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& new  AdS4-SCFT3   duality



This is closely related to the questions:

Can the graviton have mass?

Can it be a resonance?

Are sectors “hidden” from gravity possible ?

Other IR modifications of Einstein equations ?

The subject has a long history, to which I will not 
try to do justice here .....



van Dam, Veltman, Zakharov ‘70

In  Minkowski spacetime, the answer seems to be NO

An important obstruction is the  vDVZ discontinuity

Notice that for the photon the answer is  YES

Indeed, the particle data group quotes the experimental bound:

mγ < 10−18eV

 range > 109 km ∼ 1 light hour but could be finite!



Now repeat the exercise for a massive spin-2 field.   

The (ghost-free) massive Pauli - Fierz Lagrangian is:

LEH = −1
2
∂µhνλ ∂µhνλ + ∂µhνλ ∂νhµλ − ∂µhµν ∂νhλ

λ +
1
2
∂νhλ

λ∂νhρ
ρ + hµνTµν

LPF = LEH −
m2

2
(
hνλ hνλ − (hρ

ρ)
2
)

where   

with    ∂µTµν = 0



Introduce again  compensators to restore gauge invariance:  

invariant under

Inserting in            gives a free massless spin-1 field, and a  two-derivative

δhµν = ∂µξν + ∂νξµ

δAµ = −mξµ + ∂µΛ
δφ = −Λ

LPF

Lagrangian mixing          and            .φ h′
µν

PF was precisely devised for this, 
i.e. the 4-derivative term drops out 

hµν = h′
µν +

1
m

(∂µAν + ∂νAµ) +
2

m2
∂µ∂νφ

−mΛ



h′
µν = h′′

µν + ηµνφRedefining fields to remove the mixing   (                                 )    finally gives: 

LPF = LEH −
1
2
FµνFµν − 3 ∂µφ ∂µφ + φ T ρ

ρ

The residual  coupling is different for light, than for massive matter;   

thus the Pauli-Fierz theory does not give Einstein’s theory when    m→ 0

If we set  Newton’s law to its measured form, 

 light bending = 3/4 of measured effect

 ....    so however tiny the mass, it is ruled out ! 



The story is more complicated than this, because strong 

coupling sets in at intermediate scales  

Hotly debated whether this can cure the discontinuity; 

(some) consensus that the issue cannot be settled without
 UV completion.



The story looks more promising  in AdS:    

The vDVZ  discontinuity is absent  if      mgr < 1/LAdS

a simple “model”, possibly embed-able  in string theory   ∃

Supersymmetry can protect the required hierarchy   

Karch-Randall

Kogan - Mouslopoulos - Papazoglou; 
Porrati  

Of course, we don’t seem to live in AdS spacetime !   

OK, take attitude that anything one can learn about IR 
gravity is interesting, and proceed.  



   KK reduction for spin 2    

Interested in warped-(A)dS geometries,   

d̂s2 = e2A(y)ḡµν(x) dxµdxν + ĝab(y) dyadyb

M̄4 = AdS4, M4, dS4

k = −1, 0, 1



ds2 = e2A (ḡµν + hµν) dxµdxν + ĝab dyadyb ,

Consider (consistent reduction to) metric perturbations   

hµν(x, y) = h[tt]
µν (x)ψ(y)with   

where   (!̄(2)
x − λ) h[tt]

µν = 0 and ∇̄µh[tt]
µν = ḡµνh[tt]

µν = 0 .

Pauli-Fierz (λ = m2 + 2k)



RMN −
1
2
gMNR = TMNLinearizing the Einstein equations   

−e−2A

√
[ĝ]

(∂a

√
[ĝ] ĝabe4A∂b) ψ = m2ψ

leads to the Schrodinger problem :  

1√
ĝ

(∂M

√
ĝ ĝMN∂N ) hµν(x, y) = 0 .

