four-dimensional QFT

Quantum
Field Theory
in 4D

Non-linear
Sigma Model
in 2D

Planar scaling dimensions A()) in Yang-Mills theory should be computable by string
theory! Simultaneously, this would test the conjecture.
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From sigma models to four-dimensional QFT

Quantum
Field Theory
in 4D

Non-linear
Sigma Model
in 2D

Planar scaling dimensions A()) in Yang-Mills theory should be computable by string
theory! Simultaneously, this would test the conjecture.

@ Green-Schwarz superstring Metsaev, Tseytiin '98

S — _g/dea /_hh‘*ﬂ(’)aXMagXNGMN(X) + fermions

@ L.c. string sigma model : E — J = fi/iz Hie Arutyunov, Frolov 04
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Anti-de Sitter space
Space of constant negative curvature

String energy E is a conserved Noether charge corresponding to the
SO(2) subgroup of the conformal group SO(4, 2)



Mirror TBA
000@0000000

J is a conserved Noether charge corresponding to one of the
Cartan generators of SO(6)
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From sigma models to four-dimensional QFT

Quantum
Field Theory
in 4D

Non-linear
Sigma Model
in 2D

Planar scaling dimensions A()) in Yang-Mills theory should be computable by string

theory! Simultaneously, this would test the conjecture.

@ Green-Schwarz superstring Metsaev, Tseytlin ‘98

= —f/dea V=hhP, XM 35 XN Gyn(X) + fermions

@ L.c. string sigma model : E —J = [ JﬁZ H .. Arutyunov, Frolov ‘04

@ To compute E(g) and therefore A(g), one needs to solve the
2-dim quantum sigma model on a cylinder!

@ String integrability is the key to the solution
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N=4 super Yang-Mills theory

@ Maximally supersymmetric gauge theory in 4dim:

A, ' i=1,...,6 and 4 Weyl fermions
@ Introduce X = &' + 02, Y = ¢34 jo4, Z = 5+ 08, D= D,
@ The sl(2)-sector consists of linear combinations of operators

J J
Tr(HD”kZ>, > k=N, nc>0
k=1 k=1

J is the twist, and N is the spin.
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N=4 super Yang-Mills theory

@ Maximally supersymmetric gauge theory in 4dim:

A, ' i=1,...,6 and 4 Weyl fermions
@ Introduce X = &' + 02, Y = ¢34 jo4, Z = 5+ 08, D= D,
@ The sl(2)-sector consists of linear combinations of operators

J J
Tr(HD”kZ>, > k=N, nc>0
k=1 k=1

J is the twist, and N is the spin.
@ These operators are dual to N-particle states of I.c. string theory.
@ Spin-2 operators
(2/7'D?Z), T(ZK-2DzZz'~%DZ)
@ If N =2 and J = 2 only one operator is unprotected, and it is a
susy descendent of the Konishi operator
Tr 2
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Summary of the TBA approach

Gauge-String Matsubara Thermodynamic
Correspondence Transform Limit
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String theory and N=4 SYM results

Berenstein, Maldacena,Nastase '02;

. . . Gubser, Klebanov, Polyakov '02;

@ Semi-classical StrlngS Frolov, Tseytlin '02, '03;
Bena, Polchinski, Roiban '03;

Kazakov, Marshakov, Minahan, Zarembo '04;

® L. sirings in AdS; x 85 Ao iyt 0 o ot Zanstr
@ Decompagitification: J — oo Arutyuno. Fros 03 Holman. Maldacena 06
@ Symmetry algebra Beisert '05, '06; Arutyunov, Frolov, Plefka, Zamaklar '06;
o Dispersion relations Beisert, Dippel, Staudacher '04; Beisert '05; N.Dorey '06;

. Staudacher '04;
@ S-matrix Beisert '05;

Arutyunov, Frolov, Zamaklar '06;

Arutyunov, Frolov, Staudacher '04;

Beisert, Tseytlin '05;

