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EWSB: “weak” or “strong”?
“weak” 

“strong” 

a relatively light Higgs boson exists
perturbativity extended →high E (              )MGUT ,MPl

perhaps (probably) embedded in susy
gauge couplings (perhaps) unify

EWSB related to new forces, new degrees of freedom
or even new dimensions opening up in the TeVs

perturbativity lost in the multi-TeV range
high E extrapolation highly uncertain



HSM = Σ

�
0

v+h

�
Σ= exp i

π · τ
v

invariant under
In the SM:

HSM⇒ULHSM UL = exp iωL · τ/2 HSM⇒ exp(iωY/2)HSM

Changing notation:
Φ≡ (v+h)Σ

H+
SMHSM =

1
2
Tr(Φ+Φ)

Φ⇒ULΦ Φ⇒Φexp(−iωYτ3/2)

Ŵµ≡−i/2Wµ · τ B̂µ≡−i/2Bµ · τ3

|DµHSM|2 =
1
2
Tr(DµΦ)+(DµΦ)

⇒ Throw away        and even forget the doublet origin of      h Σ
⇒ EW Chiral Lagrangian

In the g’→0 limit
Σ⇒ULΣU+

RSU(2)LxSU(2)R

DµΦ≡ dµΦ−gŴµΦ+g�ΦB̂µ

A gauge invariant Higgsless SM
The ElectroWeak Chiral Lagrangian



The EW chiral Lagrangian (continued)

⇒

An expansion in powers of derivatives and Vµ≡ (DµΣ)Σ+

⇒
⇒

⇒

⇒
⇒

⇒

⇒
⇒

⇒

⇒

T ≡ Στ3Σ+

⇒ 2V-terms ⇒ 3V-terms
⇒ 4V-terms

LEWCh = LG + LY + LNL + Σ10
i=0Li

LNL =
v2

4
Tr[(DµΣ)+DµΣ]

LY = λij
1 Q̄i

LΣQj
R + λij

2 Q̄i
LΣτ3Q

j
R + h.c.

LG =
1
2
Tr[ŴµνŴµν + B̂µνB̂µν ]



Some remarks on the EWChL

⇒ Its symmetries:
gauged                         exact   (surprising?)SU(2)LxU(1)Y

mh

⇒ Without knowing the underlying dynamics, 11 unknown 
parameters
as opposed to a single one in the SM: the Higgs mass

a0, a1, ..., a10

(v, g, g’ are in common)

LEWCh⇒ The SM as                  is a particular        
At one loop, 4      ‘s diverge logarithmicallyai

mh→ ∞

LG + LY + LNL + Σ5
i=1Li

SU(2)LxSU(2)R conserved byAs                    , global            g�, λ2 → 0



Nothing known

What is it known of the      ‘s experimentally?ai

-  terms:V 2 a0, a1, a8⇔ T, S, U
(in one-to-one correspondence)

see plot and below

-  terms:V 4 a4, a5, a6, a7, a10

-  terms:V 3 a2, a3, a9
a2, a3⇔ gZ1 , kγSetting a9 = 0

From                             at LEP2e+e− →W+W−

(O(       ) in the SM)10−3
gZ1−1=−0.016+0.022

−0.019

kγ−1=−0.027+0.044
−0.045

=                 conservingSU(2)L+R

LEPEWWG

(LEP; can LHC do better?)



Gauge

A(WLWL)≈ (E/v)2 − (E/v)2 ≈ E0

➚ ➚
Higgs

Without a Higgs, perturbation theory saturated at E ≈ 4πv

≈ g2v2A2µ+(∂µπ)2+
1
v2
π2(∂µπ)2+ . . .

⇒ Λ4 ∼ 4πv∼ 4π
MW

g

A nearby strong interaction

 Obvious from the point of view of LEWCh

ΔLNL = v2/4|(∂µ+ igAµ)eiπ
aτa/v|2

Unless something happens below Λ4



≈ g2v2A2µ+(∂µπ)2+
1
v2
π2(∂µπ)2+ . . .

(E/v)2 (E/v)2 (E/v)2
1
16π2

+

⇒ Λ4 ∼ 4πv∼ 4π
MW

g

A better estimate gives Λ4 ∼
4πv
√ng

∼ 1.2 TeV
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scattering amplitudes can be expressed at high energies by a master amplitude A(s, t, u), which depends
on the three Mandelstam variables of the scattering processes:

A(W+W− → ZZ) = A(s, t, u) (4.22)

A(W+W− → W+W−) = A(s, t, u) + A(t, s, u)

A(ZZ → ZZ) = A(s, t, u) + A(t, s, u) + A(u, s, t)

A(W−W− → W−W−) = A(t, s, u) + A(u, s, t) .

To lowest order in the chiral expansion, L → LY M + L0, the master amplitude is given, in a

parameter-free form, by the energy squared s:

A(s, t, u) → s

v2
. (4.23)

This representation is valid for energies s " M2
W but below the new resonance region, i.e. in practice at

energies
√

s = O(1 TeV). Denoting the scattering length for the channel carrying isospin I and angular
momentum J by aIJ , the only non-zero scattering channels predicted by the leading term of the chiral

expansion correspond to

a00 = +
s

16πv2
(4.24)

a11 = +
s

96πv2

a20 = − s

32πv2
. (4.25)

While the exotic I = 2 channel is repulsive, the I = J = 0 and I = J = 1 channels are attractive,
indicating the formation of non-fundamental Higgs-type and ρ-type resonances.

Taking into account the next-to-leading terms in the chiral expansion, the master amplitude turns

out to be [26]

A(s, t, u) =
s

v2
+ α4

4(t2 + u2)

v4
+ α5

8s2

v4
+ · · · , (4.26)

including the two parameters α4 and α5

Increasing the energy, the amplitudes will approach the resonance area. There, the chiral character

of the theory does not provide any more guiding principle for constructing the scattering amplitudes.