This is  equivalent to a scalar-Laplace equation in d dimensions :  



Important:  the linearized equation depends only on the geometry, not   
                  on the detailed matter-field backgrounds. 

Csaki, Erlich, Hollowood, Shirman 

Localization of spin-2 can only come from geometry 

CB, JE 

The wavefunction norm is

||ψ|| 2 ≡
∫

dd−4y
√

[ĝ] e2A |ψ|2

Brandhuber, Sfetsos 



The would-be massless graviton has ψ(y) = constant
It is normalizable  iff   the transverse volume is finite 

For infinite transverse volume, either the spin-2 spectrum

In the latter case we  may talk about localization of the graviton
provided             can be made arbitrarily small, and in any case

much smaller than the typical KK scale.

has a continuum, or the lowest-lying state must be massive.

m0



Why can’t the warp factor “help”? 

When it does, infinity is an apparent horizon, which can be reached in 
finite proper time. This can be shown for flat brane-worlds as follows: 

Wait a minute:

e2A = C
√

e2A − ẏ2

ẏ ! eA → 0
∫

dτ =
∫

dt C−1e2A !
∫

dy eA .

A ! −νlog y with 1 > ν > 1/2

A′′ ≤ 0

For a particle moving in a flat transverse dimension y : 

As y goes to infinity, we need   so thateA → 0 ,

The total proper time must be infinite, for geodesic completeness.

If we request finite for a normalizable zero mode, then

∫
dy e2A

This is ruled out by the “holographic c-theorem” which follows from the energy

conditions in the flat-brane case QED.

Girardello et al, Freedman et al ‘98-99



we need to supplement the quantum theory with boundary 
conditions at the horizon  (“IR brane”)

Given an apparent horizon,  

This is an effective compactification. 



M4 = AdS4For   the warp factor need not be monotonic.  

 Thus it can approach zero and then turn around and diverge, so as

The Karch-Randall model illustrates this point.  

 to create a graviton “trap”. The almost constant lowest mode goes

 to zero near the warp-factor minimum, giving the graviton a tiny mass.



   Karch-Randall model    

IKR = − 1
2κ 2

5

∫
d4x dy

√
g

(
R +

12
L2

)
+ λ

∫
d4x

√
[g]4 ,

Starting point is 5D Einstein action plus a thin 3-brane 

ds2 = L2cosh2

(
y0 − |y|

L

)
ḡµνdxµdxν + dy2 y0 = L arctanh

(
κ 2

5 λL

6

)

The solution is:

,     where

It describes two (large) slices of  AdS5  glued along a AdS4  brane

with radius
!2 = e2A(0) = L2 cosh2

(y0

L

)
.

One can tune             so that              λL
!

L
! 1



Cut away green slices, then glue the white ones in a
symmetric fashion. Gives two 4D boundaries glued across 

two 3D defects (domain walls). 

∂AdS5∂AdS5



!10 !5 0 5 10
y

2

4

6

8

10
f4

 as                is gradually tuned up     !/L

e2A ≡ f 2
4 = L2cosh2

(
y0 − |y|

L

)
Warp factor 

eA

e2A



Spectrum :

8πGN ! κ2
5/L

VNewton + ∆V ! −GNm1m2

r
(1 + γ

L2

r2
+ · · · )

4D parameters: as in usual KK

unlike standard KK!

L
∼ 1031 − 1062so

- a nearly-constant, nearly massless mode

- two towers of AdS5 modes

m2
0 !

3L2

2!2

m2 ! (2n + 1)(2n + 4) n = 0, 1, · · ·



These masses are expressed in units of the AdS4 radius

so  states with                      mediate long-range interactions. m2 ! o(1)

What “saves the day” is that the AdS5 states live at the

bottom of the warp-factor well . Their wavefunctions are

  exponentially suppressed at the brane position

Furthermore,    

∫
ψ0ψ

†ψ != universal

so the nearly-massless graviton has non-universal couplings
 to the other fields !



