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HIGHER SPINS IN D = 2+1

D=2+1 ⇒  no irreps of arbitrary helicity for the little 
group of massless particles ⇒ no spin in the usual sense

Still... look at Fronsdal equation: 

2

We can consider Fronsdal equations in D=2+1

No local d.o.f  for           (i.e. no wave solutions)

Nothing new with respect to gravity:  no graviton in D=2+1 but the 
Einstein-Hilbert action is non-trivial

Non-linear theory?    Asymptotic symmetries for Λ < 0?

No dependence on D!

Equations for the Mons seminar

July 1, 2011

1 Introduction

S =
1

16πG

�
�abc

�
ea ∧Rbc +

1

3l2
ea ∧ eb ∧ ec

�

Rab
l ≡ dωab + ωac ∧ ωc

b +
1

l2
ea ∧ eb = 0

T a ≡ dea + ωa
b ∧ eb = 0

2 CS formulation

[Ja, Jb] = �abcJ
c [J̃a, J̃b] = �abcJ̃

c (2.1)

A = Aµ
aJa dx

µ �A = �Aµ
aJa dx

µ (2.2)

e =
l

2

�
A− �A

�
ω =

1

2

�
A+ �A

�

Rµν ≡ ✷hµν − ( ∂µ∂ · hν + ∂ν∂ · hµ ) + ∂µ∂νhλ
λ = 0 (2.3)

Fµ1... µs ≡ ✷ϕµ1... µs − ∂(µ1∂ · ϕµ2... µs) + ∂(µ1∂µ2ϕµ3... µs)λ
λ = 0 (2.4)

1s > 1



OUTLINE

Higher-spin gauge theories in D = 2+1

Chern-Simons formulation of the non-linear dynamics

The Lie algebras hs[λ]

Asymptotic symmetries

Drinfeld-Sokolov reduction in highest-weight gauge

The W-algebras W∞[λ]

Higher-spin geometry?

Metric-like fields & invariant tensors of hs[λ]



CHERN-SIMONS ACTIONS     
& HIGHER SPINS IN D=2+1



CHERN-SIMONS GRAVITY IN D=2+1

Λ < 0  ⇒  “gauge algebra”  so(2,2) = sl(2,R) ⊕ sl(2,R)

Algebra:

Gauge potentials:

Dreibein and spin connection:

Einstein-Hilbert action
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and the higher-spin generators Ta1... as−1 . Since they are contracted with the forms (2.19),

these generators must transform as irreducible so(1, 2) ∼ sl(2,R) tensors. Therefore, they
must be traceless and they must satisfy

�
Ja , Tb1... bs−1

�
= �ma(b1Tb2... bs−1)m . (2.22) pre_TT

In fact, if the resulting Lie algebra admits a non-degenerate bilinear form (denoted in the

following by Tr) one can consider the Chern-Simons action

SCS[A] =
k

4π

�
Tr

�
A ∧ dA +

2

3
A ∧ A ∧ A

�
(2.23)

with

k =
R

4G
, (2.24)

and in [12] it was pointed out that the combination

S = SCS[A]− SCS[
�A] , (2.25) action

reduces to the Einstein-Hilbert action when A only contains the gravitational fields. We

shall now see that the linearization of the zero-curvature equations of motion following

from eq. (6.21) describes the free-propagation of ϕµ1... µs on an AdS3 background, thus

ensuring that the full-interacting theory actually describes the coupling of ϕµ1... µs to

gravity.

To linearize the curvatures F = dA + A ∧ A one has to separate the background

gravitational vielbein hµ
a
and spin connection wµ

a
from a first order correction

eµ
a
= hµ

a
+ ēµ

a , ωµ
a
= wµ

a
+ ω̄µ

a , (2.26)

and to treat the higher-spin fields as first order corrections. Notice that the commutator

of two higher-spin generators does not play any role in the linearized field equations, since

it will lead to second order terms quadratic in the higher-spin fields. When expressed in

terms of the vielbeins and the spin connections the lienarized equations of motion then

reads

T a ≡ (2.27) torsion_gravity

Ra ≡ (2.28)

T a1... as ≡ (2.29) torsion_s

Ra1... as ≡ (2.30)

where for brevity we omitted the form indices. The field equations are gauge invariant

under the transformations

δ �a = (2.31)

δ ωa
= (2.32)

δ �a1... as−1 = (2.33)

δ ωa1... as−1 = (2.34) lorentzlin
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k =
l

4G

Achúcarro and Townsend (1986);  Witten (1988)



HS INTERACTIONS IN D=2+1?

Frame-like formulation of the dynamics

HS “vielbeins” and “spin connections”

6

Consider the 1-forms

Vasiliev (1980)

eµ
a1... as−1 ωµ

b,a1... as−1
eµ

a1... as−1 ωµ
b,a1... as−1⇒ ⇒

Everything is traceless, then in D=2+1...

               ≈                       (e.g.                                 )                                            

Vielbeins and spin connections have the same structure!

Blencowe (1989)

ωµ
a =

1

2
�abc ωµ

b,ceµ
a1... as−1 ωµ

b,a1... as−1

δ eµ
a1... as−1 = ∂µ ξ

a1... as−1 + ēµ , b Λ
b , a1... as−1 ,

δ ωµ
b , a1... as−1 = ∂µ Λ

b , a1... as−1 + . . . (2.5)

A(s) =

�
ωµ

a1... as−1 +
1

l
eµ

a1... as−1

�
dxµ

�A(s) =

�
ωµ

a1... as−1 − 1

l
eµ

a1... as−1

�
dxµ

A = AGrav + AHS
�A = �AGrav + �AHS (2.6)

A = A(2) +
N�

s=3

A(n) (2.7)

a(x+) ≡
1�

m=−1

�m(x+)Lm +
N−1�

l=2

l�

m=−l

wl,m(x+)Wl,m → L1 + �−1(x+)L−1 +
N−1�

l=2

wl,−l(x+)Wl,−l

L(θ) = 1

k

�

p∈Z

Lp e
−ipθ − k

4
δp,0 (2.8)

W(θ) =
1

k

�

p∈Z

Wp e
−ipθ (2.9)

δF = dξ + [F, ξ ] ξ = ēµ1
a1 . . . ēµs

as ξ µ1... µs Ta1... as

δeµ
a = ∂µξ

a + �abc ωµ
b ξc ξa = eµ

avµ δeµ
a = vλ∂λeµ

a + eλ
a∂µv

λ

hs[λ] ∼ U ( sl(2,R) )
C2 − λ1

sl(N)k ⊕ sl(N)1
sl(N)k+1

hs[λ]⊕ hs[λ]

2



HS INTERACTIONS IN D=2+1?

