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Motivation :: Noncommutativity in string theory

But, noncommutativity first appeared in the gauge theory sector to which open 
strings belong to ...

String theory provides a unified framework for:

gauge theories gravity

renormalization

UV finite

noncommutative geometry?

UV finite

(open strings) (closed strings)



Chu, Ho - 1998

Motivation :: Noncommutativity for open strings 

Consider open strings ending on a 
D-brane with 2-form flux    .F

F

Xa(σ, τ)

θab = 2πα� �(1− F2)−1F
�ab

The open string coordinates satisfy (where                                             )

�
Xa(σ1, τ) , X

b(σ2, τ)
�
=






+iθab σ1 = σ2 = 0 ,

−iθab σ1 = σ2 = π ,

0 else .



Motivation :: Noncommutative gauge theories

A product reproducing this phase is the Moyal-Weyl star-product

Seiberg, Witten - 1999

f1(x) � f2(x) := exp
�
i
2 θ

ab ∂x1
a ∂x2

b

�
f1(x1) f2(x2)

���
x1=x2=x

.

From correlators such as above

Correlation functions of vertex operators                            satisfy (with                 )T = : ei p·X(σ,τ): �(τ) = ±1
�
T1 T2

�
= exp

�
− i

2 p1,a θ
ab p2,b �(τ1 − τ2)

�
×
�
T1 T2

�
θ=0

.

◾ an action can be constructed using the star-product
◾ which describes noncommutative gauge theories.
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Motivation :: Agenda for closed strings

Can this structure be generalized to closed strings?

1. Compute correlation functions

2. Determine an algebra of functions

3. Construct a theory of gravity using 
such an algebra

→ which background?
→ how to do computations?

→ mathematical properties?
→ correct physical properties?
→ ...

→ ...

Blumenhagen, EP - 2010
Blumenhagen, Deser, Lüst, EP, Rennecke - 2011
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Background // Preliminaries :: Ordering

Origin of noncommutativity for open strings:
◾ Two vertex operators are inserted on the boundary 

of a disk.
◾ The two-form flux      is sensitive to the ordering.

◾ Though, a loop connecting three nearby points has 
an orientation.

◾ A three-form flux can be sensitive to this ordering.

◾ Two vertex operators on a sphere cannot be ordered. 
Noncommutativity for closed strings?

F



Background // Preliminaries :: Three-bracket

Therefore, for closed strings one might consider
◾ not a 
◾ but a

single commutator
double commutator

involving two fields,
involving three fields

�
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�
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Background // Preliminaries :: Three-bracket

Therefore, for closed strings one might consider

�
Xa, Xb, Xc

�
:= lim

σi→σ

�
[Xa(σ1, τ), X

b(σ2, τ)], X
c(σ3, τ)

�
+ cyclic .

◾ vanishes for an associative product (Jacobi identity),
◾ while a non-zero result indicates a 

The corresponding three-bracket

◾ not a 
◾ but a

single commutator
double commutator

involving two fields,
involving three fields

noncommutative and nonassociative (NCA) structure.



Background // Preliminaries :: Fluxes

The three-form flux(es) of interest should originate in the NS-NS sector:

ωxy
z

Qx
yz◾ nongeometric flux

◾ geometric flux

◾ H-flux

◾ R-flux

Hxyz

Rxyz

Shelton, Taylor, Wecht - 2005

These fluxes are related by T-duality:

Hxyz
Tz←−−−−−→ ωxy

z Ty←−−−−−→ Qx
yz Tx←−−−−−→ R

xyz



Background // Preliminaries :: Fluxes

The three-form flux(es) of interest should originate in the NS-NS sector:

ωxy
z

Qx
yz◾ nongeometric flux

◾ geometric flux

◾ H-flux

◾ R-flux

Hxyz

Rxyz

Shelton, Taylor, Wecht - 2005

These fluxes are related by T-duality:

Hxyz
Tz←−−−−−→ ωxy

z Ty←−−−−−→ Qx
yz Tx←−−−−−→ R

xyz

flux background twisted torus T-fold not even locally geometric



Background // Preliminaries :: Goal

Goal :

◾ Determine properties of backgrounds for closed string noncommutativity.