. . Janik '06;
Dressing factor and crossing eqs Hernandez, Lopez '06;
Arutyunov, Frolov '06;

Beisert, Hernandez, Lopez '06;

Beisert, Eden, Staudacher '06;

Minahan, Zarembo '02;

Beisert, Dippel, Staudacher '04;

Arutyunov, Frolov, Staudacher '04;

Bethe ansatz Staudacher '04;
Beisert, Staudacher '05;

Beisert, Eden, Staudacher '06;
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Comparison chart

Strings Mirrors
P | = (I o
Dispersion relation | £g = / Q2 + 4g? sin® g Eqg = 2arcsinh <2g Q2+ ,02)
Momentum —T<p<T —00 < P < oo
Type of theory Lattice model Continuum model
Giant magnon Soliton in R x S° Soliton in AdSs
Bound states Symmetric irrep Antisymmetric irrep
su(2) sector s1(2) sector
Physical region “Fish” (7) “Leaf” (?)
S — matrix S(Z1,Zz) S(Z1 + %722 + %)
Bethe — Yang eqs BS; P=0 extra \/xt/x~
xX{ X,
. * * 1 2
Dressing factor o(1,2)"o(1,2) =1 a(1,2)"0(1,2) = = xF
Xi X
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Mirror TBA

@ Ground state energy is related to the free energy of the mirror
theory at temperature T =1/J Al Zamolodchikov '90

E(J) = JF(J)

@ Mirror TBA for the ground state is a set of nonlinear integral
equations on Y-functions. Its solution computes the free energy
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Mirror TBA

@ Ground state energy is related to the free energy of the mirror
theory at temperature T =1/J Al Zamolodchikov '90

E(J)=JF())
@ Mirror TBA for the ground state is a set of nonlinear integral
equations on Y-functions. Its solution computes the free energy

@ TBA egs follow from the string hypothesis Takahashi '72
for the mirror model Arutyunov, Frolov *09(a)

@ A Bethe string leads to a Y-function (Q =1,2,...)

(=) (=) (=) (=) (+) (+) (+)
YO\W’YOlvw’Y+ Y2 ’Y Yo Y YO|VW’YQ\W

@ Ground state energy

E - J_——Z/ dp log(1 + Yo)

finite—size contribution
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Mirror TBA

@ TBA egs can be written in various forms
e Canonical

e Simplified
o Hybrid
@ Quasi-local

Arutyunov, Frolov '09(b)
Bombardelli, Fioravanti, Tateo '09

Arutyunov, Frolov '09(b), '09(d)
Arutyunov, Frolov, Suzuki '09

Balog,Hegedus '11
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Mirror TBA

@ TBA egs can be written in various forms

e Canonical Arutyunov, Frolov '09(b)

Bombardelli, Fioravanti, Tateo '09
e Simplified Arutyunov, Frolov '09(b), '09(d)
) HYbrld Arutyunov, Frolov, Suzuki ‘09
@ Quasi-local Balog,Hegedus "11

@ TBA egs for excited states via the contour deformation trick
(inspired by P Dorey, Tateo ’96) Gromov, Kazakov, Kozak, Vieira '09v3

Arutyunov, Frolov, Suzuki '09

@ or via the Y-system and jump discontinuities (following

Bazhanov, Lukyanov, Zamolodchikov '96) ~ C2vadia Foravart, Taeo b
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Excited states TBA and CDT
Inspired by P. Dorey, Tateo 96

@ Q-particles (sum over a = —, +):

log Yg = —L &g +1og (1 + Vi) x,, (KNG + 25+ K 1)