Frame-like formulation of the dynamics

HS “vielbeins” and “spin connections”

6

Consider the 1-forms (Lie-algebra valued)

Vasiliev (1980)
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 G × G 
Chern-Simons?      
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b , a1... as−1 ,

δ ωµ
b , a1... as−1 = ∂µ Λ

b , a1... as−1 + . . . (2.5)

A(s) =

�
ωµ

a1... as−1 +
1

l
eµ

a1... as−1

�
dxµ

�A(s) =

�
ωµ

a1... as−1 − 1

l
eµ

a1... as−1

�
dxµ

A = AGrav + AHS
�A = �AGrav + �AHS (2.6)

A = A(2) +
N�

s=3

A(n) (2.7)

a(x+) ≡
1�

m=−1

�m(x+)Lm +
N−1�

l=2

l�

m=−l

wl,m(x+)Wl,m → L1 + �−1(x+)L−1 +
N−1�

l=2

wl,−l(x+)Wl,−l

L(θ) = 1

k

�

p∈Z

Lp e
−ipθ − k

4
δp,0 (2.8)

W(θ) =
1

k

�

p∈Z

Wp e
−ipθ (2.9)

δF = dξ + [F, ξ ] ξ = ēµ1
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CHERN-SIMONS ACTION!

No local d.o.f. as in the linearised theory
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Natural guess: extend CS reformulation of gravity

c ≤ rk(g)− 1

gk = sl(N)k

A = Agrav +
�

s

A(s)

�A = �Agrav +
�

s

�A(s)

3

and the higher-spin generators Ta1... as−1 . Since they are contracted with the forms (2.19),

these generators must transform as irreducible so(1, 2) ∼ sl(2,R) tensors. Therefore, they
must be traceless and they must satisfy

�
Ja , Tb1... bs−1

�
= �ma(b1Tb2... bs−1)m . (2.22) pre_TT

In fact, if the resulting Lie algebra admits a non-degenerate bilinear form (denoted in the

following by Tr) one can consider the Chern-Simons action

SCS[A] =
k

4π

�
Tr

�
A ∧ dA +

2

3
A ∧ A ∧ A

�
(2.23)

with

k =
R

4G
, (2.24)

and in [12] it was pointed out that the combination

S = SCS[A]− SCS[
�A] , (2.25) action

reduces to the Einstein-Hilbert action when A only contains the gravitational fields. We

shall now see that the linearization of the zero-curvature equations of motion following

from eq. (6.21) describes the free-propagation of ϕµ1... µs on an AdS3 background, thus

ensuring that the full-interacting theory actually describes the coupling of ϕµ1... µs to

gravity.

To linearize the curvatures F = dA + A ∧ A one has to separate the background

gravitational vielbein hµ
a
and spin connection wµ

a
from a first order correction

eµ
a
= hµ

a
+ ēµ

a , ωµ
a
= wµ

a
+ ω̄µ

a , (2.26)

and to treat the higher-spin fields as first order corrections. Notice that the commutator

of two higher-spin generators does not play any role in the linearized field equations, since

it will lead to second order terms quadratic in the higher-spin fields. When expressed in

terms of the vielbeins and the spin connections the lienarized equations of motion then

reads

T a ≡ (2.27) torsion_gravity

Ra ≡ (2.28)

T a1... as ≡ (2.29) torsion_s

Ra1... as ≡ (2.30)

where for brevity we omitted the form indices. The field equations are gauge invariant

under the transformations

δ �a = (2.31)

δ ωa
= (2.32)

δ �a1... as−1 = (2.33)

δ ωa1... as−1 = (2.34) lorentzlin

7

k =
l

4G

Blencowe (1989)

Correct linearised dynamics ⇔                  

c ≤ rk(g)− 1

gk = sl(N)k

A = Agrav +
�

s

A(s)

�A = �Agrav +
�

s

�A(s)

[ Ja, Tb1... bs ] = �ca(b1Tb2... bs)c

[ Ja, Tb1... b� ] = �ca(b1Tb2... b�)c

δA = dA+ [A , λ ] ξ ∼ λ− �λ

δ �A = d �A+ [ �A , �λ ] Λ ∼ λ+ �λ

Ta1... a�

2�+ 1

3
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One-parameter family of 
non-isomorphic Lie algebras

THE LIE ALGEBRAS   hs[λ]

                                    satisfies this property!

Choose a sl(2) irrep: 

Bergshoeff, Blencowe and Stelle; Pope, Romans 
and Shen;   Vasiliev;  Fradkin and Linetsky;   
Bordemann, Hoppe and Schaller (1989)



★−PRODUCT & KILLING METRIC

Abstract characterisation of hs[λ]:

★−product on the quotient → Killing form
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two copies of the infinite-dimensional Lie algebras called hs[λ]. After a brief introduction

to these algebras we shall stress their link with higher spins by discussing the relation

between a suitable basis of their invariant tensors and Fronsdal’s metric-like fields. For

any λ we shall then compute the structure constants of the W-algebra of asymptotic

symmetries in a Virasoro-primary basis.

3.1 The higher-spin algebras hs[λ] ⊕ hs[λ]

In Section 2.1 we have seen that in any three-dimensional HS gauge theory a crucial role

is played by the gauge subalgebra that describes the gravitational sector of the model.

Instead of choosing it among all possible embeddings in a given algebra, one can actually

proceed in a different direction and build HS algebras out of products of generators of the

“gravitational” sl(2,R) ⊕ sl(2,R) gauge algebra.

For instance, following [29, 30, 31, 32, 33, 19], we start with the universal enveloping

algebra of sl(2,R) generated by J± and J0. We then do the identification

C2 := J2
0 − 1

2
( J+J− + J−J+ ) ≡ µ1 , (3.1)

which sets the quadratic Casimir C2 to a particular value µ that we often parameterise as

µ =
1

4

�
λ2 − 1

�
. (3.2)

The algebra obtained in that way is spanned by the identity 1 and the elements

W �
m := (−1)

�−m (� + m)!