NS5
D5

D3
[012 3]

[012 456]

[012 789]

near-horizon

   The String-theory embedding   

Karch and Randall proposed to embed their model in IIB string theory, 
by inserting 5-branes in the                            geometry of D3-branes.AdS5 × S5



S5

 5-brane 

 The  geometry of a 5-brane in the probe limit is  AdS4 × S2



The exact geometry of these configurations  was discovered some years ago 
by  D’Hoker, Estes and Gutperle

Q:  Is the graviton in these geometries “localized” ?

A:  No; but it does obtain an arbitrarily-small mass in 
 a curved 10d spacetime.

The ensuing geometries are interesting for other reasons:

- holographic duals of N=4  SCFT3  of Gaiotto-Witten

- (first?) IIB compactifications without moduli 



The  EDG solutions are  AdS4 × S2 × S2 fibrations over a surface            .    
∑

They depend on two  harmonic functions                    subject to certain h1, h2

global consistency conditions.  

ds2 = f2
4 ds2

AdS4
+ f2

1 ds2
S2
1
+ f2

2 ds2
S2
2
+ 4ρ2dzdz̄ ,

f8
4 = 16

N1N2

W 2
f8
1 = 16h8

1
N2W 2

N3
1

f8
2 = 16h8

2
N1W 2

N3
2

, ,

e4φ =
N2

N1

W = ∂h1∂̄h2 + ∂̄h1∂h2 = ∂∂̄(h1h2) ,

N1 = 2h1h2|∂h1|2 − h2
1W , N2 = 2h1h2|∂h2|2 − h2

2W .

metric :

dilaton :

where :

There are also  3-form and 5-form backgrounds, and 1/4 unbroken supersymmetry.



The harmonic functions for this choice are:

The solutions of interest have          = infinite strip
with                obeying N or D conditions, possibly 

with isolated singularities on the boundary, e.g.  

h1, h2

∑

AdS5 × S5AdS5 × S5

h1 =
[
−iα1 sinh(z − β1)− γ1ln

(
tanh(

iπ

4
− z − δ1

2
)
)]

+ c.c. ,

h2 =
[
α2 cosh(z − β2)− γ2ln

(
tanh(

z − δ2

2
)
)]

+ c.c. .

NS5

D5



ψ(ya) = Yl1m1Yl2m2 ψl1l2(z, z̄)Reduction of eigenmode equation:

2h1h2

∂∂̄(h1h2)
∂∂̄ ψ̃00 = (m2 + 2)ψ̃00 , where ψ̃00 ≡ h1h2ψ00 .

leads to a Laplace-Beltrami spectral problem on            :

The norm is ||ψ|| 2 =
∫

Σ
d2z |Wh1h2| |ψl1l2 |2 =

∫

Σ
d2z

∣∣ W

h1h2

∣∣ |ψ̃l1l2 |2

and the b.conditions for              are Neumann.ψ00

Σ

Too hard to solve analytically,  except in the simplest case of the 
(dilaton domain wall) Janus solution where the equation reduces to 

Heun’s equation.



Janus cannot localize gravity because the dilaton has no (super)potential, so 
its domain wall tends to spread to infinite thickness.

Adding one type of 5-branes does not help: the dilaton adjusts to
(       ly)  small or large value, so as to minimize the 5-brane tension.

The only interesting limit is one with both NS5 and D5 charges, 

∞

 and with   
Q5

Q3
! 1 .

Inspection of the geometry shows that this creates a bubble of 

almost factorized                         geometry in the central region.  AdS4 ! K

The                       regions 
are much more curved

AdS5 ! S5
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The 10d geometry looks like this:

AdS5 × S5narrow throat

radius  

radius  

L
!

graviton mass  ∼ L

!
" 1

AdS4 ! K



Actually the limit                       is smooth:  transverse space compactifies,Q3 → 0
 the asymptotic regions                         go over to smooth                  caps

These                                 solutions must be  gravity duals to   AdS4 ×wM6

AdS5 × S5 AdS4 ×D6

3-dimensional  (super)conformal field theories

Which ones ?



