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Motivations

Quantized spacetime

o It is generally expected that the usual description of spacetime in
terms of a Riemannian geometry would break down above the
Planck energy scale.

@ A possibility is that geometry is quantized and spacetime
coordinates become quantum operators.

@ In this case, traditional spacetime concepts such as locality and
causality and even the fundamental nature of spacetime itself, will
have to be re-examined.
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o It is generally expected that the usual description of spacetime in
terms of a Riemannian geometry would break down above the
Planck energy scale.

@ A possibility is that geometry is quantized and spacetime
coordinates become quantum operators.

@ In this case, traditional spacetime concepts such as locality and
causality and even the fundamental nature of spacetime itself, will
have to be re-examined.

Q. What can one learn from string theory?



Motivations

Lie algebra type NCG in string: B — field

@ Example 1: The worldvolume of a D-brane become noncommutative
when a constant NSNS B-field is turned on:

Noncommutative geometry: [X', X/] = i6".

Connes, Douglas, Schwarz (1997); Douglas, Hull (1997); Chu, Ho (1998);
Schomerus (1999); Seiberg, Witten (1999)

@ This result can be derived by quantizing open string in NSNS
B-field. One obtains:
1. the NCG for the endpoint of the open string, i.e. the D-brane.
2. moreover one obtains automatically the open string metric.
Chu, Ho (1998)



Lie algebra type NCG in string: Marix model

@ Example 2: NCG cluld be obtained as classical solution of equation
of motion of BFSS or IKKT matrix models

@ BFSS matrix model
S= /dt(DtX')2 — [X!, X’]? 4 fermions

e EOM
DtQXI - [XJ? [lexJ]] =0
has time independent soln

X', x7 = io".

These can be interpretrated as the spacetime coordinates of the
worlvolume of a D-brane in B-field. Seiberg (2000)



Lie algebra type NCG in string: Myers effect

@ Example 3: NCG also arises due to Myers effect

@ In the presence of a RR-flux, a collection of DO-branes can expand
and become a D2-brane whose worldvolume is described by a fuzzy

sphere o )
(X', X] = ielkxk, X2 =R2

@ also derived using open string without using Myers effective action
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Lie algebra type NCG in string: Myers effect

@ Example 3: NCG also arises due to Myers effect

@ In the presence of a RR-flux, a collection of DO-branes can expand
and become a D2-brane whose worldvolume is described by a fuzzy

sphere o )
(X', X] = ielkxk, X2 =R2

@ also derived using open string without using Myers effective action

All very nice!
But ....

Q2. Any example which is not Lie-algebraic type?



Motivations

3-bracket geometry: M5 brane with constant 3-form C

Aim was achieved partially recently

Consistency between the different descriptions of the M2-M5
intersecting branes system implies that the M5-brane geometry in
the presence of a constant 3-form C-field takes the form of

(X, XI, XK] = i6eb i j k=234

The reason why a Lie 3-bracket appears is because the geometry of
the M5-brane was inferred from the boundary dynamics of the open
M2-branes (BLG theory) which end on it

In a QFT, necessary to understand the relation as an operator
relation. However so far no representation of Lie 3-algebra have
been constructed.
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Aim was achieved partially recently

Consistency between the different descriptions of the M2-M5
intersecting branes system implies that the M5-brane geometry in
the presence of a constant 3-form C-field takes the form of

(X, XI, XK] = i6eb i j k=234

The reason why a Lie 3-bracket appears is because the geometry of
the M5-brane was inferred from the boundary dynamics of the open
M2-branes (BLG theory) which end on it

In a QFT, necessary to understand the relation as an operator
relation. However so far no representation of Lie 3-algebra have
been constructed.

Need to consider different possibilities



Motivations

Quantum Nambu geometry from D1-branes in large

RR-flux

@ We will show that:

the 3-bracket geometry arises as classical solution of matrix model of

D1-strings in a backgrond of large RR 3-form field strength due to
Myer effects

@ The 3-bracket is given by

[f,g, h] := fgh+ ghf + hfg — thg — gfh — hgf,

defined on ordinary operators.