(2�)!
L �−m

− J �
+ , � ≥ 1 , − � ≤ m ≤ � , (3.3)

where Li denotes the adjoint action of sl(2,R) as in (2.25). From their definition it is

manifest that they satisfy the commutators

[ W 1
m , W �

n ] = (� m − n) W �
m+n , (3.4)

and we can identify the generators with � = 1 with the sl(2,R) ones. The whole set of

W �
m generates a Lie algebra hs[λ] whose remaining commutators are fixed by the sl(2)

commutators of eq. (2.11). It branches as

hs[λ] =

∞�

� = 1
g(�)

(3.5)

under the adjoint action of the defining sl(2) subalgebra. Different values of the parameter

µ (related to λ by (3.2)) give algebras that are not isomorphic [29, 33].

This construction shows that one can identify hs[λ] with the subspace orthogonal to

the identity in the quotient of the universal enveloping algebra of sl(2,R) by the ideal

generated by (C2 − µ1) [29, 30, 31, 32, 33, 19],

U(sl(2,R))

� C2 − µ1 � = hs[λ] ⊕ C . (3.6)

22
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�
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�

s

�A(s)
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[ Ja, Tb1... b� ] = �ca(b1Tb2... b�)c

δA = dA+ [A , λ ] ξ ∼ λ− �λ

δ �A = d �A+ [ �A , �λ ] Λ ∼ λ+ �λ

Ta1... a�

2�+ 1

C2 := J2
0 − 1

2
( J+J− + J−J+ ) ≡ 1

4

�
λ2 − 1

�
1

Ta1... a� ∼ Πtr J(a1 . . . Ja�)

tr
�
W k

mW
�
n

�
∼ W k

m � W �
n

��
W i

p =0 for i> 0
,

3

For λ ∈ N  the Killing form degenerates!

Vasiliev (1989)
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algebra of sl(2,R) generated by J± and J0. We then do the identification

C2 := J2
0 − 1

2
( J+J− + J−J+ ) ≡ µ1 , (3.1)

which sets the quadratic Casimir C2 to a particular value µ that we often parameterise as
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select asymptotically AdS solutions?
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Then impose boundary conditions:

The space of solutions of the e.o.m. is parameterised by
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where i = 0, ±1, and we identified J±1 ≡ J±. Eq. (2.12) forces the Killing form to satisfy

tr
�

(W k
m)[a] (W �

n)[b]
�

= (−1)�−m (� + m)!(� − m)!
(2�)! δk,� δm+n,0 (N�)ab , (2.13)

with
(N�)ab = tr

�
(W �

� )[a](W �
−�)[b]

�
. (2.14)

Eq. (2.13) implies (N�)ab = (−1)2�(N�)ba, so that the matrix N� is symmetric for integer
values of � and skew symmetric for half-integer values of �. This leads respectively to
symmetric or skew symmetric kinetic terms. While unfamiliar, the latter are precisely
as pertains to the bosonic nature of these spinorial fields, and are instrumental in order
to attain a non-trivial kinetic term for them, unless further prescriptions are introduced,
like a grading of the gauge algebra. At any rate, the models that we are considering
involve more than one field, so that an issue should be checked: the relative sign between
different kinetic terms. Even if no local fluctuations are available in three dimensions, one
could still require that no sign differences are present, as it is crucial in higher space-time
dimensions. This is not the case for a generic choice of g and of a sl(2) embedding in
it2. The relative signs between kinetic terms are also affected by the choice of a real form
for g. For instance, as we shall discuss in Section 3.1, these considerations select the real
form sl(N,R) in the case of SL(N) × SL(N) CS theories that we mentioned before.

2.2 Asymptotic symmetries

We are now going to discuss the asymptotic symmetries of asymptotically-AdS configu-
rations. Therefore, our CS theories have to be defined on manifolds M with a cylindrical
boundary ∂M parameterised by a time-coordinate t and an angular coordinate θ. In
order to fix our notation, in this section we first briefly recall the main features of CS
theories on manifolds of this type following the reviews [26, 49]. Then, following [14], we
discuss how the conditions selecting asymptotically-AdS configurations translate into the
Drinfeld-Sokolov constraint.

Let us begin by focusing on a single chiral sector, say the one involving A. As reviewed
in [26, 14], it is always possible to choose the gauge

Aρ = b−1(ρ) ∂ρ b(ρ) , (2.15)

where ρ is a radial coordinate and b(ρ) is an arbitrary function taking values in the gauge
group G. The gauge (2.15) is preserved by residual gauge transformations with parameters

Λ = b−1(ρ) λ(t, θ) b(ρ) , (2.16)
2
While this paper was in preparation, HS gauge theories based on a non-principally embedded gravita-

tional sector were discussed in [43] (see also [14] for previous comments). Its authors proposed to consider

all possible embeddings in a given gauge algebra as different phases of a common theory, related by a

breaking of the Lorentz-like symmetries of (2.7). The opportunities opened by this observation could

well overcome our reservations, but still any attempt to extrapolate possible results to higher dimensions

should face the subtleties that we remarked here.
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and on shell it implies
Aθ = b−1(ρ) a(t, θ) b(ρ) . (2.17)

Here, λ(t, θ) and a(t, θ) are arbitrary g-valued functions. One can then impose the bound-
ary condition �

At

l
− Aθ

�����
∂M

= 0 (2.18)

that cancels the boundary term appearing in the variation of the action. In pure AdS
gravity, (2.18) is satisfied by all BTZ backgrounds, so that we can safely use it to select the
space of asymptotically-AdS solutions. Requiring (2.18) on the boundary forces At = l Aθ

everywhere in the bulk and removes the gauge invariance, because both a and λ must
depend on ( t

l − θ) so that there is no more an arbitrary time dependence.
We are left with the g-valued function a(θ) on which the gauge transformations gener-

ated by (2.16) act as
δλa(θ) = λ�(θ) + [ a(θ) , λ(θ) ] , (2.19)

where a prime denotes a derivative in θ. These are not proper gauge transformations
[26, 49], but rather global symmetries generated by the boundary charges

Q(λ) = − k

2π

�
dθ tr (λ(θ)a(θ)) , (2.20)

where k times the trace denotes the invariant bilinear form that is used to define the
CS action. The latter observation suffices to fix the canonical structure of the boundary
theory since

δλa(θ) = {Q(λ), a(θ)} (2.21)
implies

{Q(λ), Q(η)} = − k

2π

�
dθ tr (η(θ)δλa(θ)) . (2.22)

This Poisson algebra is the centrally extended loop algebra of g (see, for instance, [26, 49]),
and it induces an analogue Poisson structure on the space of on-shell configurations a(θ),
that accounts for the boundary degrees of freedom.