Instead, ad-hoc hypotheses must be introduced to define the nature of the resonances; see e.g. Ref. [27].
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Figure 4.3: WW scattering and rescattering at high energies at the LHC and TeV e+e− linear colliders.

2. WW scattering can be studied at the LHC and at TeV e+e− linear colliders. At high energies,

equivalent W beams accompany the quark and electron/positron beams (Fig. 4.3) in the fragmentation

processes pp → qq → qqWW etc and ee → ννWW etc; the spectra of the longitudinally polarized W
bosons have been given in Eq. (2.26). In the hadronic LHC environment the final-state WW etc bosons
can only be observed in leptonic and mixed hadronic/leptonic decays. The clean environment of e+e−
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2. WW scattering can be studied at the LHC and at TeV e+e− linear colliders. At high energies,

equivalent W beams accompany the quark and electron/positron beams (Fig. 4.3) in the fragmentation

processes pp → qq → qqWW etc and ee → ννWW etc; the spectra of the longitudinally polarized W
bosons have been given in Eq. (2.26). In the hadronic LHC environment the final-state WW etc bosons
can only be observed in leptonic and mixed hadronic/leptonic decays. The clean environment of e+e−

Which problems without a Higgs boson? 
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the central process

for the partial wavefor the partial wave

√
s≈ 1.2 TeV1. Perturbation theory lost at 

Im(a) = |a|2 + |ain|2

A ≈ s

2v2

without the Higgs
boson exchange

SS+ = 1
S = 1 + iA



�1 ∝ T

�3 ∝ S

2. EWPT problematic

πa → χa



An attempt to improve the situation

1. Keep SU(2)xU(1) gauge invariance but leave out the 
Higgs boson, while insisting on SU(2) xSU(2) →SU(2)L R L+R
as relevant symmetry (except for g’≠0 and m - m ≠0)t b

Consistent with all data so far, except the EWPT 
(although ρ≈1) and reliable only up to Λ≈4πv

2. Introduce new “composite” particles of mass <(<<)Λ
consistently with 1 and see what happens:

scalars, fermions, vectors

QRi =
�

λu
ijuRj

λd
ijdRj

�
L = LSM

gauge +
v2

4
< (DµU)+(DµU) > +

v√
2
Q̄LiUQRi

U (x) = eiπ̂(x)/v , π̂ (x) = τaπa



Scalars: a “composite” Higgs boson

Too good not to be true!?!

h = SU(2)    - singletL+R Why light? (PGB, h=A  ,...)5

Lh
SB =

v2

4
< (DµU)+(DµU) > (1 + 2a

h

v
+ b

h2

v2
) +

v√
2
Q̄LiU(1 + c

h

v
)QRi

MFV

If (π ,h) = linear SU(2)xU(1) multiplet:a a=b=c=1 
 EWPT OK and consistency well above 4πv (if m small enough)h

Yet, if h found (by the usual means), hard to overestimate
the importance of measuring a,b,c as well as possible

How?
h production and decays at the LHC, to some extent

 WW→hh
 WW→WW but only for

high luminosity

L = LSM
gauge +

1
2
(∂µh)2 − V (h) + Lh

SB + ...

Contino et al



1. EWPT improved



2. Perturbation theory valid up to higher energies



Vectors: a “composite” ρ-like state
Why light? (unitarity, EWPT?)V  = a SU(2)    - tripletL+R

μ
a
The formalism is there since always (CCWZ):

two more covariant vectors made of π, W, B
Γµ =

1
2

�
u† (∂µ − iBµ) u + u (∂µ − iWµ) u†

�
uµ = u†

µ = iu†DµUu†

E.g.:

Vµ =
1√
2
τaV a

µ , V µ → hV µh† unlike a standard
 gauge boson!

LV
kin = −1

4

�
V̂ µν V̂µν

�
+

M2
V

2
�V µVµ� ,

V̂µν = ∇µVν −∇µV = ∂µV + [Γµ, V ]

u ≡
√

U → gRuh† = hug†L under SU(2)L × SU(2)R



The generic Lagrangian 

L1V = − igV

2
√

2

�
V̂ µν [uµ, uν ]

�
− fV

2
√

2

�
V̂ µν(uWµνu† + u†Bµνu)

�

L2V = g1 �VµV µuαuα� + g2 �VµuαV µuα� + g3 �VµVν [uµ, uν ]� + g4 �VµVν{uµ, uν}�

+g5 �Vµ (uµVνuν + uνVνuµ)� + ig6

�
VµVν(uWµνu† + u†Bµνu)

�

L3V =
igK

2
√

2

�
V̂µνV µV ν

�

LV
int = L1V + L2V + L3VLV = LSB + LV

kin + LV
int + ...

9 parameters (an embarrassment) 
but many processes as well: study 

WLWL → V V
q̄q → V V

parity assumed

NDA guess
gV , fV ≈

1
4π

gi=1,...,6 ≈ 1
gK ≈ 4π

but            !MV < Λ

leave out direct coupling of V to SM fermions (top?)

but many processes as well: study 

in various charge
configurations



V production and decays

-
by V→WW/Z ( ll small but≠0 because of VZ kin. mixing)

(V→tt ?)-

Single V or associated VW/Z production by DY (f  )V

V 6Kpair-V production by DY (f  ,g  ,g  )
V ipair-V production by WW-fusion (g  ,g  ,g  )K

leading to 2W/Z, 3W/Z, 4W/Z final states (+jj)
→ multi-leptons to be disantangled from the background

Narrow ( Γ≈ M  < 40 GeV at M < 1 TeV) and dominated V
3

Single V-production by WW-fusion ( g  )V