→ Compute a cyclic double-commutator in an H-flux background.
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Consider backgrounds with H-flux.
◾ Due to Einstein's equation, these spaces are curved.
◾ Solvable examples of such NLSMs are WZW models.

Background // Three-bracket :: WZW model

Witten - 1984
Gepner, Witten - 1986

A WZW model for a group G is described by

S =
k

16π

�

∂Σ
d2xTr

�
(∂αg)(∂

αg−1)
�

− ik

24π

�

Σ
d3y �α̃β̃γ̃ Tr

�
(g−1∂α̃g)(g

−1∂β̃g)(g
−1∂γ̃g)

�
,

◾ where     is an euclidean three-manifold with boundary      ,
◾             denotes the level,
◾ and           .

Σ ∂Σ
k ∈ Z+

g ∈ G
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�
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αg−1)
�

− ik
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�

Σ
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Background // Three-bracket :: WZW model

Witten - 1984
Gepner, Witten - 1986

The WZW model on SU(2) with level k corresponds to
◾ a NLSM on S3 with radius
◾ and H-flux through the sphere.

R =
√
k

Consider backgrounds with H-flux.
◾ Due to Einstein's equation, these spaces are curved.
◾ Solvable examples of such NLSMs are WZW models.



Therefore, one can perform Laurent expansions

Background // Three-bracket :: Conserved currents

◾ of the form

◾ where the modes satisfy Kac-Moody algebras 

The eom require these currents to be (anti-)holomorphic. 

J = Ja σa

√
2
= −k

�
∂zg

�
g−1 , J = Ja σa

√
2
= +k g−1

�
∂zg

�
.

The conserved currents are (                            ,     ... Pauli matrices)z = exp(x1 + ix2) σa

Ja(z) =
�

n∈Z
jan z

−n−1 ,

fabc =
√
2 �abc .

�
jam, jbn

�
= ifab

c j
c
m+n + km δm+n δ

ab ,

�
jam, jbn

�
= ifab

c j
c
m+n + km δm+n δ

ab ,

Ja(z) =
�

n∈Z
jan z

−n−1 ,



Background // Three-bracket :: Integrated currents 

Ja(z) = −i
√
k ∂zX

a(z, z) .Ja(z) = −i
√
k ∂zX

a(z, z) ,

Similarly as in flat space, one can introduce fields                                           viaXa(z, z) = Xa(z) +Xa(z)

Integrating the mode expansion of the current         , one findsJa(z)

◾ The algebra involving      is not known.
◾ The modes      satisfy a Kac-Moody algebra.

xa
0

jan

Xa(z) =
i√
k
xa
0 −

i√
k
ja0 log z +

i√
k

�

n �=0

jan
n

z−n .

xa pa(z) ja(z)



Background // Three-bracket :: Computation I

Compute the holomorphic double-commutator (at equal times                          )|z1| = |z2| = |z3|
�
Xa(z1), X

b(z2), X
c(z3)

�
=

��
Xa(z1), X

b(z2)
�
, Xc(z3)

�
+ cyclic .



Background // Three-bracket :: Computation I

�
xa,xb,xc

�
+

�
xa,xb, ·

�
+

�
xa, · , ·

�
+ . . . = Pabc(z1, z2, z3) .

◾ The contribution from      is so far undeterminedxa
0
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�
xa,xb,xc

�
+

�
xa,xb, ·

�
+

�
xa, · , ·

�
+ . . . = Pabc(z1, z2, z3) .