The other chiral sector, involving �A, can be treated in a similar fashion, but with some
small variations needed to ensure the invertibility of the dreibein. This is guaranteed if
one reaches the following on-shell parameterisation,

l−1 �At = − �Aθ = b(ρ) ã(t, θ) b−1(ρ) , �Aρ = b(ρ) ∂ρ b−1(ρ) , (2.23)

and restricts the b(ρ) appearing both in (2.15) and (2.23) to take values in the “gravita-
tional” subgroup of G. Even if the dreibein is always invertible, in [14] (see also [13, 42])
we argued that (2.23) and the corresponding condition for A do not provide a satisfactory
on-shell parameterisation of the space of asymptotically-AdS configurations. We thus
proposed to also require a finite difference between them and the AdS solution at the
boundary,

(A − AAdS)
����
∂M

= O(1) , (2.24)
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∼ W k
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p =0 for i> 0
,

A = b−1(ρ) a(x+) b(ρ)dx+ + b−1∂ρb dρ

�A = b(ρ) ã(x−) b−1(ρ)dx− + b ∂ρb
−1dρ

3

can be recovered from the change of coordinates

x±
=

t

l
± θ , ρ = log

�
1

2

��
1 +

r

l
+

r

l

��
. (4.4)

Introducing b(ρ) = eρL0 the metric (4.1) can be described by the connections

A = b−1

�
L1 +

2π

k
L(x+

)L−1

�
b dx+

+ b−1 ∂ρ b dρ ,

�A = − b

�
2π

k
�L(x−

)L1 + L−1

�
b−1 dx−

+ b ∂ρ b
−1 dρ , (4.5) BTZ

that are related to the dreibein and the spin connection through eqs. (2.17) and (2.19).

Notice that we exploited the relation (2.25) between the level of the Chern-Simons action

and the AdS radius. We also resorted to the basis (2.43) that will prove particularly

convenient when we shall extend the discussion to the whole SL(3)×SL(3) Chern-Simons

theory.

The connections (4.5) were first introduced by Coussaert, Henneaux and van Driel

in [35] in order to translate the Brown-Henneaux boundary conditions [9] in the frame

formalism. In [29] Bañados then observed that they actually provide an exact solution of

the Einstein equations. These authors also shown that solutions parameterised by different
functions L and �L cannot be related between each other by gauge transformations, and

thus they describe physically inequivalent solutions. This characterisation of the space of

asymptotically AdS solutions was then extended to supergravity theories in [36]. We shall

now generalise it in order to let it taking into account also the coupling with a spin-3 field.

Let us start by noticing that the connection A of eq. (4.5) satisfies the gauge choice (3.12)

and the condition (3.19) in the whole space, while the connection �A satisfies analogue

conditions. We shall now show that these properties continue to hold even on the wider

space of solutions obtained by acting on a generic pure-gravity background of the form

(4.5) with the isometries of the AdS3 solution. As such, they can be considered as crucial

ingredients in the characterisation of generic asymptotically AdS solutions even in the full

SL(3)× SL(3) Chern-Simons theory.

In order to prove this statement, one can notice that in the AdS case eq. (4.5) can be

cast in the form

A = g−1d g , �A = g̃−1d g̃ , (4.6)

with

g = e
x+

2 (L1+L−1 ) b(ρ) , g̃ = e−
x−
2 (L1+L−1 ) b−1

(ρ) . (4.7)

This rewriting enables one to present the isometries of the AdS3 solution in a rather

compact form and eventually to relate them to the AdS3 Killing vectors/tensors. For

instance, denoting collectively the SL(3) generators by TA, the gauge transformations

generated by the parameters

ξA = g−1 TA g =
�
g−1 TA g

�B TB , (4.8) iso_par

21

b(ρ) = eρJ0

compatible 
with BTZ

a(x+), ã(x−) ∈ hs[λ]



ASYMPTOTICALLY ADS SOLUTIONS

What are the correct boundary conditions i.e. how to 
select asymptotically AdS solutions?

First fix the gauge:                                       with 

Then impose boundary conditions:

The space of solutions of the e.o.m. is parameterised by

10

where i = 0, ±1, and we identified J±1 ≡ J±. Eq. (2.12) forces the Killing form to satisfy

tr
�

(W k
m)[a] (W �

n)[b]
�

= (−1)�−m (� + m)!(� − m)!
(2�)! δk,� δm+n,0 (N�)ab , (2.13)

with
(N�)ab = tr

�
(W �

� )[a](W �
−�)[b]

�
. (2.14)

Eq. (2.13) implies (N�)ab = (−1)2�(N�)ba, so that the matrix N� is symmetric for integer
values of � and skew symmetric for half-integer values of �. This leads respectively to
symmetric or skew symmetric kinetic terms. While unfamiliar, the latter are precisely
as pertains to the bosonic nature of these spinorial fields, and are instrumental in order
to attain a non-trivial kinetic term for them, unless further prescriptions are introduced,
like a grading of the gauge algebra. At any rate, the models that we are considering
involve more than one field, so that an issue should be checked: the relative sign between
different kinetic terms. Even if no local fluctuations are available in three dimensions, one
could still require that no sign differences are present, as it is crucial in higher space-time
dimensions. This is not the case for a generic choice of g and of a sl(2) embedding in
it2. The relative signs between kinetic terms are also affected by the choice of a real form
for g. For instance, as we shall discuss in Section 3.1, these considerations select the real
form sl(N,R) in the case of SL(N) × SL(N) CS theories that we mentioned before.

2.2 Asymptotic symmetries

We are now going to discuss the asymptotic symmetries of asymptotically-AdS configu-
rations. Therefore, our CS theories have to be defined on manifolds M with a cylindrical
boundary ∂M parameterised by a time-coordinate t and an angular coordinate θ. In
order to fix our notation, in this section we first briefly recall the main features of CS
theories on manifolds of this type following the reviews [26, 49]. Then, following [14], we
discuss how the conditions selecting asymptotically-AdS configurations translate into the
Drinfeld-Sokolov constraint.

