Quantization of 2-plectic Manifolds

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

Workshop on Noncommutative Field Theory and Gravity Corfu, September 9, 2011

Based on:

• CS and Richard Szabo, work in progress

Symplectic manifolds

Manifold M with closed 2-form ω such that $\iota_v \omega = 0 \Leftrightarrow v = 0$.

- Poisson structure \rightarrow Phase spaces in Hamiltonian dynamics.
- Starting point for quantization.

p-plectic manifolds

Manifold M with closed p+1-form ω such that $\iota_v \omega = 0 \Leftrightarrow v = 0$.

- 1-plectic: symplectic, 2-plectic: 3-form ω
- Often) Nambu-Poisson structure → multiphase spaces in Nambu mechanics.
- Starting point for higher quantization (?)
- Why should we be interested in such manifolds?
- Why should we quantize them?

Monopoles and Self-Dual Strings

Lifting monopoles to M-theory yields self-dual strings.

0 1 2 3 4 5 6 D1 × × × × D3 × × × × ×

BPS configuration!

Nahm equation:

 $\frac{\mathrm{d}}{\mathrm{d}x^6}X^i + \varepsilon^{ijk}[X^j, X^k] = 0$

Sol. $X^i = rac{1}{x^6} G^i$, $G^i = arepsilon^{ijk} [G^j, G^k]$

⇒ Fuzzy Funnel Nahm, Diaconescu, Tsimpis Basu-Harvey equation:

 $\frac{\mathrm{d}}{\mathrm{d}x^6}X^\mu + \varepsilon^{\mu\nu\rho\sigma}[X^\nu,X^\rho,X^\sigma] = 0$

Sol. $X^{\mu}=rac{1}{\sqrt{x^6}}G^{\mu}$,

 $G^{\mu}=\varepsilon^{\mu\nu\rho\sigma}[G^{\nu},G^{\rho},G^{\sigma}]$

 \Rightarrow Fuzzy Funnel Basu, Harvey

Quantization of 2-plectic Manifolds

• M5-brane perspective: Turning on 3-form background,

$$C = \theta \mathrm{d}x^0 \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^2 + \theta' \mathrm{d}x^0 \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^2 ,$$

one gets interesting noncommutative deformations:

Noncommutative loop space

Kawamoto, Sasakura and Bergshoeff et al. (2000)

• $[x^0, x^1, x^2] = \theta$ and $[x^3, x^4, x^5] = \theta'$ Chu, Smith (2009)

- Non-associative structures from strings in H-field backgrounds Blumenhagen, Deser, Lüst, Plauschinn, Rennecke (2010/11)
- Baez et al.: Phase space of bosonic string is 2-plectic

- Berezin quantization of $\mathbb{C}P^1$
- Quantization of duals of Lie algebras
- From Lie algebras to Lie algebroids
- Hawkins approach to quantization
- Loop spaces and gerbes
- Example: Quantization of \mathbb{R}^3

Berezin Quantization of $\mathbb{C}P^1 \simeq S^2$ The fuzzy sphere is the Berezin quantization of $\mathbb{C}P^1$.

Hilbert space

 \mathscr{H} : space of global polarized sections of prequantum line bundle. Line bundle $L_k = \mathcal{O}(k)$, Kähler polarization: $\mathscr{H}_k = H^0(\mathbb{C}P^1, L_k)$.

$$\mathscr{H}_k \cong \operatorname{span}(z_{\alpha_1}...z_{\alpha_k}) \cong \operatorname{span}(\hat{a}_{\alpha_1}^{\dagger}...\hat{a}_{\alpha_k}^{\dagger}|0\rangle)$$

Coherent states

For any $z \in \mathcal{M}$: coherent st. $|z\rangle \in \mathscr{H}$. Here: $|z\rangle = \frac{1}{k!} (\bar{z}_{\alpha} \hat{a}_{\alpha}^{\dagger})^k |0\rangle$.

Quantization

Quantization is the inverse map on the image $\Sigma = \sigma(\mathcal{C}^{\infty}(\mathcal{M}))$ of

$$f(z) = \sigma(\hat{f}) = \operatorname{tr} \left(\frac{|z\rangle \langle z|}{\langle z|z\rangle} \hat{f} \right) \ , \quad \text{Bridge: } \mathcal{P} := \frac{|z\rangle \langle z|}{\langle z|z\rangle} \hat{f}$$

Kirillov-Kostant-Souriau Poisson structure on $M = \mathfrak{g}^*$

Linear functions on M: elements of \mathfrak{g} . Define

 $\{g_1, g_2\}(x) = \langle x, [g_1, g_2] \rangle , \quad g_1, g_2 \in \mathfrak{g} .$

Extend to polynomial functions using the Leibniz identity.