Jrl09(1+Y1\vw) ( ) S*KQ+|09(1+Y( 1\vw) C(C‘) s
1w Q—1|vw
(@)
1-Y 1 1
— Q yQ yQ
—10g ————— % (o) $* K +10g (1 — ) * () K9 +log (1 - ) * (o) K
y( «) T+
1 Yiw) cy y(e)/ 7l +a) cl¢
. y(e)
@ y-particles: log e = log(1 + Yq) *c, Kay »
Lyl
log y<+a)y(7a) — 2log 1(\vw *gl@) S—log (1+Ya) *cq Ka +210g(1 + Yo) *c, A
’Yw 1| (v)w
@ M|vw-strings:
(@) (a)
10g V') _ log (Y)Y ) ro st by o0 I . .
Miw — T+ Vi C M1 1 — YJ(F( C(ia)
=@
NG
@ M|w-strings: log Y;;T:V log(1 + Y, Q)ﬂw)( + Ylf/l+)1\w) *c S+ dpq log - (’1 ) *C(ia) s
a
@ Ground state energy vy

1 & / ~
- — dp log(1 + Yq)
2m C; Cq

finite—size corr.
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Excited states TBA and CDT
Inspired by P. Dorey, Tateo 96

Integrationontour

/

Yz )=-1

@ TBA equations for excited states differ from each other only by a choice of
the integration contour —- contour deformation trick

@ If Y(z.) = —1 (or oo) then taking the contour back to real mirror line produces
driving term — log S(z, z) from log(1 4 Y)  K; K(w, 2) = 5 2 log S(w, z)

27l dw

" d

log(1+Y)x K = —— ¢ log(1 + Y(w))~— log S(w, 2) =
2mi Jz, dw
1 d

=—— — log(w — z,) log S(w, z) = — log S(z«, 2)
2ni Jz, dw ————
new driving term
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Exact Bethe equations

The spectrum of excited states

N 0o
1 .
E:J+Zﬁ(pk)fZZ/ dp log(1 + Yg)
k=1 Q=1

Bethe—Yang finite—size contribution

Momenta py (or rapidities uk) are found from the exact Bethe
equations (quantization cond.)

Bazhanov, Lukyanov, Zamolodchikov '96; P. Dorey, Tateo '96

Yi.(pk) = —1
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Exact Bethe equations

The spectrum of excited states

N 0o
1 o
E:J+25(pk)752/ dp log(1 + Yg)
k=1 Q=1

Bethe—Yang finite—size contribution

Momenta py (or rapidities uk) are found from the exact Bethe
equations (quantization cond.)

Bazhanov, Lukyanov, Zamolodchikov '96; P. Dorey, Tateo '96

Yi.(pk) = —1

The EBE work fine for real p.
Do they need a modification for complex ones?
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Bajnok-Janik asymptotic solution ( large J or small g and finite J )

@ Generalized Luscher formulae give the large J asymptotic solution Bajnok, Janik '08

Ya(v) = To(v) To,—1(v|t) To,(v|0)
B N
To(v) = e Y% H 85'011(5)(‘/’ Uj) <  exp suppressed

i=1
@ Tq 4 is an eigenvalue of a properly normalized su(2|2)¢ transfer matrix
P Q,1 Q,1 Q,1
Tq,1(v|U) = stry SA1 (v, uy )SA2 (v,up)--- SAN (v,un),

conjectured by Beisert '06
and derived by Arutyunov, de Leeuw, Suzuki, Torrieli '09
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Bajnok-Janik asymptotic solution ( large J or small g and finite J )

@ Generalized Luscher formulae give the large J asymptotic solution Bajnok, Janik '08

Ya(v) = To(v) To,—1(v|t) To,(v|0)

B N
To(v) = e Y% H8312)(V,u/) < exp suppressed
i=1

@ Tq 4 is an eigenvalue of a properly normalized su(2|2)¢ transfer matrix
P Q,1 Q,1 Q,1
T, (v|U) = stra Sy (v, u1)Sy (v, u2) -+ Saf (v, un),

conjectured by Beisert '06
and derived by Arutyunov, de Leeuw, Suzuki, Torrieli '09

@ The BY equations (in the s1(2) sector) follow from 5‘1* (ux) = —ipx and

T, +1(Ul0) =1 = —1 :e’J”kHS1 o 5 (Uks 1))
j=1

@ All auxiliary Y°-functions are fixed by Y§ Arutyunov, Frolov '11
and (almost) agree with Gromov, Kazakov, Vieira '09(a)
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Known excited state TBA equations

Almost all states are from the s/(2) sector

J J
Tr<HD"kZ> , > =N, nc>0
k=1 k=1

J is the twist, and N is the spin or the number of particles.