Let us begin by focusing on a single chiral sector, say the one involving A. As reviewed
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where ρ is a radial coordinate and b(ρ) is an arbitrary function taking values in the gauge
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This Poisson algebra is the centrally extended loop algebra of g (see, for instance, [26, 49]),
and it induces an analogue Poisson structure on the space of on-shell configurations a(θ),
that accounts for the boundary degrees of freedom.

The other chiral sector, involving �A, can be treated in a similar fashion, but with some
small variations needed to ensure the invertibility of the dreibein. This is guaranteed if
one reaches the following on-shell parameterisation,
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and restricts the b(ρ) appearing both in (2.15) and (2.23) to take values in the “gravita-
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we argued that (2.23) and the corresponding condition for A do not provide a satisfactory
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�
b−1 dx−

+ b ∂ρ b
−1 dρ , (4.5) BTZ

that are related to the dreibein and the spin connection through eqs. (2.17) and (2.19).

Notice that we exploited the relation (2.25) between the level of the Chern-Simons action

and the AdS radius. We also resorted to the basis (2.43) that will prove particularly

convenient when we shall extend the discussion to the whole SL(3)×SL(3) Chern-Simons

theory.

The connections (4.5) were first introduced by Coussaert, Henneaux and van Driel

in [35] in order to translate the Brown-Henneaux boundary conditions [9] in the frame

formalism. In [29] Bañados then observed that they actually provide an exact solution of

the Einstein equations. These authors also shown that solutions parameterised by different
functions L and �L cannot be related between each other by gauge transformations, and

thus they describe physically inequivalent solutions. This characterisation of the space of

asymptotically AdS solutions was then extended to supergravity theories in [36]. We shall

now generalise it in order to let it taking into account also the coupling with a spin-3 field.

Let us start by noticing that the connection A of eq. (4.5) satisfies the gauge choice (3.12)

and the condition (3.19) in the whole space, while the connection �A satisfies analogue

conditions. We shall now show that these properties continue to hold even on the wider

space of solutions obtained by acting on a generic pure-gravity background of the form

(4.5) with the isometries of the AdS3 solution. As such, they can be considered as crucial

ingredients in the characterisation of generic asymptotically AdS solutions even in the full

SL(3)× SL(3) Chern-Simons theory.

In order to prove this statement, one can notice that in the AdS case eq. (4.5) can be

cast in the form

A = g−1d g , �A = g̃−1d g̃ , (4.6)

with

g = e
x+

2 (L1+L−1 ) b(ρ) , g̃ = e−
x−
2 (L1+L−1 ) b−1

(ρ) . (4.7)

This rewriting enables one to present the isometries of the AdS3 solution in a rather

compact form and eventually to relate them to the AdS3 Killing vectors/tensors. For

instance, denoting collectively the SL(3) generators by TA, the gauge transformations

generated by the parameters

ξA = g−1 TA g =
�
g−1 TA g

�B TB , (4.8) iso_par
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ASYMPTOTICALLY ADS SOLUTIONS

Is that enough? NO, extra conditions are needed

            ⇒  algebra of boundary charges ≈ Kac-Moody

Pure gravity:  extra boundary conditions ⇒ conformal symmetry

Extra conditions fixed by comparison with Brown-Henneaux

And here?

11

A− = 0
For a review 
see Banados, 
9901148

Brown and 
Henneaux 
(1986)



ASYMPTOTICALLY ADS SOLUTIONS

Is that enough? NO, extra conditions are needed

            ⇒  algebra of boundary charges ≈ Kac-Moody

Pure gravity:  extra boundary conditions ⇒ conformal symmetry

Extra conditions fixed by comparison with Brown-Henneaux

And here?

11

A− = 0
For a review 
see Banados, 
9901148

we can determine the induced Poisson brackets on the Lie algebra valued modes Tn.
Expanding in an orthonormal basis of the Lie algebra, Tn = T a

n ta, we obtain the affine
Lie algebra

{T a
m, T

b
n} = −fab

cT
c
m+n +

imk

2
δabδm+n,0 . (3.15)

4 Asymptotic symmetries

When we discuss gravity or the higher spin extensions thereof for backgrounds which are
asymptotically Anti-de Sitter we have to impose further conditions at the boundary. Let
us look at the Anti-de Sitter solution itself,

A0 = Aθ = ±
1

2
b−1(r)(L1 + L−1)b(r) (?) , Ar = b−1(r)∂rb(r) , (4.1) AdSconnection

where b(r) = eρL0 , ρ = log r.

We call a solution asymptotically Anti-de Sitter if its difference to the AdS-solution is
finite at the boundary,

A− AAdS

���
boundary

= O(1) . (4.2) AdScondition

We have seen that the Chern-Simons solutions are parameterised by the function a(θ).
For G = SL(3,R), we expand a(θ) in the basis given by Lm, Wn,

a(θ) =
1�

m=−1

�m(θ)Lm +
2�

m=−2

wm(θ)Wm . (4.3)

Then the condition (4.2) translates into conditions on the components �m and wm,

�1 =
1

2
, w1 = w2 = 0 . (4.4) AdSconditiononcomponents

These are first-class constraints (their mutual Poisson brackets all vanish on the constraint
surface), and therefore they generate gauge transformations. We can use them to also set

�0 = 0 , w0 = w−1 = 0 . (4.5) AdSconditiongaugefixing

This fixes the gauge freedom, and the set of contraints (4.4) and (4.5) is now second-class.
The degress of freedom that remain are the components �−1 and w−2.