Motivations

Quantum Nambu geometry from D1-branes in large

RR-flux

@ We will show that:

the 3-bracket geometry arises as classical solution of matrix model of
D1-strings in a backgrond of large RR 3-form field strength due to
Myer effects

@ The 3-bracket is given by
[f,g, h] := fgh+ ghf + hfg — thg — gfh — hgf,

defined on ordinary operators.

@ This 3-bracket was originally proposed by Nambu (1973), so we will
refer the geometry as Quantum Nambu geometry
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D1-branes in large RR F3 background

Exact |IB background with F3 flux

@ An exact IIB supergravity background with constant RR F3 flux can
be constructed

o start with AdSs x S° with

ces 01234,
Fs = ¢ cep 56789,
0 otherwise

and turns on a costant F3 flux in the 123 diretion

Fs = fej, ij,k=1,2,3,

@ Both F3 and Fs contributes a term like a cosmological constant to
the Einstein equation.



D1-branes in large RR F3 background

Exact |IB background with F3 flux

@ Can adjust f ~ ¢ to balanced out the contribution of F5 to the
Einstein equation and flatten a 3d part of AdSs to R® x AdS,.

@ The metric is R® x AdS, x S°

ds® = (dX')? + R*(

i=1

—dt? + dU?

)t R2dQ%,

where
R? =2e7%%/f?, R'? = 40R?,

@ Nonsupersymmetric due to nonzero Fj.



D1-branes in large RR F3 background

D1-strings action

@ The worldvolume action for the D1-branes is given by the

Non-abelian Born-Infeld action plus the Chern-Simons term of the
Myers type

Ses =y [ THP(E S Gr)e.
n
@ For us,

/\3
Scs J75 /TI‘ |:/\FX + PG+ i/\2Fiq>i¢C2 + iAPipie Cs — fFli G

= Sy+ S¢ + Sa,

where, G, = feu X dX/dX*.



D1-branes in large RR F3 background

D1-strings action

@ Nonabelian Born-Infeld in curved space is much less understood

@ Two sources of difficulties:
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D1-branes in large RR F3 background

D1-strings action

@ Nonabelian Born-Infeld in curved space is much less understood

@ Two sources of difficulties:
1, amguigity associated with ordering of F
2. incoporation of a curved metric G;;(X)

@ A natural proposal is to promote the metric to become a matrix
G1(X) and to incooporate the effect of curved space with the action,

Sx/m = | dP*lo/—det Gap ( Gu(X)DaX' DyX?GYP
1
+ = GG (X)X XX, X)),

It was proposed that the ambiguities in Gj;(X) could be resolved by
requiring that the IR gravitational physics be correctly reproduced.

@ For p =0, it was proposed that the action gives the Matrix theory in
curved space.



D1-branes in large RR F3 background

D1-strings action

o Full D1 strings action is
S = 5)( + SCS + Sy/w,

where the Yang-Mills term is

Sym/pg = o' / /—det Gop FusForp GO G

@ Due to the specific form of our background, the scalars
X'(i=1,2,3) and X' (i’ =5,6,7,8,9, sphere directions)
decoupled from each other.

e Consistent to set X’ = 0 and focus on the sector of X’ and gauge
fields.



D1-branes in large RR F3 background

Large F3 double scaling limit

@ Turns out there is a double scaling limit € — O:

f ~ €72 a>0,

with 1/2 < a < 2, the low energy action of N D1-branes in a large
F3 background is given by the C, terms Sc,:

' 1 ; - o
ulf/dQUTr(ie,-ij’DaXfDﬁxke“ﬁ)+u1f/d2aTr(in'x1xke,-jk)
such that the dominant terms in the EOM are reproduced.

@ This matrix model described the physics of D1-strings in a large F3
background.



D1-branes in large RR F3 background ons

Remarks:

@ The dominance of the system by a topological term is similar to
what happened in the discussions of Susskind etal (2001) where the
effects of a Lorentz force term

H . )
L=B o mXiDX, =12,
2

on the physics of a system of N D0-branes dissolved in a D2-brane
(whose spatial directions are i = 1,2) was studied.

@ The equation of motion of L is solved with any configuration
DtX’ — O

@ A speciifc solution [x/, x/] = ife¥ which corresponds to a D2-brane
charge density were considered.