◾ The contribution from      is so far undeterminedxa
0

�
pa(z1),pb(z2),pc(z3)

�
∼

�
fab

ufuc
v + f bc

ufua
v + fca

ufub
v

�
jv
0 = 0 ,

◾ The bracket involving only     vanishes via the Jacobi identityja0
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Background // Three-bracket :: Computation I

◾ and similarly for
�
pa(z1),pb(z2), jc(z3)

�
+

�
pa(z1), jb(z2),pc(z3)

�
+

�
ja(z1),pb(z2),pc(z3)

�
= 0 ,

�
pa(z1), jb(z2), jc(z3)

�
+

�
ja(z1),pb(z2), jc(z3)

�
+

�
ja(z1), jb(z2),pc(z3)

�
= 0 .

�
xa,xb,xc

�
+
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�
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�
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�
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Background // Three-bracket :: Computation I

◾ and similarly for
�
pa(z1),pb(z2), jc(z3)

�
+

�
pa(z1), jb(z2),pc(z3)

�
+

�
ja(z1),pb(z2),pc(z3)

�
= 0 ,

�
pa(z1), jb(z2), jc(z3)

�
+

�
ja(z1),pb(z2), jc(z3)

�
+

�
ja(z1), jb(z2),pc(z3)
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= 0 .

�
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+

�
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+

�
xa, · , ·

�
+ . . . = Pabc(z1, z2, z3) .

◾ The contribution from      is so far undeterminedxa
0

�
pa(z1),pb(z2),pc(z3)

�
∼

�
fab

ufuc
v + f bc

ufua
v + fca

ufub
v

�
jv
0 = 0 ,

◾ The bracket involving only     vanishes via the Jacobi identityja0

�
ja(z1), jb(z2), jc(z3)

�
= −fabc

√
k

�

n,m�=0
n+m�=0

1
n m

�
z3

z1

�n �
z3

z2

�m

+ cyclic .

◾ The bracket involving only      can be written asjan

Compute the holomorphic double-commutator (at equal times                          )|z1| = |z2| = |z3|
�
Xa(z1), X

b(z2), X
c(z3)

�
=

��
Xa(z1), X

b(z2)
�
, Xc(z3)

�
+ cyclic .



Background // Three-bracket :: Computation II

Combining these results with the anti-holomorphic sector, one finds
�
Xa(z1, z1), X

b(z2, z2), X
c(z3, z3)

�

= Pabc(z1, z2, z3) + Pabc(z1, z2, z3) + 2
fabc

√
k

Γ(σ1,σ2,σ3) .

To evaluate the sum, recall                             and compute zi = exp(τ + iσi)

Γ(σ1,σ2,σ3) =−
�

n,m �=0
n+m �=0

1

nm

�
z3
z1

�n �z3
z2

�m

+ cyclic

=

�
−π2 σ1 = σ2 = σ3 ,

0 else .
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Background // Three-bracket :: Final result

Zero-mode contribution        :Pabc

◾ The algebra of the modes      is not known.
◾ The observed structure is very similar to the open string case.

xa
0

We assume that
◾ the zero-mode contribution            is continuous,
◾ and for generic points  
◾ the equal-time double commutator has to vanish.

P + P
zi

�
Xa(z1, z1), X

b(z2, z2), X
c(z3, z3)

�
=






−2π2

√
k
fabc σ1 = σ2 = σ3 ,

0 else .

Combining these arguments, one then arrives at 
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Background :: Summary

To study noncommutativity for closed strings,

◾ Noncommutative effects can be seen already at linear order in the flux.

◾ one may consider backgrounds with H-,    -, Q- or R-flux.ω



→ which background?

Background :: Agenda

1. Compute correlation functions

2. Determine an algebra of functions

3. Construct a theory of gravity using 
such an algebra

→ correct physical properties?
→ ...

→ ...

Blumenhagen, EP - 2010
Blumenhagen, Deser, Lüst, EP, Rennecke - 2011
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CFT :: Setting

Goal: construct a CFT describing this background (at linear order in H).

At linear order in H (and for constant dilaton    ), the   -functions are vanishingβΦ

βG
ab = α�Rab −

α�

4
Ha

cd Hbcd + 2α�∇a∇bΦ+O(α�2) ,

βB
ab = . . . .