We decompose �m(θ) and wn(θ) in Fourier modes,

�m(θ) =
1

k

�

p∈Z

�mp e
ipθ , wm(θ) =

1

k

�

p∈Z

wm
p e

ipθ . (4.6)
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and on shell it implies
Aθ = b−1(ρ) a(t, θ) b(ρ) . (2.17)

Here, λ(t, θ) and a(t, θ) are arbitrary g-valued functions. One can then impose the bound-
ary condition �

At

l
− Aθ

�����
∂M

= 0 (2.18)

that cancels the boundary term appearing in the variation of the action. In pure AdS
gravity, (2.18) is satisfied by all BTZ backgrounds, so that we can safely use it to select the
space of asymptotically-AdS solutions. Requiring (2.18) on the boundary forces At = l Aθ

everywhere in the bulk and removes the gauge invariance, because both a and λ must
depend on ( t

l − θ) so that there is no more an arbitrary time dependence.
We are left with the g-valued function a(θ) on which the gauge transformations gener-

ated by (2.16) act as
δλa(θ) = λ�(θ) + [ a(θ) , λ(θ) ] , (2.19)

where a prime denotes a derivative in θ. These are not proper gauge transformations
[26, 49], but rather global symmetries generated by the boundary charges

Q(λ) = − k

2π

�
dθ tr (λ(θ)a(θ)) , (2.20)

where k times the trace denotes the invariant bilinear form that is used to define the
CS action. The latter observation suffices to fix the canonical structure of the boundary
theory since

δλa(θ) = {Q(λ), a(θ)} (2.21)
implies

{Q(λ), Q(η)} = − k

2π

�
dθ tr (η(θ)δλa(θ)) . (2.22)

This Poisson algebra is the centrally extended loop algebra of g (see, for instance, [26, 49]),
and it induces an analogue Poisson structure on the space of on-shell configurations a(θ),
that accounts for the boundary degrees of freedom.

The other chiral sector, involving �A, can be treated in a similar fashion, but with some
small variations needed to ensure the invertibility of the dreibein. This is guaranteed if
one reaches the following on-shell parameterisation,

l−1 �At = − �Aθ = b(ρ) ã(t, θ) b−1(ρ) , �Aρ = b(ρ) ∂ρ b−1(ρ) , (2.23)

and restricts the b(ρ) appearing both in (2.15) and (2.23) to take values in the “gravita-
tional” subgroup of G. Even if the dreibein is always invertible, in [14] (see also [13, 42])
we argued that (2.23) and the corresponding condition for A do not provide a satisfactory
on-shell parameterisation of the space of asymptotically-AdS configurations. We thus
proposed to also require a finite difference between them and the AdS solution at the
boundary,

(A − AAdS)
����
∂M

= O(1) , (2.24)
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2.3 Drinfeld-Sokolov reduction in highest-weight gauge

To find the symmetries of the constrained theory, we look at the set of symmetry trans-
formations (2.19) that leave the form (2.29) of a(θ) invariant,

L−(δλa) = 0 . (2.31)

This condition translates into

L− ( ∂θ + [ a−(θ), · ] ) λ(θ) + L−L+λ(θ) = 0 . (2.32)

The operator L−L+ can be rewritten as

L−L+ = − ∆ + L0(L0 − 1) , (2.33)

where we introduced the quadratic Casimir

∆ = L2
0 − 1

2 ( L+L− + L−L+ ) . (2.34)

In the basis of g introduced in (2.12) the operator (∆ − L0(L0 − 1)) acts as

( ∆ − L0(L0 − 1) ) (W �
m)[a] = (� − m)(� + m + 1) (W �

m)[a] , (2.35)

i.e. by multiplication with a number that is non-zero for m �= �. We denote by g− (g+)
the space of highest (lowest) weight states,

x ∈ g− ⇔ L−x = 0 , x ∈ g+ ⇔ L+x = 0 . (2.36)

In general, g− and g+ can have a non-trivial intersection which contains the sl(2) singlets.
We also introduce the projection operators P± onto g±, respectively. The operator (∆ −
L0(L0 − 1)) is invertible on the orthogonal complement of g+, and we define

R := − 1
∆ − L0(L0 − 1) ( 1 − P+ ) . (2.37)

In particular we have
R L−L+ = L−L+ R = 1 − P+ . (2.38)

Furthermore we introduce the covariant derivative

Dθ := ∂θ + [ a−(θ), · ] , (2.39)

which commutes with L−, because L−a− = 0.
Applying R to (2.32) and taking into account (2.38), we eventually obtain

λ(θ) = λ+(θ) − RL−Dθλ(θ) . (2.40)
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−1dρ

a(x+), a(x−) ∈ g

(L−Dθ + L−L+ )λ(θ) = 0
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Here, λ+(θ) = P+λ(θ) is the lowest-weight part of λ. Eq. (2.40) is solved by

λ(θ) = 1
1 + RL−Dθ

λ+(θ) , (2.41)

which expresses the gauge parameter λ in terms of its lowest-weight part.5 Inserting the
solution (2.41) into the expression (2.19) for δλa, we find

δλa(θ) = P−
1

1 + DθRL−
Dθλ+(θ) = P−

∞�

n = 0

�
− DθRL−

�n
Dθλ+(θ) . (2.42)

This finally expresses δλa in terms of λ+. One might be worried about the infinite series
appearing in (2.42). For a gauge parameter with definite sl(2) quantum numbers as
λ+(θ) = �(θ)W �

� , however, the series expansion in (2.42) stops at the term with n = 2�.
This is because each term DθRL− involves the application of L−, and (L−)2�+1W �

� = 0,
while L− commutes with Dθ and R does not change the sl(2) quantum numbers. The
indices [a] of (2.9) do not play any role in this argument and thus we omitted them for
simplicity.

In order to identify the Poisson structure on the reduced phase space one can then
substitute (2.42) in (2.22). It is also possible to display the Poisson brackets between
fields of defined conformal spin. To this end one can expand a−(θ) and the independent
part of the gauge parameter, encoded in λ+(θ), in the basis (2.12):

a−(θ) = 2π

k



 L(θ)J− +
�

� , a

W [a]
� (θ) (W �

−�)[a]



 , (2.43a)

λ+(θ) = �(θ)J+ +
�

� , a

�[a]
� (θ) (W �

� )[a] . (2.43b)

Here [a] is a colour index, while � is a sl(2) quantum number. The charges (2.20) which
generate the transformations (2.42) then read

Q(λ+) =
�

dθ �(θ) L(θ) −
�

�, a, b

(N�)ab

�
dθ �[a]

� (θ) W [b]
� (θ) , (2.44)

with the matrices (N�)ab defined in (2.14). By substituting (2.44) in (2.21) one can
eventually read off the Poisson brackets {W [a]

i (θ), W [b]
j (θ�)}. If all values of � are integers,

one can diagonalise (N�)ab and thus determine all Poisson brackets involving W [a]
� by

looking at the gauge transformations generated by �[a]
� . If some half-integer values of �

appear in (2.8) one can at most make (N�)ab block-diagonal, with a sequence of 2 × 2
blocks. This means that the Poisson brackets of a given field can be extracted from
the gauge transformations generated by the gauge parameter with the “partner” colour
charge.