@ Canonical TBA egs for two-particle Konishi-like states, A < A\,

Gromov, Kazakov, Kozak, Vieira '09v3;

@ Hybrid, simplified and canonical TBA eqgs for arbitrary
tWO'partiCIG states Arutyunov, Frolov, Suzuki'09;

@ Hybrid TBA egs for twist-2 N-particle lightest state, A < A

Balog, Hegedus '10;
@ TBA egs for a subsector of the s/(2) sector, A < A,

Balog, Hegedus '11;

@ TBA egs for the two states not from the s/(2) sector which are
degenerate asymptotically, A < A Sfondrini, van Tongeren. "11;
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Two-particle states in perturbation theory

@ dual to spin-2 operators

T(2/-'D?2), T(ZK-?Dzz'~*DZz)

@ Log of the BY equation for two-particle states with p; + p> = 0

1

]
io(J +1) —lo X2
p(J +1) —log =7

x—2

—2i 0(p,—p) =2min, n>0
N —

dressing phase

@ At g — 0the momentumis

o 2mn J+1
pJ7n:J+17 n:17"'7 2 )
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Two-particle states in perturbation theory

@ dual to spin-2 operators

T(2/-'D?2), T(ZK-?Dzz'~*DZz)

@ Log of the BY equation for two-particle states with p; + p> = 0

1

1+
ip(J +1) —log —*% —2i 6(p,—p) =2rin, n>0
1+ N——

x=% dressing phase
@ At g — 0the momentumis
o _ 2mn n—1 J+1
pJﬁn_J+17 - Yty 2 )
@ The corresponding rapidity
15 o wn
u, -u5,, Uu;,=cot
J,n — g J,n J.n Jr1

@ Atlarge g the integer n coincides with the string level
@ For KonishiJ =2and n=1
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Types of states

At g ~ 0 the following classification of two-particle states in the s[(2)-sector

takes place Arutyunov, Frolov, Suzuki ‘09
Type of a state | Y-functions Number of zeros
I Y1 [vw 2
I Y1|VW: YZ\VW 2+2
I Yiiws Yolvws Yajuw 44242
v Y1|VW! YZ\VWs YS\VWs Y4|vw 4+4+2+2
k — o0 Y1|VW: YZ\VWa ‘e 4+4+

Type of a state depends on how many Y, -functions have zeroes in the
rescaled analyticity strip [Im(u)| < 1
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Evolution of asymptotic Y-functions

Arutyunov, Frolov, Suzuki ‘09

Initial cond. —

gl

YHVWs YZ\VW
Y1\vw: Y2\VWs Y3|vw

YHVWa Y2\vw: Y3|VWs Y4|vw

Y‘HVWJ Y2\VW5 Y3|VWa Y4|vw, YS\VW

Y1\vw= Y2\vw;

2+2

44242
4+4+2+2
4+4+4+42+2

4+4+

The change of analytic properties of Y’s in the analyticity strip
changes the TBA equations. This leads to the issue of critical values

of the coupling.
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Strong coupling expansion

C2 C3 C4 Cs
= 2 2y (2 \5/4
Eun(A) = C—1W+CO+F JrEn (N T T ey T

@ Expansion isin 1/v/n2), nis the string level of a 2-particle state
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Strong coupling expansion

N B ST
\/7 m (n2>\)3/4 n2/\ (nz/\)5/4

Eun(N) = co1VmA+co+

@ Expansion isin 1/v/n2), nis the string level of a 2-particle state

@ c_1 = 2 from the flat space string spectrum  cubser, Kiebanov, Polyakov ‘98

and BYE Arutyunov, Frolov, Staudacher '04
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Strong coupling expansion