Quantization: $C_0(\mathfrak{g}^*) \rightarrow \text{convolution}$ algebra $C^*(G)$

 $\begin{array}{ccc} C_0(\mathfrak{g}^*) & \xrightarrow{\text{Fourier-transform}} & C_0(\mathfrak{g}) \\ & & \downarrow & \text{identify via exp} \\ C^*(\mathfrak{g}^*) & \xleftarrow{\text{transform back}} & C^*(G) & \leftarrow \text{convolution product} \end{array}$

For nilpotent Lie algebras: equiv. to Kontsevich/univ. env. algebra

Example: κ -Minkowski Space κ -Minkowski space can be obtained from a quantized dual of a Lie algebra.

 κ -Minkowski space: $[g^0,g^i] = \mathrm{i}\hbar g^i$, $[g^i,g^j] = 0$, i>0

Group: $G_{\hbar} \cong \mathbb{R} \rtimes_{\alpha} \mathbb{R}$ generated by $W(k_0, \vec{k}) = V_{\vec{k}} U_{k_0}$ with $U_{k_0} := \exp\left(\mathrm{i} \, k_0 \, g^0\right)$, $V_{\vec{k}} = \exp\left(-\mathrm{i} \sum_i k_i \, g^i\right)$ and

$$W(k_0, \vec{k}) W(k'_0, \vec{k}') = W(k_0 + k'_0, \vec{k} + e^{-\hbar k_0} \vec{k}')$$

Convolution algebra generated by

$$W(\tilde{f}) := \int_{\mathbb{R}^d} \mathrm{d}k_0 \; \mathrm{d}\vec{k} \; \mathrm{e}^{\hbar \, k_0} \; \tilde{f}(k_0, \vec{k}\,) \, W(k_0, \vec{k}\,)$$

Convolution product:

$$(\tilde{f} \circledast_{\hbar} \tilde{g})(k_0, \vec{k}) = \int_{\mathbb{R}^d} \mathrm{d}k'_0 \, \mathrm{d}\vec{k}' \, \mathrm{e}^{\hbar \, k'_0} \, \tilde{f}(k'_0, \vec{k}') \, \tilde{g}\big(k_0 - k'_0 \,, \, \mathrm{e}^{\hbar \, k'_0} \, (\vec{k} - \vec{k}')\big)$$

Lie Groupoids and Lie Algebroids Lie groupoids and Lie algebroids are generalizations of Lie groups and Lie algebras.

Group:

Category with one object 1, every morphism (group elt.) invertible.

Groupoid: Category with every morphism invertible.

Lie group(oid): objects/morphisms manifolds, maps differentiable.

Equivalently: Symmetric digraph (vertices B and arrows G) with:

- source- and target maps $s, t : \mathcal{G} \to B$: $s(a) \xrightarrow{a} t(a)$
- embedding $i: B \hookrightarrow \mathcal{G}$ with $t \circ i = s \circ i = \mathrm{id}_B$
- partial associative product $m:\mathcal{G}\times\mathcal{G}\to\mathcal{G}$ with m(a,iv)=a

Examples:

- Group G: one object pt, arrows: group elements, $i: pt \mapsto \mathbb{1}_G$
- Pair groupoid $M \times M$: $x \xrightarrow{(x,y)} y \xrightarrow{(y,z)} z$, i(x) = (x,x).

Lie Groupoids and Lie Algebroids Lie groupoids and Lie algebroids are generalizations of Lie algebras and Lie groups.

Lie algebra: tangent space of Lie group at identity.

Lie algebroids: Lie(\mathcal{G}) = $\cup_{x \in B} T_{i(x)}(t^{-1}(x)) \subset T\mathcal{G}$:

$$\begin{array}{ccc} \mathsf{Lie}(\mathcal{G}) & \xrightarrow{\#} & TB \\ & \searrow & \downarrow \\ & & B \end{array}$$

with Lie bracket structure on sections of $Lie(\mathcal{G})$, # compatible.

Examples:

- Group G: Lie $(\mathcal{G}) = \mathfrak{g} \to pt$, #: trivial.
- Pair groupoid: $\operatorname{Lie}(M \times M) = \bigcup_{x \in M} x \times T_x M = TM$.

Note: not every Lie algebroid can be integrated to a Lie groupoid!

Goal:

Extend quant. of duals of Lie algebras to duals of Lie algebroids. Before: $C_0(\mathfrak{g}^*) \rightarrow C^*(G)$. Now:

 $C_0(\mathsf{Lie}^*(\mathcal{G})) \rightarrow C^*(\mathcal{G})$

This is interesting, as T^*M of Poisson manifold M is Lie algebroid.

Eli Hawkins (2006), Weinstein, Renault, ...