5A similar formula appears in [53].
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λ+ = P+λ
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Symmetries generated by the lowest-weight part of λ

A = b−1(ρ) a(x+) b(ρ)dx+ + b−1∂ρb dρ

�A = b(ρ) ã(x−) b−1(ρ)dx− + b ∂ρb
−1dρ

a(x+), a(x−) ∈ g

(L−Dθ + L−L+ )λ(θ) = 0

δλa(θ) = P−

∞�

n=0

�
−DθRL−

�n
Dθλ+(θ) . (2.8)
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see also de Boer and Goeree (1993)
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[13], respectively. A discussion of the general case was also anticipated in [19]. In these

works, however, the computation of structure constants was completed only for fields of

spin s ≤ 3 (see also [36, 37] for an earlier treatment of W∞[λ] algebras and [59] for an

abstract proof that they are actually related to the DS reduction of hs[λ]).

Before displaying the structure constants, let us notice that one can easily evaluate

the maximum order of non-linearity appearing in the Poisson brackets. Consider a gauge

parameter of definite spin, λ+ = �(θ)W �
� . When we act on it with the covariant derivative

entering (2.42), the term in W �1
−�1 gives a result with �tot ≤ � + �1 − 1 and L0-eigenvalue

� − �1. If we apply the covariant derivative r-times, we arrive at a L0-eigenvalue
�

�i − �
in a representation with �tot ≤ �

�i + � − r. In addition, the action of Dθ is accompanied

by at least r − 1 applications of L−, that means the L0-eigenvalue is
�

�i − � + r − 1.

Clearly, if the L0-eigenvalue exceeds �tot, the expression vanishes, and this happens if

−� + r − 1 > � − r, i.e. r ≥ � + 1. In conclusion, in the Poisson brackets of a field with

sl(2) label � there can be at most a non-linearity of order �, as in the Virasoro polynomials

discussed in Section 2.4.3. Actually, as we shall see, the pure-Virasoro terms are the only

ones that saturate this bound. This limitation also accounts, for instance, for the linearity

of the Virasoro algebra, that only contains spin-2 fields, and for the quadratic order of

non-linearity of the W3 algebra.

As in subsections 2.4.2 and 2.4.3 the structure constants can be computed by consid-

ering the gauge variation induced by a parameter of given spin, say λ+ = �(θ)W i
i . The

details of the evaluation of the series (2.42) are presented in Appendix B, while here we

directly present our result. In this case the general decomposition (2.43a) can be cast in

the form

a−(θ) =
2π

k

∞�

j = 1
Wj(θ) W j

−j , (3.20)

where we identified L with W1 since no ambiguities can arise due to the absence of colour

indices. The gauge variation of each Wj(θ) with respect to λ+ = �(θ)W i
i reads

δiWj =
k

2π(2i)!
�(2i+1) δi,j

+

i�

r = 1

i+j−r�
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Here, as in (2.62), an exponent between parentheses denotes the action of the correspond-

ing number of derivatives on the field, while n̂ denotes the total number of derivatives

which is
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For each r the sums over a’s and p’s distribute over these indices the “total spin” L and
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λ = N →  classical WN algebras
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METRIC-LIKE FORMULATION?



LORENTZ-LIKE SYMMETRIES

         Chern-Simons ≈ Cartan-Weyl approach to gravity

How to extract information on the metric-like theory?

How to express Frondal’s fields in terms of vielbeins?

How to generalise                              ?

Look at gauge transformations
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have the same structure (i.e. the same fiber indices), and one can consider linear combina-
tions of them as in (2.4). This eventually allows one to build bosonic massless higher-spin
gauge theories out of G × G Chern-Simons theories [1]. The action has the same form as
(2.1), but now the gauge fields A and �A take values in a (possibly infinite-dimensional)
Lie algebra g admitting a non-degenerate bilinear invariant form. Vielbeine and spin
connections are identified through (2.4), while the invariance of the action under

δA = dA + [ A , λ ] , δ �A = d �A + [ �A , �λ ] (2.5) transfA

leads to two different kinds of gauge transformations generated by the parameters

ξ = l

2
�

λ − �λ
�

, Λ = 1
2

�
λ + �λ

�
. (2.6) par

Those generated by ξ correspond to local translations in pure gravity (that in D = 2 + 1
are equivalent to diffeomorphisms [35]), while those generated by Λ extend the usual local
Lorentz transformations:gauge_fields

δe = dξ + [ ω , ξ ] + [ e , Λ ] , (2.7a) gauge_viel

δω = dΛ + [ ω , Λ ] + 1
l2 [ e , ξ ] . (2.7b) gauge_spin

Even if no local fluctuations are present, one can define the “spectrum” of the theory
by looking at the transformation properties of the fields under Lorentz transformations.
It is thus fixed by the choice of a sl(2,R) subalgebra in g that – together with the
corresponding one coming from the second copy of g – identifies the gravitational sector.
Once this selection is made one can consider the branching of g under the adjoint action
of the “gravitational” sl(2,R), so that

g = sl(2,R) ⊕



�

� , a

g(�,a)



 . (2.8) branching

Each g(�,a) has dimension 2� + 1 with 2� ∈ N, while the index a accounts for possible
multiplicities. For infinite-dimensional algebras we thus discard by hypothesis sl(2) em-
beddings that would bring on infinite-dimensional irreducible representations in (2.8).
The branching of g induces the decomposition

A(x) = Aµ
i(x)Ji dxµ +

�

� , a

��

m = − �

A[a] �,m
µ (x) (W �

m)[a] dxµ , (2.9) dec_A

and a similar one for �A. Here the (W �
m)[a] generate g(�,a), while the Ji generate sl(2,R) as

in pure gravity. Let us now focus for a while on sl(2) embeddings that do not involve any
half-integer �. In this case the dimension of each g(�,a) equals the number of independent
off-shell fiber components of the vielbein or of the spin connection associated to a fully
symmetric tensor ϕ [a]

µ1... µ�+1 [45, 46]. As a result, for any integer � the 1-forms

e[a] �,m
µ = l

2
�

A[a] �,m
µ − �A[a] �,m

µ

�
, ω[a] �,m

µ = 1
2

�
A[a] �,m

µ + �A[a] �,m
µ

�
(2.10) viel_lm
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such as the intriguing HS generalisations of gravity black holes [39, 40, 42, 43].