N B ST
\/7 m (n2>\)3/4 n2/\ (nz/\)5/4

Eun(N) = co1VmA+co+

@ Expansion isin 1/v/n2), nis the string level of a 2-particle state

@ c_1 = 2 from the flat space string spectrum  cubser, Kiebanov, Polyakov ‘98

and BYE Arutyunov, Frolov, Staudacher '04

@ ¢y = 0 from BYE and free fermion model Arutyunov, Frolov '05
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Strong coupling expansion

N B ST
\/7 m (n2>\)3/4 n2/\ (nz/\)5/4

Eun(N) = co1VmA+co+

@ Expansion isin 1/v/n2), nis the string level of a 2-particle state

@ c_1 = 2 from the flat space string spectrum  cubser, Kiebanov, Polyakov ‘98

and BYE Arutyunov, Frolov, Staudacher '04
@ ¢y = 0 from BYE and free fermion model Arutyunov, Frolov '05

@ Other coefficients are functions of J and n
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Strong coupling expansion

C2 + Cs +&+L+
\/7 m (n2>\)3/4 n2/\ (nz/\)5/4

Eum(X) = coiVmA+co+

@ Expansionisin 1/(7@, nis the string level of a 2-particle state

@ c_1 = 2 from the flat space string spectrum  cubser, Kiebanov, Polyakov ‘98
and BYE Arutyunov, Frolov, Staudacher '04

@ ¢y = 0 from BYE and free fermion model Arutyunov, Frolov '05

@ Other coefficients are functions of J and n

@ ¢, = 0777 due to supersymmetry Roiban, Tseytlin ‘09
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Strong coupling expansion

C2 + Cs +&+L+
\/7 m (n2>\)3/4 n2/\ (nz/\)5/4

Eum(X) = coiVmA+co+

@ Expansionisin 1/(7@, nis the string level of a 2-particle state

@ c_1 = 2 from the flat space string spectrum  cubser, Kiebanov, Polyakov ‘98
and BYE Arutyunov, Frolov, Staudacher '04

@ ¢y = 0 from BYE and free fermion model Arutyunov, Frolov '05

@ Other coefficients are functions of J and n

@ ¢, = 0777 due to supersymmetry Roiban, Tseytlin ‘09

@ ¢ = 0171717 Gromov, Kazakov, Vieira '09(b)

E(J,n)(A):m(ﬂ %*%*m&%*"')
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Konishi dimension from TBA

TBA egs were solved numerically up to g = 7.2 (A =~ 2047) Frolov '10

Ex (D)
12
10 ...-....-' R
red — 2v/X,
8
brown —
6 E:hym =2+24/1+ 4g2 Sin2 %
500 1000 500 2000"
o Up to g= 4.1 ()\ ~ 664) agreement with Gromov, Kazakov, Vieira '09(b)

@ Setting ¢y = ¢ = ¢4 = 0, one gets ¢; = 2 from GKV numerics
1.988 2.60 n 6.2
VA A 2\3/2

EXV0) = <2.ooo4 +
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Large \ expansion from numerics

@ In general an asymptotic series cannot be found reliably from numerical data

1— 9100—\/)\+1 . .
PR VA+1 = 2V

From numerics one would conclude that it asymptotes to —2v/x
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Large \ expansion from numerics

@ In general an asymptotic series cannot be found reliably from numerical data

1— 9100—\/)\+1 . .
PR VA+1 = 2V

From numerics one would conclude that it asymptotes to —2v/x

@ We have to assume that exponentially suppressed terms become very small
already at the values of A we are dealing with.
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Large \ expansion from numerics

@ In general an asymptotic series cannot be found reliably from numerical data

1— 9100—\/)\+1 . .
PR VA+1 = 2V

From numerics one would conclude that it asymptotes to —2v/x
@ We have to assume that exponentially suppressed terms become very small
already at the values of A we are dealing with.

