

Università degli Studi di Perugia/INFN Perugia

Corfu Summer Institute 2011. 1st Summer School of ITN: Unification in the LHC Era.

September 08, 2011

Measurement of Tracking Efficiency using the D^* slow π helicity with the CMS detector at LHC

Francesco Romeo

Introduction The measure of tracking efficiency Conclusion Back up

Outline

- Motivations and Goal of analysis
- The CMS detector
- 2 The measure of tracking efficiency
 - Physical idea and method
 - Event reconstruction
 - Background subtraction
 - The fit of efficiency

3 Conclusion

- 4 Back up
 - Independence of $\frac{dN}{dcos\theta^*}$ from $M_{D^*} M_{D^0}$ background
 - Efficiency from counting
 - Closure tests
 - Systematics

The motivations and goal of the analysis

- CMS is one of the 4 detectors which operates at LHC
- It is important to study the properties and performances of the detector
- The aim of the analysis is to characterize the relative tracking efficiency for charged hadrons at low momentum as a function of lab momentum ($\varepsilon(p, m)$)
- A method relied on the slow pion (π_s) helicity measurement in the D* rest frame in the decay channel B⁰ → D*ℓν → (D⁰π_s)ℓν → ((πK)π_s)ℓν is used
- The measurement is useful for all the physics analyses where it is necessary to evaluate the number of tracks

Introduction

The measure of tracking efficiency Conclusion Back up Motivations and Goal of analysi The CMS detector

The CMS detector

Francesco Romeo

The physical idea and the method

• $D^* \rightarrow D^0 \pi_s$ in the D^* frame

- $\frac{dN}{dcos\theta^*} = N(1 + \alpha cos^2 \theta^*)$ (1) (Quantities with * in D* Frame)
- $E_{\pi_s} = \gamma_{D^*} (E_{\pi_s}^* + \beta_{D^*} p_{\pi_s}^* \cos \theta^*)$ (2), $E_{\pi_s}^* = 145.0$ MeV, $p_{\pi_s}^* = 39.3$ MeV
- p_{D^*} (k bin) e cos θ^* (n bin)
- $D_{nk} = \#$ of events in bin nk $S_{nk} = \#$ of expected events in bin nk. $S_{nk} = \varepsilon(p_{\pi_s}, m) \cdot (\frac{dN}{dcos\theta^*})_k$
- Find $\varepsilon(p_{\pi_s}, m)$ minimizing $\chi^2 = \sum_{nk} \frac{(D_{nk} S_{nk})^2}{\sigma_{D_{nk}}^2}$ (3)

Used datasets and strategy of reconstruction

- Energy in CM = 7 TeV
- For data

Primary dataset triggering at least a muon Recorded Luminosity: $\sim 34(pb^{-1})$ Total Events read: $\sim 43 \cdot 10^6$

For Monte Carlo

Sample which describes QCD events with semileptonic decays from b-jets.

 σ of production = O(10)mb. Total Events read: $\sim 3 \cdot 10^6$

- Reconstruction in 2 steps:
 - 1. Selection of candidated tracks
 - 2. Selection of candidated events

Introduction Phys The measure of tracking efficiency Even Conclusion Back Back up The

Physical idea and method Event reconstruction Background subtraction The fit of efficiency

1. Selection of candidated tracks

Cuts on quality of tracks

- $\chi^2 < 2.5$
- # of hits > 5

Geometrical cuts

- $|\eta| < 2.4$
- Selection of Primary Vertex with highest number of tracks. $|d_{xy}| < 0.1 \text{ cm}$ $|d_z| < 1 \text{ cm}$

Cinematics cuts

•
$$p_T > 0.6 \text{ GeV/c}$$

 $p_T > 0.25 \text{ GeV/c}$ (For candidates of π_s)

2. Selection of candidated events and helicity measurement

• For $B^0 \xrightarrow{} D^{*-}\ell^+ \nu \to (\bar{D^0}\pi^-)\ell^+ \nu \to ((\pi^- \mathcal{K}^+)\pi^-)\ell^+ \nu$ (or its charge conjugate)