By studying the flat-space configurations,  Gaiotto and Witten 
have proposed the existence of a class of interacting SCFTs in 

three dimensions that they called

T ρ̂
ρ (SU(N))

They are in 1-to-1 corrspondence with solutions of Nahm’s equations:

dXa

dt
= iεabc[Xb, Xc]

on the interval, with boundary conditions that are simple poles,

Xa ∼ Ja

t

N-dimensional generators
 of SU(2)



This problem has been solved by Kronheimer and Nakajima

One can associate a partition of  N with each choice of  the Ja

e.g.       :   12 = 5 + 3 + 3 + 1 ρ

K & N have shown that solutions exist iff ρT > ρ̂

where these are the two partitions at the interval ends. 



N1 N2

M1 M2 M3

N3

The underlying gauge theories are described by linear quivers

U(N1)× U(N2)× U(N3)× · · ·



NS5
D5

D3

1 1

22

for example:

N = 6 ; ρ = (2, 2, 1, 1) ; ρ̂ = (3, 2, 1)



supersymmetry ⇐⇒ ρ̂T ≥ ρ , and irreducibility ⇐⇒ ρ̂T > ρ .

General result  (by moving branes): 

When the inequality is saturated, the quiver breaks down to 
disjoint pieces.



δ1 δ2

δ̂1δ̂2

−∞ ∞

. . . . . .

. . . . 

x

y

δq

δ̂q̂

h1 =

[
−iα sinh(z − β)−

q∑

a=1

γa ln
(

tanh
(

iπ

4
− z − δa

2

))]
+ c.c.

h2 =

[
α̂ cosh(z − β̂)−

q̂∑

b=1

γ̂b ln

(
tanh

(
z − δ̂b

2

))]
+ c.c.



Qinv(a)
D3 =

∫
Ca

F5 −B2 ∧ F3 +
∫
Ca

F3 ∧B2

∣∣∣
z=∞

Q̂inv(b)
D3 =

∫
Ĉb

F5 + C2 ∧H3 −
∫
Ĉb

H3 ∧ C2

∣∣∣
z=−∞

D3-brane Page charges in fivebrane stacks:

= 28π3

(
α̂ γa sinh(δa − β̂)− 2 γa

q̂∑

b=1

γ̂b arctan(eδ̂b−δa)

)

= 28π3

(
α γ̂b sinh(δ̂b − β) + 2 γ̂b

q∑

a=1

γa arctan(eδ̂b−δa)

)
.



N (a)
D3 = −N (a)

D5

∑q̂
b=1 N̂ (b)

NS5
2
π arctan(eδ̂b−δa) ,

N̂ (b)
D3 = N̂ (b)

NS5

∑q
a=1 N (a)

D5
2
π arctan(eδ̂b−δa)

Compute the linking numbers: 

l(a) ≡ −N (a)
D3

N (a)
D5

and l̂(b) ≡ N̂ (b)
D3

N̂ (b)
NS5

.

Prove                      using the fact that  acrtanθ ≤ π/2ρT > ρ̂



By counting parameters one can check that they are all quantized

These are examples of  IIB  AdS vacua with no moduli



one (or more) link, by taking  Ni → 0

This corresponds to factorizing the 5-brane singularities on the strip.

Another  interesting limit                        correspond to severingρ̂ ! ρT
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this is a string-theory wormhole



   Holographic comment   

on massive AdS gravity theories:

CFT spectrum defect CFT spectrum

hh

3 + ε

! 1

3

decoupling

conserved e-m tensor



CONCLUSIONS

(1) Embedding of Karch-Randall in string theory gives 
massive graviton in                        backgrounds.AdS4 ! K

(2) New isolated vacua, and stringy wormholes

(3) Holographic duals for (large class of) N=4 d=3 SCFTs.



Thank you