D1-branes in large RR F3 background

Quantum Nambu geometry as classical solution

@ The matrix model has classical solution
D.,X'=0. F=0.
@ Moyal type noncommutative geometry
(X, X/] = i6Y
is allowed. But there is also the new solution
(X7, X7, XK = ifelk,

where 0 is a constant and the 3-bracket is given by the Quantum
Nambu bracket.



D1-branes in large RR F3 background ons

Remark 1:

@ The 3-bracket was originally introduced by Nambu as a possible
candidate of the quantization of the classical Nambu bracket

{f, g, h} = ™0;f0;g0kh.

@ Nambu was interested in generalizing the Hamiltonian mechanics to
the form (Nambu mechanics)

df
— ={Hy,H,, f
dt { 1, 12, }7
which involves two " Hamiltonians” Hi, H,. Fundamental identity
was not needed in his consideration (in fact not satisfied).
@ The concept of fundamental identity was introduced almost 20 years

later by Takhtajan (and Baryen and Flato independently) as a
natural condition for his definition of a Nambu-Poisson manifold.

o This allowed him to formulate the Nambu mechanics in an invariant
geometric form similar to that of Hamiltonian mechanics.



D1-branes in large RR F3 background ons

Remark 2:
@ In attempt to intrepret the M5-brane geometry in C-field

(X7, XI, X¥] = ig¥

The quantization of the Lie 3-bracket was considered recently:

@ - Quantization of Nambu-Poisson manifold

- Construction of representation of Lie 3-algebra in terms of a
Cartan-Weyl basis
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Remark 2:
@ In attempt to intrepret the M5-brane geometry in C-field

(X7, XI, X¥] = ig¥

The quantization of the Lie 3-bracket was considered recently:

@ - Quantization of Nambu-Poisson manifold

- Construction of representation of Lie 3-algebra in terms of a
Cartan-Weyl basis

For us here,
- no need to worry about fund identity.
- Quantization is made ready as 3-bracket is written in terms of operators.

Need only to construct representation of these operators
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Representation of Nambu-Heisenberg commutation relation

Finite SU(2) representations

@ An intermediate observation is that if we start with the standard
SU(2) algebra
Ui, ] = i€jjicli,
then with X’ = al; for a constant «, we have
(X', X/, X¥] = ia®Cg,
where Cy is the quadratic Casmir for the representation R where X'
is in.
@ For N x N matrices, Cy = (N? — 1)/4 and so if we choose

a? = 0/Cp, then we can realize the NH relation with N x N
matrices.
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Finite SU(2) representations

@ An intermediate observation is that if we start with the standard
SU(2) algebra
Ui, ] = i€jjicli,
then with X’ = al; for a constant «, we have
(X', X/, X¥] = ia®Cg,
where Cy is the quadratic Casmir for the representation R where X'
is in.
@ For N x N matrices, Cy = (N? — 1)/4 and so if we choose

a? = 0/Cp, then we can realize the NH relation with N x N
matrices.

In what sense we have a new quantized geometry?



Representation of Nambu-Heisenberg commutation relation ons

@ Turns out in the large N limit, there are new representations that
cannot be considered as limits of the above form, i.e. not
representations of SU(2) or any Lie algebra.

@ |t is the existence of these new representations that demonstrates
the indecomposable and fundamental nature of the
Nambu-Heisenberg commutation relation.



Representation of Nambu-Heisenberg commutation relation

Infinite dimesnional representation 1: Z,Z, X

Two example of representations:

o Hermitian X™'s and introduce the complex coordinates
Z=X'+ix?, Z=x'-ix? X=X

Then [X, Z,Z] = 26.
@ Consider an ansatz

Zl) = AW+ 6) + Bl - ),
ZWw) = w+ B+ B+ (w8l - )
Xlw) = gw)lw)

@ The introduction of Z, Z is motivated by the creation and annhiliation
operators for the Heisenberg commutation relation. Thus natural to
consider the representation with £, = 0 or fi = 0. However this gives a
constraint of the form

ZZ+77 = Z(X)

for some function Z and so describes at most a 2-dimensional spaces.
Therefore we are prompt to the above ansatz.