- $\overline{D^0}$ selection
 - Pair of tracks with opposite charge $(\pi^- K^+)$
 - Invariant mass within 25 MeV/ c^2 of D^0 mass
 - Vertex constrained kinematic fit
- D^{*-} selection
 - Candidates of π^- with charge opposite to K^+ candidate
 - Invariant mass for $\Delta M = M(K\pi\pi)$ $M(K\pi) < 0.158~{
 m GeV}/c^2$
 - For each event one triplet $(K\pi\pi)$ with the minimum

$$\chi^{2} = \left(\frac{M(\kappa\pi) - M_{D_{pDG}^{0}}}{\sigma_{D^{0}}}\right)^{2} + \left(\frac{M(\kappa\pi\pi) - M_{D_{pDG}^{*-}}}{\sigma_{D^{*-}}}\right)^{2}$$

•
$$D_p^{*-} > 5.725 \; {\rm GeV/c}$$

• B⁰ selection

- $\Delta R_{\overrightarrow{p_D^*},\overrightarrow{p_\ell}} < 0.25$
- Lepton with minimum $\Delta R_{\overline{\rho_D^*}, \overline{\rho_\ell}}$, lepton charge opposite to π charge and $p_T > 5 \ Gev/c$

• Helicity measured as: $\cos\theta^* = p_{\pi_s}^* \cdot p_{D^*}$

Signal and Background Extraction

• An unbinned Maximum Likelihood fit has been executed to $M_{D^*} - M_{D^0}$ candidates with the model: $M = f \cdot [Gaussian] + (1 - f) \cdot [(1 - e^{-\frac{\Delta M - mpi}{c}}) \cdot (\frac{\Delta M}{mpi})^a + b \cdot (\frac{\Delta M}{mpi} - 1)]$ f = fraction of signal

Bin division

- p_{D^*} bin: Edge values found requiring for each bin 2000 entries (S+B) in a σ around resonance peak 7 bins : [5.73,8.14,10.50,13.17,16.68,21.38,29.71,80.46] GeV/c
- $cos\theta^*$ bin: Uniform division, 4 bins

•
$$E_{\pi_s} = \gamma_{D^*} (E_{\pi_s}^* + \beta_{D^*} p_{\pi_s}^* \cos \theta^*)$$
 (2)

Introduction The measure of tracking efficiency Conclusion Back up

Physical idea and method Event reconstruction Background subtraction The fit of efficiency

Background subtraction procedure

- **2** Estimate of the background contribution in the RR and normalization of $\frac{dN}{dcos\theta^*}$ in SR to these background events

③ Subtraction bin by bin between $\frac{dN}{dcos\theta^*}$ in RR and normalized $\frac{dN}{dcos\theta^*}$ in SR

Introduction The measure of tracking efficiency Conclusion Back up The fit of efficiency

Corrected helicity distributions in RR

• The tracking efficiency effect is higher at lower p_{D^*} and p_{π_s} values

Francesco Romeo

Corrected helicity distributions in RR

Fit of efficiency for data

• We want to minimize $\chi^2 = \sum_{nk} \frac{(D_{nk} - S_{nk})^2}{\sigma_{D_{nk}}^2}$ D_{nk} (entries in the bin nk); $\sigma_{D_{nk}}$ (corresponding error); $S_{nk} = \varepsilon(\rho_{\pi}, m)_{nk} \cdot N_k (1 + \alpha_k \cos \theta_n^2), \ \varepsilon(\rho_{\pi}, m) = \log(1 - e^{-m \cdot \rho_{\pi}}) + 1$

14

Data vs MC

- Introduction The measure of tracking efficiency Conclusion Back up
- A measure of the relative tracking efficiency for charged hadrons at low momentum as a function of lab momentum (ε(p, m)) has been presented
- It is important to understand the properties and performances of the detector and it is useful for lots of physics analyses
- The method relied on the slow pion (π_s) helicity measurement in the D^* rest frame in the decay channel $B^0 \rightarrow D^* \ell \nu \rightarrow (D^0 \pi_s) \ell \nu \rightarrow ((\pi K) \pi_s) \ell \nu$ has been used
- The final result has been derived by fitting the data with the model ε(p_π, m) = log(1 − e^{-m·p_π}) + 1. A value of m = 3.4±0.5 is obtained
- With 2011 statistics a lower statistical error is expected with the possibility to study $\varepsilon(p,\eta,m)$