Consider the following background (as part of a bosonic string construction)

ds2 =
3�

a=1

�
dXa

�2
, H =

2

α�2 θabc dX
a ∧ dX

b ∧ dX
c
.



CFT :: Setting

Goal: construct a CFT describing this background (at linear order in H).

At linear order in H (and for constant dilaton    ), the   -functions are vanishingβΦ

βG
ab = α�Rab −

α�

4
Ha

cd Hbcd + 2α�∇a∇bΦ+O(α�2) ,

βB
ab = . . . .

→ Using conformal perturbation theory,
→ determine two- and three-point functions.

Consider the following background (as part of a bosonic string construction)

ds2 =
3�

a=1

�
dXa

�2
, H =

2

α�2 θabc dX
a ∧ dX

b ∧ dX
c
.



CFT :: Conformal perturbation theory

which (in a convenient gauge) can be written as

◾ The sigma-model action for the closed string reads

S1 =
1

2πα�
Habc

3

�

Σ
d
2
z X

a∂Xb ∂Xc
.S = S0 + S1 with

S =
1

2πα�

�

Σ
d2z

�
gab +Bab

�
∂Xa ∂Xb ,

which can be expanded as

◾ Correlation functions of operators      are computed asOi

�
O1 . . .ON

�
=

1

Z

�
[dX]O1 . . .ON e−S[X] ,

�
O1 . . .ON

�
=

�
O1 . . .ON

�
0
−
�
O1 . . .ON S1

�
0
+O

�
H

2
�
.



CFT :: Two- and three-point functions

Suitable holomorphic and antiholomorphic conformal fields are

The nonvanishing (holomorphic) two- and three-point functions read

�
J a(z1)J b(z2)

�
=

α�

2

1

(z1 − z2)2
δab ,

�
J a(z1)J b(z2)J c(z3)

�
= −i

α�2

8
H

abc 1

z12 z23 z13
.

J a(z) = i∂Xa(z, z)− 1
2H

a
bc ∂X

b(z, z)Xc
R(z) ,

J a
(z) = i∂Xa(z, z)− 1

2H
a
bc X

b
L(z) ∂X

c(z, z) .



CFT :: OPE & energy-momentum tensor

The OPE derived from these correlators reads (up to linear order in H)

J a(z1) J b(z2) =
α�

2

δab

(z1 − z2)2
− α�

4

iH
ab

c

z1 − z2
J c(z2) + reg. .

→ The central charge is that of the free theory.
→ The fields       are primary with dimension (1,0).J a

The energy-momentum tensor (at linear order in H) has the form

T (z) =
1

α� δab :J
aJ b : (z) .

Nahm - 1989



CFT :: Vertex operators

J a(z1)X b
L(z2) = −i

α�

2

δab

z1 − z2
+

α�

4
H

ab
c J c(z2) log(z1 − z2) + reg. .

Consider the integrated currents            (and            ) with OPEX a
L(z) X a

R(z)

V(z, z) = :exp
�
ikL · XL + ikR · XR

�
: ,

Define vertex operators for the CFT at linear order in H as

kaL/R = pa ± wa

α� .

For the tachyon with                  , the vertex operator is primary and has conformal 
dimensions (1,1).

k2L/R = 4
α�



CFT :: Summary

For a flat background with H-flux

◾ we have constructed a CFT at linear order in the flux,

◾ and defined a vertex operator for the tachyon (of the bosonic string).
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Results :: T-duality

The CFT is defined for H-flux ­ other flux-backgrounds are related via T-duality.

T-duality can be realized on the world-sheet by

X a
L(z)

X a
R(z)

+X a
L(z)

−X a
R(z)

T-duality

Vertex operators with momentum             and winding               are only well-
defined for H- and R-flux.

pa �= 0 wa = 0



Results :: Three-tachyon correlator

The three-tachyon correlator (at linear order in the flux) then reads

�
V1 V2 V3

�
H/R

= exp
�
−iθabc p1,ap2,bp3,c

�
L
�
z12
z13

�
∓ L

�
z12
z13

���

θ

�
V1 V2 V3

�
H/R

0
.

