Theory of the ElectroWeak Interactions

Riccardo Barbieri 1st Summer School of ITN Corfu, September 4–15, 2011

1. The Standard Model: the "indirect" informations

- 2. "Higgsless" Grojean
- 3. The Higgs boson as a PGB Grojean
- 4. Beyond mSUGRA Pokorski

All at a hopefully simple and self-contained level, to be complemented by other lectures this same week

Particle Physics in one page

$$\mathcal{L}_{\sim SM} = -\frac{1}{4} F^a_{\mu\nu} F^{a\mu\nu} + i\bar{\psi} \not{D}\psi$$
 The $+\psi_i \lambda_{ij} \psi_j h + h.c.$ Th $+|D_\mu h|^2 - V(h)$ The $+N_i M_{ij} N_j$ The $N_i M_{ij} N_j$

The gauge sector (1)

- The flavor sector (2)
- The EWSB sector (3)
- The v-mass sector (4) (if Majorana)

Anybody NOT familiar with this?

Almost all the focus of these lectures on (3), with, maybe, an incursion on (2) towards the end

The impact of the Large Hadron Collider on EWSB

1. The first thorough exploration of the energy scales well above $G_F^{-1/2}$ $\Lambda_{OCD},~G_F^{-1/2}$

2. No comparable prior situation at the SppS or at the TEVATRON

1984: W, Z 1994: top 201?: the Higgs boson of the SM

Which "indirect" informations so far?

The famous ElectroWeak Precision Tests

the Gfitter group

CERN-Fermilab-Stanford

precision often better than 10^{-3}

In fact: from $l_{max} \approx 10^{-8} cm$ (APV) to $l_{min} \approx 10^{-16} \div 10^{-17} cm$

A "naive p-value" of 0.23

The Higgs boson mass in the SM

with LEP and Tevatron direct searches included

 χ^2 -distributions

the Gfitter group

(ATLAS and CMS not included)

LHC exclusion plots

The indirect determination of the Higgs mass Rad Corr predict m_W and m_t well. Also m_h ?

The main Standard Model effects summarized

A more general use of the EWPT

 \Rightarrow Consider a theory characterized by a scale Λ_{SB} with its virtual effects likely significant in the vac. pol. amplitudes of the vector bosons. At $q^2 < \Lambda_{SR}^2_{0.5}$ 0.4 The dominant effects in: 0.3 0.2 69° وي ^\ 0.1 $S \sim \frac{d}{dp^2}$ 0 (with some care when extra light particles, $\mathcal{O}(m_W)$, are present) -0.1 ($T \approx \epsilon_1, S \approx \epsilon_3$, although not quite) 500 SM -0.2 -0.3 -0.3

-0.2

-0.1

0

0.1

S

0.2

0.3

 0^{2}

Taking $c_i = \pm 1$ and considering one operator at a time

 $\mathscr{L}_{eff} = \mathscr{L}_{SM} + \mathcal{O}/\Lambda^2$

	operator \mathcal{O}	affects	constraint on Λ	
	$\frac{1}{2}(\bar{L}\gamma_{\mu}\tau^{a}L)^{2}$	μ -decay	10 TeV	
	$\frac{1}{2}(\bar{L}\gamma_{\mu}L)^{2}$	LEP 2	5 TeV	
T→	$[H^{\dagger}D_{\mu}H]^2$	$ heta_{W}$ in M_W/M_Z	5 TeV	
S→	$(H^{\dagger}\tau^{a}H)W^{a}_{\mu\nu}B_{\mu\nu}$	θ_{W} in Z couplings	8 TeV	
	$i(H^{\dagger}D_{\mu} au^{a}H)(\dot{L}\gamma_{\mu} au^{a}L)$	Z couplings	10 TeV	
	$i(H^{\dagger}D_{\mu}H)(\bar{L}\gamma_{\mu}L)$	Z couplings	8 TeV	
\Rightarrow	$H^{\dagger}(\bar{D}\lambda_D\lambda_U\lambda_U^{\dagger}\gamma_{\mu\nu}Q)F^{\mu\nu}$	$b o s \gamma$	10 TeV	
\Rightarrow	$\frac{1}{2}(\bar{Q}\lambda_U\lambda_U^{\dagger}\gamma_\mu Q)^2$	B mixing	10 TeV	
1σ-bounds ⊕ a light Higgs				
	→ flavour (see below)	(More conservat	ively: $\Lambda > \sim 5$ Te	

Current flavour constraints

2000÷2010: The CKM picture quantitatively successful

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \mathcal{L}_{eff}^{NP} \qquad \qquad \mathcal{L}_{eff}^{NP} = \Sigma_i \frac{c_i}{\Lambda_{NP}^2} O_i$$

Operator	Bounds on c_i ($\Lambda = 1$ TeV)		Observables
	Re	lm	
$(\bar{s}_L \gamma^\mu d_L)^2$	$9 imes10^{-7}$	$3 imes 10^{-9}$	Δm_K ; ϵ_K
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$7 imes 10^{-9}$	$3 imes 10^{-11}$	Δm_K ; ϵ_K
$(\bar{c}_L \gamma^\mu u_L)^2$	$6 imes 10^{-7}$	$1 imes 10^{-7}$	Δm_D ; $ q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6 imes 10^{-8}$	$1 imes 10^{-8}$	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	$3 imes10^{-6}$	$1 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$6 imes 10^{-7}$	$2 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	8×10^{-5}		Δm_{B_s}
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	$1 imes 10^{-5}$		Δm_{B_s}

Isidori, Nir, Perez 2010

A problem and an opportunity

On the meaning of these bounds $c_i = \pm 1$?