 $\begin{array}{c|c} \mbox{Independence of } \frac{dN}{dcs\theta^4} \mbox{ from } M_{D^*} - M_{D^0} \mbox{ background} \\ \mbox{The measure of tracking efficiency} & \mbox{Efficiency from counting} \\ \mbox{Conclusion} & \mbox{Closure tests} \\ \mbox{Back up} & \mbox{Systematics} \\ \end{array}$

Separation of signal and background

- The purpose is to show that $\frac{dN}{dcos\theta^*}$ is independent from $M_{D^*} M_{D^0}$ background
- Remembering our final state, π⁻K⁺π⁻_sℓ⁺ν, 3 samples can be distinguished using Monte Carlo information (4096 events)
 Signal: π⁻K⁺π⁻_s matched ~ 34 %
 Background: No particles matched. ~ 62 %
 Other: All other cases of matching. ~ 4 %

 Introduction
 Independence of $\frac{dN}{dcce\theta^+}$ from $M_{D^*} - M_{D^0}$ background

 The measure of tracking efficiency
 Efficiency from counting

 Conclusion
 Closure tests

 Back up
 Systematics

Fit of slow π helicity distributions in different regions of $M_{D^*} - M_{D^0}$

• Some regions of $M_{D^*} - M_{D^0}$ for the Background are selected and $\frac{dN}{d\cos\theta^*}$ normalized to 1 is fitted

Direction coefficient vs $M_{D^*} - M_{D^0}$

• The direction coefficient of the line used previously in the fit is plotted versus $M_{D^*} - M_{D^0}$

 $\begin{array}{ccc} \mbox{Introduction} & \mbox{Independence of } \frac{dN}{dcse\theta^*} \mbox{ from } M_{D^*} - M_{D^0} \mbox{ background} \\ \mbox{Efficiency from counting} \\ \mbox{Conclusion} & \mbox{Closure tests} \\ \mbox{Back up} & \mbox{Systematics} \\ \end{array}$

Efficiency from counting for π_s

- For $B^0 \to D^* \ell v \to (D^0 \pi_s) \ell v \to ((\pi K) \pi_s) \ell v$: $\varepsilon(p_{\pi_s}, m) = \frac{N(\pi_s^{Reco}|(\pi, K, \ell)^{Reco})}{D(\pi_s^{Gene}|(\pi, K, \ell)^{Reco})}$ $N(\pi_s^{Reco}|(\pi, K, \ell)^{Reco}) = \#$ Evt with reco π_s, π, K, ℓ associated to corresponding gen particles in $|\eta| < 2.4$ $D(\pi_s^{Gene}|(\pi, K, \ell)^{Reco}) = \#$ Evt with reco π, K, ℓ associated to the corresponding gen particles in $|\eta| < 2.4$
- Model for $\varepsilon(p_{\pi_s},m) = log(1-e^{m\cdot p_{\pi_s}})+1$

Comparison of the efficiencies of π_s and π

• $\mathcal{E}(p_{\pi}, m) = \frac{N(\pi^{Reco})}{D(\pi^{Gene})}$ $N(\pi^{Reco}) = \#$ Evt with reco π associated to corresponding gen particles in $|\eta| < 2.4$ $D(\pi^{Gene}) = \#$ Evt with generated π in $|\eta| < 2.4$

Closure test with associated tracks (CT1)

Some closure tests are performed to check the validity of the model and of the technique for studying the tracking efficiency

- Independent ways to extract $\varepsilon(p_{\pi_s}, m)$ must be consistent
- Same fitting method
 - p_{D^*} (k bin) e cos θ^* (n bin)
 - $D_{nk} = \#$ of events in bin nk $S_{nk} = \#$ of expected events in bin nk. $S_{nk} = \varepsilon(p_{\pi_s}, m) \cdot (\frac{dN}{dcos\theta^*})_k$

• Find
$$\varepsilon(p_{\pi_s}, m)$$
 minimizing $\chi^2 = \sum_{nk} \frac{(D_{nk} - S_{nk})^2}{\sigma_{D_{nk}}^2}$

• $\frac{dN}{dcos\theta^*}$ measured with all reco π_s, π, K, ℓ associated to corresponding gen particles in $|\eta| < 2.4$