Representation of Nambu-Heisenberg commutation relation

Infinite dimesnional representation 1: Z,Z, X

@ Skipping the details, a solution can be stated

g(w) = cos aw,

49
(W) = |h(w)]> = ko — 3 cosaw,

where ko > 40/3, a = 35(6n+£ 1), n € Z.

@ The representation space is given by the 1-dimensional lattice
{lw+n):nelZ}

and is of countably infinite dimension.



Representation of Nambu-Heisenberg commutation relation

Infinite dimesnional representation 2: Z3 symmetry

o Let p = e?™/3, cubic root of unity and consider
Xi|w) = (w4 a)|lw+1),
Xolw) = p*(w+ap)lw+p),
Xzlw) = plw+ap®)lw+p?).
it is

[X1, Xo, Xs]|w) = 3(a® — a)(p — p*)|w),
Thus so long as a # 1, we have a nonzero 6.

@ In this representation the fields X7, X5, X3 are not hermitian. They
are however related through a unitary transformation,

X; = U XU,
X = Urxu,
Xz = Utx,U,

where
U|W> = |p2w>,



Representation of Nambu-Heisenberg commutation relation

Infinite dimesnional representation 2: Z3 symmetry

@ In this construction, the representation space is given by the
2-dimesnional lattice

{Im+np) : m,neZ}

and is of countably infinite dimension.



Representation of Nambu-Heisenberg commutation relation ons

Remarks:

1. Infinite dimesnional representation has also been constructed by
Takhtajan. However his representation is complex as the operators
X' are not represented as Hermitian operators there. So his
representation is for a deformation of a 6 real dimenional space.

2. There is probably infinite number of inequivalent infinite dimensional
representations. We gave two examples here.

Precisely which representation is to be used is a question that
depends on the physics under consideration.
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Physics of D1-strings Matrix Model

Small fluctuations around the Nambu geometry

Recall
1 . . .
Se, = mf / dzaTr(Ee,-ij’DaXJDBXkeaﬁ)+u1f / d?oTr(iFX X X )

= mf(li+ L)

o Consider fluctuation around the classical solution X/, = x/
[x', x/, xK] = ielkg.
parametrized as
. X! . .
X' = glKXK —+ EUkBjk(O'a,XI),

@ The two-form B, is analagous to the one-form gauge field A used in
the perturbative solution to non-commutative Yang-Mills.



Physics of D1-strings Matrix Model

Small fluctuations around the Nambu geometry

@ We obtain

Ll /tr( hhh emmzms af (B/1m1D BlzngdB/3m3)>

Here fx is an integral on the quantum Nambu geometry which can
be constructed from a representation of the geometry.
This term has a form analogous to the kinetic piece of a
Chern-Simons theory.
@ For Ly, we get
X2, X3, x4 = @ + —[x X, Byl — —e”k[x By, Bi] + = [B,, Byt B ]e e’

= 02 +H
and so

Ly = i[tr(FH).

@ Not clear if the 5-dimensional theory has an interpretation as
worldvolume theory of some branes.
@ A theory of non-abelian self-dual two forms reduced.to 5-dimensions?



Physics of D1-strings Matrix Model

Quantum field theory on quantum Nambu geometry

@ Interesting question to construct quantum field theory on the
quantum Nambu geometry.

@ An integral on the space can be constructed from the representation
as a trace.

@ The Nambu-Heisenberg relation implies a kind of minimal volume
relation. What is its manifestation in a quantum field theory?

@ work in progress
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Conclusions

@ We have obtained Quantum Nambu geometry in string theory

@ We have studied representation of the geometry and demonstrated
that the geometry is not reducible to known Lie-algebraic type.

@ Physics on this kind of quantum spaces may be interesting.

@ Small fluctuation of D1-brane around quantum Nambu geometry
suggests a formulation of “Non-Abelian” self-dual tensor multiplet
on multiple M5-branes?



Conclusions

@ We have obtained Quantum Nambu geometry in string theory

@ We have studied representation of the geometry and demonstrated
that the geometry is not reducible to known Lie-algebraic type.

@ Physics on this kind of quantum spaces may be interesting.

@ Small fluctuation of D1-brane around quantum Nambu geometry
suggests a formulation of “Non-Abelian” self-dual tensor multiplet
on multiple M5-branes?

Thank you!
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