 \Rightarrow The stronger case: fermion compositeness at Λ_{NP} $c_i \approx 16\pi^2$

 $\Rightarrow \text{The weaker case: NP only induced by loop effects}}$ $c_i \approx \frac{\alpha}{4\pi}$

 \Rightarrow An intermediate case: NP from perturbative tree level

 $c_i \approx 1$

Need to consider specific models to be more precise also because of possible cancellations The naturalness problem of the Fermi scale There is certainly New Physics (NP) at short distances $\Lambda_{NP} = \dots, M_{GUT}, M_{Pl} \qquad \Lambda_{NP} >> G_F^{-1/2}$ to be included in a suitably Extended SM (ESM)

How to keep the beautiful consistency of the SM with exp.s? No problem, even not knowing which NP at all, provided: $1. SU(3) \times SU(2) \times U(1)$ kept intact

2. The "low energy" spectrum of the ESM coincides with the one of the SM, with the inclusion of the Higgs boson

Why this is the case? = the naturalness problem of the Fermi scale Why the focus on the Higgs boson only? Why we call this "a problem"?

Why "a problem"?

1. To address it at all, need a "calculable" Higgs mass 2. In the SM $\frac{H}{\delta m_h^2} = \alpha_t \Lambda_t^2 + \alpha_g \Lambda_g^2 + \alpha_h \Lambda_h^2 \quad (*)$ with known coeff.s for a given cut-off $\frac{H}{\delta m_h^2} = \frac{M}{\delta m_h^2}$

3. Even though $\Lambda \rightarrow \infty$, $\underline{H}_{\underline{\lambda}} = \underline{A}_{\underline{\lambda}} = \underline{H}_{\underline{\lambda}}$ whatever will cutoff these div.s is likely to leave a significant contribution to m_h^2 (see below) Too big?

 $\Lambda_t \approx 3.5 m_h$

 $\Lambda_g \approx 9 m_h > \Lambda_t$

 $\Lambda_h \approx 1.3 \text{ TeV}$

4. Using the naive estimate of (\cancel{P}) and <u>barring accidental cancellations</u> \Rightarrow

5. Especially Λ_t low enough that one might have already seen its (indirect)signs

 \Rightarrow a very precise initial condition at the high scale if $m_F >> m_h$ on a physical "renormalized" quantity

The Fine Tuning problem of the Fermi scale 1999: "the LEP Paradox" B, Strumia 2001: "the little hierarchy" problem

While all indirect tests (EWPT, flavour) indicate no new scale below several TeV's, the <u>Higgs boson mass is</u> apparently around the corner and is normally sensitive to any such scale $m_h \approx 115 \ GeV(\frac{\Lambda_{cutoff}}{400 \ GeV}) \qquad \Lambda_{NP} \gtrsim ? \ TeV$ $\hat{\Lambda}_{NP} \approx \hat{\Lambda}_{cutoff}$

2011: the problem still there, more than ever, driving our view about what can/will happen at the LHC

The (many) reactions to the FT problem

0. Ignore it and view the SM in isolation (untenable)

In case you doubted of its relevance:

- 1. Cure it by symmetries: SUSY, Higgs as PGB, little Higgs
- 2. A new strong interaction nearby
- 3. A new strong interaction not so nearby: quasi-CFT
- 4. Warp space-time: RS
- 5. Saturate the UV nearby: ADD, classicalons
- 6. Accept it: the multiverse, the 10^{120} vacua of string theory

Anything else?

The proposed relevant symmetries

 $1 \Rightarrow$ Supersymmetry

$$(\phi, \psi) \Rightarrow m^2 \phi^2$$
 if ψ massless

 $2 \quad \Rightarrow \text{ Global symmetry}$

$$h \rightarrow h + \alpha \Rightarrow m^2 h^2$$

3 \Rightarrow Gauge symmetry in higher dim.s $A_{\mu} \rightarrow A_{\mu} + d_{\mu} \alpha \Rightarrow m^{2} A_{\mu}^{2}$ $h = A_{5}$ (likely related to 2 anyhow)

EWSB related to new forces, new degrees of freedom or even new dimensions opening up in the TeVs perturbativity lost in the multi-TeV range high E extrapolation highly uncertain

a relatively light Higgs boson exists perturbativity extended \rightarrow high E (M_{GUT}, M_{Pl}) perhaps (probably) embedded in susy gauge couplings (perhaps) unify

EWSB: "weak" or "strong"?