$log(1-e^{-m\cdot p_{\pi}})+1$	m	$\frac{\chi^2}{ndf}$
CT1	4.4±0.5	0.9
SIPi	4.02±0.07	1.1

 Introduction
 Independence of $\frac{dN}{dcog^4}$ from $M_{D^*} - M_{D^0}$ background

 The measure of tracking efficiency
 Efficiency from counting

 Conclusion
 Closure tests

 Back up
 Systematics

Closure test with Signal sample (CT2)

- Event selection criteria must not bias the result
- Same fitting method
- $\frac{dN}{dcos\theta^*}$ measured with the Signal sample separeted above (See slide 13, left plot)

$\log(1-e^{-m\cdot p_{\pi}})+1$	m	$\frac{\chi^2}{ndf}$
CT2	4.6±0.9	1.3
CT1	4.4±0.5	0.9
SIPi	4.02±0.07	1.1

 $\begin{array}{ccc} & \text{Introduction} & \text{Independence of } \frac{dN}{dcs\theta^{+}} \text{ from } M_{D^{+}} - M_{D^{0}} \text{ background} \\ \hline \text{The measure of tracking efficiency} & \text{From counting} \\ & \text{Conclusion} & \text{Closure tests} \\ & \text{Back up} & \text{Systematics} \end{array}$

Closure test with Signal+Background sample (CT3)

- The result must not suffer any background subtraction
- Same fitting method
- $\frac{dN}{dcos\theta^*}$ measured with Signal+Background samples separeted above (See slide 13, left+middle plots), after the background subtraction

$\log(1-e^{-m\cdot p_{\pi}})+1$	m	$\frac{\chi^2}{ndf}$
CT3	4.55±1.33	1
CT2	4.6±0.9	1.3
CT1	4.4±0.5	0.9
SIPi	4.02±0.07	1.1

 $\begin{array}{ccc} \mbox{Introduction} & \mbox{Independence of } \frac{dN}{dcs\theta^{+}} \mbox{ from } M_{D^{+}} - M_{D^{0}} \mbox{ background} \\ \mbox{Efficiency from counting} \\ \mbox{Conclusion} & \mbox{Closure tests} \\ \mbox{Back up} & \mbox{Systematics} \end{array}$

Closure test with data reconstructed with combinatorial selection (CT4)

- The result must be consistent without using gen level information
- Same fitting method
- $\frac{dN}{dcos\theta^*}$ measured after selection of events, fit of signal and background and background subtraction (same as for data).

$log(1-e^{-m\cdot p_{\pi}})+1$	m	$\frac{\chi^2}{ndf}$
CT4	4.8±1.8	0.8
CT3	4.55±1.33	1
CT2	4.6±0.9	1.3
CT1	4.4±0.5	0.9
SIPi	4.02±0.07	1.1

Introduction The measure of tracking efficiency	Independence of $\frac{dN}{dcos\theta^*}$ from $M_{D^*} - M_{D^0}$ background Efficiency from counting
Conclusion	Closure tests
Back up	Systematics

Offline cut variation

- The fit has been repeated varying one by one the cuts on D_p^{*-} , Muon_{pt}, $\Delta R_{\overrightarrow{p_D^*},\overrightarrow{p_\ell}}$ within 10% of their original value during the selection of events.
- The module of the difference between the new and old value is considered

	m new	m old	$\Delta m = m \text{ new-m old} $
$D_p^{*-} > 5.725$			
-10%	$3.35{\pm}0.51$	3.36±0.49	0.01
+10%	3.30±0.48	3.36±0.49	0.06
$Muon_{p_T} > 5$			
-10%	$3.41{\pm}0.58$	3.36±0.49	0.05
+10%	3.38±0.49	3.36±0.49	0.02
$\Delta R_{\overrightarrow{p_{D^*}},\overrightarrow{p_\ell}} < 0.25$			
-10%	3.34±0.50	3.36±0.49	0.02
+10%	3.40±0.46	3.36±0.49	0.04

• The sistematic error is $\sqrt{(Max\Delta m_{D^{*-}})^2 + (Max\Delta m_{D^{*-}})^2}$

$$\Delta m_{D_p^{*-}})^2 + (Max\Delta m_{Muon_{p_T}})^2 + (Max\Delta m_{\Delta R_{\overline{p_D^*, p_\ell^*}}})^2 = 0.09$$