Yesterday's talk: Podles sphere

Bonechi, Ciccoli, Staffolani, Tarlini

Hawkins' Groupoid Approach to Quantization In Hawkins' approach, the elements of geometric quantization are lifted to groupoids.

Groupoid \mathcal{G} , composable arrows: \mathcal{G}_2 . Maps: pr_1 , pr_2 , m: $\mathcal{G}_2 \to \mathcal{G}$

Key idea in Hawkins: Reduce polarization issues as follows T^*M , M Poisson manifold, integrates to Lie groupoid $\Leftrightarrow \exists s, t : (\Sigma, \omega) \rightrightarrows M$ with t Poisson, $\partial^* \omega = 0$, $\partial^* = \operatorname{pr}_1^* + \operatorname{pr}_2^* - m^*$ Crainic, Fernandes (2002)

Hawkins' quantization algorithm:

- $Integrating groupoid s, t: \Sigma \rightrightarrows M, \, \omega, \, \partial^* \omega = 0, \, t \text{ Poisson}$
- **2** Construct a prequantization of Σ with data (L, ∇)
- **③** Endow Σ with a groupoid polarization
- Onstruct a twist element
- **(5)** Obtain twisted polarized convolution algebra of Σ .
- Note: Many questions concerning existence and uniqueness remain.

Approach avoids Hilbert spaces, this might help in 2-plectic case.

Example: Groupoid Quantization of \mathbb{R}^2 The Moyal plane is conveniently reproduced in groupoid language.

Starting point: $M = \mathbb{R}^2$, Poisson structure θ^{ij} , i, j = 1, 2.

• Lie groupoid: $\Sigma = M \times M^*$, coords. (x^i, y_i) , $\omega = dx^i \wedge dy_i$

$$x^i + \frac{1}{2}\theta^{ij}y_j \xrightarrow{(x^i,y_i)} x^i - \frac{1}{2}\theta^{ij}y_j$$

Note: t is indeed a Poisson map: $\{t^*f, t^*g\}_{\omega} = t^*\{f, g\}_{\pi}$

$$x^i + \theta^{ij}(y_j + y'_j) \longrightarrow x^i + \theta^{ij}(y_j - y'_j) \longrightarrow x^i - \theta^{ij}(y_j + y'_j)$$

From this: pr_1 , pr_2 and m. $\partial^*\omega = pr_1^*\omega - m^*\omega + pr_2^*\omega = 0$

- **2** Prequantization: *L* trivial line bundle over Σ , $F = -i2\pi\omega$
- **9** Polarization: Induced by symplectic prepotential $\vartheta = -x^i dy_i$
- Twist element: $\partial^* \vartheta = \sigma_0^{-1} d\sigma_0 = d(-\frac{1}{2} \theta^{ij} y_i y'_j)$
- **(3)** Twisted polarized convolution algebra: Moyal product on M

Hawkins

Analogously:

- Quantization of κ -Minkowski space with $\Sigma = T^*G$, $\sigma_0 = 0$
- Berezin Quantization of Kähler manifolds M: $\Sigma = M \times M$.

Symplectic manifold (M, ω) with $\omega \in H^2(M, \mathbb{Z})$: \Rightarrow Prequantum line bundle with connection ∇ , $F_{\nabla} = 2\pi i \omega$.

2-plectic manifold (M, ϖ) with $\varpi \in H^3(M, \mathbb{Z})$: \Rightarrow Prequant. abelian gerbe with connect. struct. incl. $H = 2\pi i \varpi$.

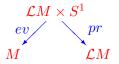
Idea: Categorify Hawkins' approach (2-groupoids, etc.) (work in progress, cf. Freed, Baez, Rogers ...)

Line Bundles over Loop Spaces from Gerbes A prequantum gerbe over a manifold yields a prequantum line bundle over its loop space.

Alternative approach:

Map the 2-plectic form to a symplectic form over loop space.

Consider the following double fibration:



Transgression

$$\mathcal{T}: H^{k+1}(M) \to H^k(\mathcal{L}M) , \quad \mathcal{T} = pr! \circ ev^*$$
$$(\mathcal{T}\omega)_x(v_1(\tau), \dots, v_k(\tau)) := \int_{S^1} \mathrm{d}\tau \, \omega(v_1(\tau), \dots, v_k(\tau), \dot{x}(\tau))$$

Previously successfully applied: Lift ADHMN constr. to M-theory CS, Papageorgakis&CS, Palmer&CS

Towards a Groupoid Quantization of \mathbb{R}^3 The manifold $\mathcal{L}\mathbb{R}^3$ comes with a natural symplectic structure.

Explicitly, this works as follows:

We start from \mathbb{R}^3 with 2-plectic form $\varpi = \varepsilon_{ijk} \mathrm{d} x^i \wedge \mathrm{d} x^j \wedge \mathrm{d} x^k$.