@ If X is not large enough then one needs to make an assumption about the
structure of the large X expansion, for example to decide if the series contains all
possible terms or some of them vanish.
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Large \ expansion from numerics

@ In general an asymptotic series cannot be found reliably from numerical data

1 — e100—VA+1 . .
P~ VA+1 = 2V

From numerics one would conclude that it asymptotes to —2v/x

@ We have to assume that exponentially suppressed terms become very small
already at the values of A we are dealing with.

@ If X is not large enough then one needs to make an assumption about the
structure of the large X expansion, for example to decide if the series contains all
possible terms or some of them vanish.

@ Fitting numerical data one should decide how many terms to keep in an
asymptotic series, and what fitting interval to use.



Two-particle states
[e]e]e]e]e] lelelele]e]e]

Large \ expansion from numerics

@ In general an asymptotic series cannot be found reliably from numerical data

1 — e100—VA+1 . .
P~ VA+1 = 2V

From numerics one would conclude that it asymptotes to —2v/x

@ We have to assume that exponentially suppressed terms become very small
already at the values of A we are dealing with.

@ If X is not large enough then one needs to make an assumption about the
structure of the large X expansion, for example to decide if the series contains all
possible terms or some of them vanish.

@ Fitting numerical data one should decide how many terms to keep in an
asymptotic series, and what fitting interval to use.

@ A function can approach its asymptotic series monotonically or in oscillations,
and it does not seem possible to single out one from numerics. In fact, using the
standard least-square fitting procedure would always lead to an oscillating
behavior of numerical data about a fitting function.
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Large \ expansion from numerics

Fitting the data for g € [1.4,7.2], one gets Frolov 10
@ No condition on ¢;
Ex()) =1.999X +0.21 —

+ 10.43 _ 31.78 + 42X20 __ 17.56

0.0l
K%Y VoY 2\3/4 \5/4
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Large \ expansion from numerics

Fitting the data for g € [1.4,7.2], one gets
@ No condition on ¢;
Ex(A) =199VX+0.21 - G 4 1988 _ 78 4 220 _ T
o c_1=2

= 2. 5.16 18.86 44 .17 42.89
Ex()\) = 2v/A —0.027 + % -2+ Ge - K+ E

Frolov '10



Two-particle states
[e]e]e]elo]e] lelele]e]e]

Large \ expansion from numerics

Fitting the data for g € [1.4,7.2], one gets Frolov 10
@ No condition on ¢;

Ex(2) =1.99VA+0.21 — G2 4 108 _ 878 4 4220 _ 115%
o c_1=2

18.86 44 .17 + 42.89

Ex(A) =2V —0.027 + 252 s

5.16
T T A T A T
@ c =2 co=0

— 1.99 0.15 4.01 4.15 2.7
Ex(\) =2V + SR b e e U

al©
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Large \ expansion from numerics

Fitting the data for g € [1.4,7.2], one gets
@ No condition on ¢;

Ex(A) =199VX+0.21 - G 4 1988 _ 78 4 220 _ T

o c_1=2

= . A 18. 44 .17 42.89
Ex(A) =2VX—0.027+ 52 _ 516, 1885 _ 4417 | 4202

5

°C_1:2,%:0
Ex(\) =2Vx+ 42 + 08 — &%
007122,00:0,01:2

k() =2+ & - 00 _ 28 4 0m | oo

Frolov '10
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Large \ expansion from numerics

Fitting the data for g € [1.4,7.2], one gets Frolov 10
@ No condition on ¢;

Ex(A) =199VX+0.21 - G 4 1988 _ 78 4 220 _ T
o c_1=2

Er(\) = 20A— 0,027+ 282 _ 518 . 1885 4417 | a9
o C_q1 = 2, Co = 0

= 4 . . .
EK(A):2ﬁ+%+°71§—%

o c_1=2,¢=0,¢1=2
Ex(n) =29+ 4 - 00 28 4 002y 608
@ c 1=2,¢=0c=2c=0

Ex() =2VA+ & - 355 + 58 +

S
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Large \ expansion from numerics