First, define a function         in terms of the Rogers dilogarithm L(z) L(z)

L(z) = Li2(z) +
1
2 log(z) log(1− z) .L(z) = L(z) + L

�
1− 1

z

�
+ L

�
1

1−z

�
,

Using momentum conservation, the flux-dependent part vanishes (at linear order).



Results :: Permutations and tri-product

When permuting two vertex operators,
◾ in the case of H-flux, tachyon correlators are invariant;
◾ in the case of R-flux, one finds

�
V2V1V3

�R
= exp

�
iπ2 θabc p1,a p2,b p3,c

�

θ

�
V1 V2 V3

�R
.

One can then define a tri-product as

f1(x)�f2(x)�f3(x) :=

exp
�

π2

2 θabc ∂x1
a ∂x2

b ∂x3
c

�
f1(x1) f2(x2) f3(x3)

���
x1=x2=x3=x

.
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When permuting two vertex operators,
◾ in the case of H-flux, tachyon correlators are invariant;
◾ in the case of R-flux, one finds

�
V2V1V3

�R
= exp

�
iπ2 θabc p1,a p2,b p3,c

�

θ

�
V1 V2 V3

�R
.

One can then define a tri-product as

f1(x)�f2(x)�f3(x) :=

exp
�

π2

2 θabc ∂x1
a ∂x2

b ∂x3
c

�
f1(x1) f2(x2) f3(x3)

���
x1=x2=x3=x

.

The tri-product correctly reproduces the three-bracket via
�
Xa, Xb, Xc

�
=

�

σ∈P3

sign(σ) Xσ(a)�Xσ(b)�Xσ(c) .



Results :: Summary

Employing the previously defined CFT up to linear order in the flux,

◾ from tachyon correlation functions

◾ a tri-product on functions has been defined for the case of R-flux.

f1(x)�f2(x)�f3(x) :=

exp
�

π2

2 θabc ∂x1
a ∂x2

b ∂x3
c

�
f1(x1) f2(x2) f3(x3)

���
x1=x2=x3=x

.
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The Virasoro-Shapiro amplitude (at linear order in flux)
◾ has been computed and the pole structure has been analyzed,
◾ revealing new tachyons in the spectrum (of the bosonic string).
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◾ The instability indicated by the tachyons points towards a relation
◾ between left-right-asymmetric string and R-flux backgrounds.



Further results :: Asymmetric strings

The Virasoro-Shapiro amplitude (at linear order in flux)
◾ has been computed and the pole structure has been analyzed,
◾ revealing new tachyons in the spectrum (of the bosonic string).

Conjecture:
◾ The instability indicated by the tachyons points towards a relation
◾ between left-right-asymmetric string and R-flux backgrounds.

     with H-fluxT3      with R-fluxT3



Further results :: Asymmetric strings

The Virasoro-Shapiro amplitude (at linear order in flux)
◾ has been computed and the pole structure has been analyzed,
◾ revealing new tachyons in the spectrum (of the bosonic string).

Conjecture:
◾ The instability indicated by the tachyons points towards a relation
◾ between left-right-asymmetric string and R-flux backgrounds.

     with H-fluxT3      with R-fluxT3

               WZW model�su(2)sym.
k

     with           T3
H = 0



Further results :: Asymmetric strings
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◾ has been computed and the pole structure has been analyzed,
◾ revealing new tachyons in the spectrum (of the bosonic string).

Conjecture:
◾ The instability indicated by the tachyons points towards a relation
◾ between left-right-asymmetric string and R-flux backgrounds.

     with H-fluxT3      with R-fluxT3

               WZW model�su(2)sym.
k

     with           T3
H = 0

                WZW model�su(2)asym.
k
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