Transgression yields a symplectic form on loop space $\mathcal{L}\mathbb{R}^3$:

$$\omega = \oint d\tau \oint d\sigma \ \varepsilon_{ijk} \dot{x}^k(\tau) \delta(\tau - \sigma) \ \delta x^i(\tau) \wedge \delta x^j(\sigma)$$

Kernel of ω :

$$\iota_X(\mathcal{T}\varpi) = 0 \quad \text{for} \quad X = \oint d\rho \; \dot{x}^i(\rho) \; \frac{\delta}{\delta x^i(\rho)}$$

This vector field generates reparameterizations of the loops in $\mathcal{L}\mathbb{R}^3$.

We can therefore invert ω and obtain the Poisson bracket

$$\{f,g\} := \oint \mathrm{d}\tau \ \oint \mathrm{d}\rho \ \delta(\tau - \rho) \ \theta^{ijk} \ \frac{\dot{x}_k(\rho)}{|\dot{x}(\rho)|^2} \ \left(\frac{\delta}{\delta x^i(\tau)}f\right) \ \left(\frac{\delta}{\delta x^j(\rho)}g\right)$$

The Integrating Symplectic Groupoid of $\mathcal{L}\mathbb{R}^3$ To lowest order in θ , the integrating groupoid is trivially found.

Start: $M = \mathbb{R}^3$, Poisson structure $\theta^{i\sigma,j\rho} := \delta(\sigma - \rho)\theta^{ijk}\dot{x}_k(\sigma)$ Int. groupoid.: $\Sigma = \mathcal{L}(T^*M) \cong T^*\mathcal{L}M$, coords. $(x^i(\sigma), y_i(\sigma))$ Groupoid structure on $T^*\mathcal{L}M$:

$$\begin{aligned} x^{i} + \frac{1}{2}\theta^{ijk}y_{j}\dot{x}_{k} & \xrightarrow{(x^{i}(\sigma),y_{i}(\sigma))} \quad x^{i} - \frac{1}{2}\theta^{ijk}y_{j}\dot{x}_{k} \\ \text{2-nerve } \Sigma_{2} &= \mathcal{L}(\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}), \text{ coords. } (x^{i}(\sigma),y_{i}(\sigma),y_{i}'(\sigma)): \\ x^{i} + \theta^{ijk}(y_{j} + y_{j}')\dot{x}_{k} \rightarrow x^{i} + \theta^{ijk}(y_{j} - y_{j}')\dot{x}_{k} \rightarrow x^{i} - \theta^{ijk}(y_{j} + y_{j}')\dot{x}_{k} \end{aligned}$$

Symplectic structure:

$$\omega = \oint \mathrm{d}\rho \ \oint \mathrm{d}\sigma \ \delta(\rho - \sigma) \delta x^i(\rho) \wedge \delta y_i(\sigma)$$

t is Poisson map and $\partial^* \omega = 0$ only to lowest order in θ !

Groupoid Quantization of \mathbb{R}^3 The groupoid quantization can be extended to $\mathcal{L}\mathbb{R}^3$, reproducing M-theory results.

- **2** Prequantization: *L* trivial line bundle over Σ Connection ∇ with $F = 2\pi i \omega = 2\pi i T \varpi$
- **Operation:** Induced by symplectic prepotential:

$$\vartheta = \oint \mathrm{d}\rho \, x^i(\rho) \delta y_i(\rho)$$

- Twist element: $\partial^* \vartheta = \sigma_0^{-1} d\sigma_0$ with $\sigma_0(y_i(\rho), y'_j(\sigma)) = -\frac{1}{2} \theta^{ijk} y_i(\rho) y'_j(\sigma) \dot{x}_k(\sigma) \delta(\rho - \sigma)$
- Twisted polarized convolution algebra: difficult, but we have $[x^{i}(\tau), x^{j}(\sigma)] = \theta^{ijk} \dot{x}_{k}(\tau) \delta(\tau - \sigma) + \mathcal{O}(\theta)$

Agrees with one-form quantization of Baez et al. Agrees with Kawamoto, Sasakura and Bergshoeff et al. (2000) Remains: Compute $O(\theta)$ -corrections and compare to KS

Summary:

- ✓ Groupoids offer a nice approach to quantization
- ✓ Can be extended to loop spaces/2-plectic manifolds

Future directions:

- \triangleright Complete the loop space picture, other spaces (S^3 , T^3).
- \triangleright Extend quantization of \mathbb{R}^3 to 2-groupoid.
- ▷ Unify picture: Higher Poisson structures? Courant algebroids?
- ▷ Rewrite M2-brane models using the new function algebras.

Quantization of 2-plectic Manifolds

Christian Sämann

School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

Workshop on Noncommutative Field Theory and Gravity Corfu, September 9, 2011