Fitting the data for g € [1.4,7.2], one gets Frolov 10
@ No condition on ¢;
Ex(\) = 1.99%/X +0.21 — 0,06 | 1043 3178 , 42/.\20 _ 17.56

5N VN \3/4 \5/4
@ c =2
= 4 2.59 5.16 18.86 44 .17 42.89
EK()\):Zﬁ—O.027+4—ﬁ—ﬁ+ S T et S5

@c 1=2,¢=0
EK(A)_2f+199+015 4.01 _,'_4‘15_"_&

k2N VX A3/4 T X T N\5/4
o c_1=2,¢=0,¢1=2
Ex() =2Va+ & - 0% - 550 + B2 4+ %,
@ c 1=2,¢=0c=2c=0
Ex(N) =293+ & - 325 + 288 1 378

@ cg=0,c0=0,c4=0

Ex(A) = 2.00005 X 4 LS5237 _ 272047 , 7.d5tss

¢y = 2 was confirmed ??? by

Vallilo, Mazzucato '11
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Konishi dimension from TBA

Ex(L) — 2 AY4 — 2294

500 1000 1500 5600
~0.02
~0.04 ...'°....
—0.06}
~0.08
—0.107:




Two-particle states
000000008000

J=4, n=1 state

Ea1(g) — 22474

. dots — numerics minus 2/,

4, \\\ red — Ezmym - 2\4/X,
\ Asymptotic estimate:
\ g™~ 1.77, g™ ~ 2,13
3 Numerics: ger =~ 1.85
2’ L.
\‘\'\.—\,,
.7%‘.“'.,,;

1 e e e e
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J=4, n=1 state

@ Fitting the data for g € [1.4,3.4], one gets
0 ¢c=0,c=0,c4=0

491748 1.24309 9.64361
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@ Fitting the data for g € [1.4,3.4], one gets
0 ¢c=0,c=0,c4=0

491748 1.24309 9.64361
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J=4, n=1 state

@ Fitting the data for g € [1.4,3.4], one gets
0 ¢c=0,c=0,c4=0

491748 1.24309 9.64361
YN o )\3/4 + \5/4

Ea,1)(\) = 2.0022V/\ +

) C_1:2,CQZO,C2:0,C4:0

5.00948 2.47288 14.9027
N T34 + \5/4

E(471)()\) =2V +

@ Isc =57??
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J=4, n=1 state

E1(9) — 2474 5214
0.06

///
0.04} //
0.02}
10 15 //Zo 25 30 g

-0.02¢ T ////// PRI c o o ® L

/ St e = . *

/
-0.04/
-0.06t
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oy, c(dn)  c(Jd,n)  c(dn)
E(J7n)()\):2 e+ KT + N3 +(n2>\)3/4+
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° C;isym(.J7 n) _ JTZ + % from BYE and free fermions Arutyunov, Frolov '05



Two-particle states
00000000000 e

ci(J,n) =7, ¢c(J,n) =07

oy, c(dn)  c(Jd,n)  c(dn)
E(J7n)()\):2 e+ KT + N3 +(n2>\)3/4+

° C;isym(.J7 n) _ JTZ + % from BYE and free fermions Arutyunov, Frolov '05
@ From TBA Frolov '??

0 0(2,1)~0,c(2,1)~2 = ci(J,1) = % +1
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ci(J,n) =7, ¢c(J,n) =07

ci(J,n)  c(Jd,n)  cs3(J,n)
Eum(N) = 2Vx + lﬁ + i/ﬁ +(;2A)3/4

@ c¢{¥"(J,n) == + } from BYE and free fermions  arutyunov, Frolov ‘05
@ From TBA Frolov '??
0 &(2,1)~0,¢(2,1)~2,= ci(J,1) = % +1

2(4,1) =0, then

o|fc2(31):
~ 13, c(4,1)~5=c(J,1) = £ +1

C1(3 1)
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ci(J,n) =7, ¢c(J,n) =07

ci(J,n)  c(Jd,n)  cs3(J,n)
Eum(N) = 2Vx + lﬁ + i/ﬁ +(;2A)3/4

@ c¢{¥"(J,n) == + } from BYE and free fermions  arutyunov, Frolov ‘05
@ From TBA Frolov '??
o (2,1)~0,¢1(2,1) =~ 2, =>C1(J,1):JZZ+1
o If cx(3,1) = c2(4,1) =0, then
ci(3,1)~ 3, ¢i(4,1) ~5=ci(J,1) = & +1

0 o~ 0,c(42)~5,¢(52) ~ 2= ¢(J,2) = % +1



Two-particle states
00000000000 e

ci(J,n) =7, ¢c(J,n) =07

ci(J,n)  c(Jd,n)  cs3(J,n)
Eim(X) = 2VPx + ﬁ + i/% +(;2A)3/4

@ c¢{¥"(J,n) == + } from BYE and free fermions  arutyunov, Frolov ‘05
@ From TBA Frolov '??
o (2,1)~0,¢1(2,1) =~ 2, =>C1(J,1):JZZ+1
o If cx(3,1) = c2(4,1) =0, then
ci(3, 1)~ B, ci(4,1) = 5= c(J,1) = % +1

0~ 0,c(4,2)~5,¢(52) ~ 2= c¢(J,2) =L +1
e If co = 0then

C1(6,3)%9, C1(773)%? = C1(J,3):

J2
4
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ci(J,n) =7, ¢c(J,n) =07

ci(J,n)  c(Jd,n)  cs3(J,n)
Eim(X) = 2VPx + ﬁ + i/% +(;2A)3/4

@ c¢{¥"(J,n) == + } from BYE and free fermions  arutyunov, Frolov ‘05
@ From TBA Frolov '??
0 0(2,1)~0,c(2,1)~2 = ci(J,1) = % +1
o If cx(3,1) = c2(4,1) =0, then
ci(3,1)~ 13, ¢/(4,1)~5=c(J,1) = & +1

0 o~ 0,01(4,2) ~5,¢(52) ~ &2 = ¢(J,2) = & +1
o If co = 0then

49 2

4

C1(6,3)%9, C1(773)%T = C1(J,3):

Py cet(J, n) = J{ +c¢(n) ???,e.9.c(n)=n(3—n)/2
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The mirror TBA: from string hypothesis to the exact spectrum

0 Ground state TBA eqs follow from the string hypothesis
Q TBA eqgs for excited states are determined by the ground state ones via the CDT

Q TBA egs are written for the whole superconformal multiplet.
PSU(2, 2|4) invariance is built-in Arutyunov, Frolov "1

Q TBA egs for states composed of particles with real momenta can be obtained

Q States containing particles with complex momenta (e.g. bound states) require
special treatment Arutyunov, Frolov, van Tongeren (to appear)

Q The form of the equations depends on . For infinitely many states there are
critical values of A\, crossing which the TBA egs must be modified.

0 For a given operator, is the number of critical values infinite or finite (or even 0)?

Q We found no evidence that up to the overall factor 2V the large \ expansion
is in powers of 1/v/X. Is the expansion in powers of 1/+/A?

Q The numerics we performed is not sufficient to give definite answers to (m)any
questions. Analytical methods are necessary. NLIE 7?7



Summary
oe

Assumptions

@ Quantum integrability of I.c. string theory and its mirror

@ Symmetry algebra of I.c. string theory and its mirror in the

decompactification limit Beisert '05; Arutyunov, Frolov, Plefia, Zamaklar ‘06
© BES dressing factor Beisert, Eden, Staudacher ‘06
© Bajnok-Janik asymptotic solution Bajnok, Janik '08
@ String hypothesis for the mirror model Arutyunov, Frolov '09

@ Universality of the contour deformation trick

@ Universality of the exact Bethe equations Y. (px) = —1
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