2 Asymptotic symmetries from Drinfeld-Sokolov re-

duction
sec:reduction

A three-dimensional pure higher-spin (HS) gauge theory coupled to gravity in backgrounds

that are asymptotically AdS can be described by a Chern-Simons (CS) theory supple-

mented by suitable boundary conditions [13, 14]. These translate into the Drinfeld-Sokolov

(DS) constraint on the centrally extended loop algebra that appears on the boundary

of a CS theory. Therefore, asymptotic symmetries are described by the W-algebras that

arise from the DS reduction. In this section we first review the DS reduction in the context

of HS gauge theories. We then provide an algorithm to perform it in the highest-weight

gauge, from which one obtains W-algebras in a basis where all fields are primaries with

respect to the lowest spin ones.

2.1 Higher-spin gauge theories in D = 2 + 1
sec:red_bulk

In D = 2 + 1 Einstein gravity with a negative cosmological constant is equivalent to a

SL(2,R) × SL(2,R) Chern-Simons theory [34, 35]. In fact, up to boundary terms, one

can rewrite the Einstein-Hilbert action as

S = SCS[A] − SCS[ �A] , (2.1) EH

with

SCS[A] =
k

4π

�
tr

�
A ∧ dA +

2

3
A ∧ A ∧ A

�
. (2.2) CS

The fields A and �A are sl(2,R)-valued differential forms so that, for instance, A =

Aµ
i Ji dxµ

, where the Ji generate the sl(2,R) algebra. We normalise the invariant form

entering the CS action such that

tr (JiJj) =
1

2
η ij ⇒ k =

l

4G
, (2.3)

where l denotes the AdS radius and G is Newton’s constant. The standard first-order

formulation of gravity is recovered by considering the combinations

e =
l

2

�
A − �A

�
, ω =

1

2

�
A + �A

�
, (2.4) viel

that identify the dreibein and the spin connection.

In a similar fashion, the first-order formulation of the free dynamics of massless bosonic

symmetric fields ϕµ1... µs with s ≥ 2 involves a vielbein-like 1-form and an auxiliary 1-form

which generalises the spin connection [45, 46]. In D = 2 + 1 these two differential forms
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have the same structure (i.e. the same fiber indices), and one can consider linear combina-
tions of them as in (2.4). This eventually allows one to build bosonic massless higher-spin
gauge theories out of G × G Chern-Simons theories [1]. The action has the same form as
(2.1), but now the gauge fields A and �A take values in a (possibly infinite-dimensional)
Lie algebra g admitting a non-degenerate bilinear invariant form. Vielbeine and spin
connections are identified through (2.4), while the invariance of the action under

δA = dA + [ A , λ ] , δ �A = d �A + [ �A , �λ ] (2.5) transfA

leads to two different kinds of gauge transformations generated by the parameters

ξ = l

2
�

λ − �λ
�

, Λ = 1
2

�
λ + �λ

�
. (2.6) par

Those generated by ξ correspond to local translations in pure gravity (that in D = 2 + 1
are equivalent to diffeomorphisms [35]), while those generated by Λ extend the usual local
Lorentz transformations:gauge_fields

δe = dξ + [ ω , ξ ] + [ e , Λ ] , (2.7a) gauge_viel

δω = dΛ + [ ω , Λ ] + 1
l2 [ e , ξ ] . (2.7b) gauge_spin

Even if no local fluctuations are present, one can define the “spectrum” of the theory
by looking at the transformation properties of the fields under Lorentz transformations.
It is thus fixed by the choice of a sl(2,R) subalgebra in g that – together with the
corresponding one coming from the second copy of g – identifies the gravitational sector.
Once this selection is made one can consider the branching of g under the adjoint action
of the “gravitational” sl(2,R), so that

g = sl(2,R) ⊕



�

� , a

g(�,a)



 . (2.8) branching

Each g(�,a) has dimension 2� + 1 with 2� ∈ N, while the index a accounts for possible
multiplicities. For infinite-dimensional algebras we thus discard by hypothesis sl(2) em-
beddings that would bring on infinite-dimensional irreducible representations in (2.8).
The branching of g induces the decomposition

A(x) = Aµ
i(x)Ji dxµ +

�

� , a

��

m = − �

A[a] �,m
µ (x) (W �

m)[a] dxµ , (2.9) dec_A

and a similar one for �A. Here the (W �
m)[a] generate g(�,a), while the Ji generate sl(2,R) as

in pure gravity. Let us now focus for a while on sl(2) embeddings that do not involve any
half-integer �. In this case the dimension of each g(�,a) equals the number of independent
off-shell fiber components of the vielbein or of the spin connection associated to a fully
symmetric tensor ϕ [a]

µ1... µ�+1 [45, 46]. As a result, for any integer � the 1-forms

e[a] �,m
µ = l

2
�

A[a] �,m
µ − �A[a] �,m

µ

�
, ω[a] �,m

µ = 1
2

�
A[a] �,m

µ + �A[a] �,m
µ

�
(2.10) viel_lm
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such as the intriguing HS generalisations of gravity black holes [39, 40, 42, 43].

2 Asymptotic symmetries from Drinfeld-Sokolov re-

duction
sec:reduction

A three-dimensional pure higher-spin (HS) gauge theory coupled to gravity in backgrounds

that are asymptotically AdS can be described by a Chern-Simons (CS) theory supple-

mented by suitable boundary conditions [13, 14]. These translate into the Drinfeld-Sokolov

(DS) constraint on the centrally extended loop algebra that appears on the boundary

of a CS theory. Therefore, asymptotic symmetries are described by the W-algebras that

arise from the DS reduction. In this section we first review the DS reduction in the context

of HS gauge theories. We then provide an algorithm to perform it in the highest-weight

gauge, from which one obtains W-algebras in a basis where all fields are primaries with

respect to the lowest spin ones.

2.1 Higher-spin gauge theories in D = 2 + 1
sec:red_bulk

In D = 2 + 1 Einstein gravity with a negative cosmological constant is equivalent to a

SL(2,R) × SL(2,R) Chern-Simons theory [34, 35]. In fact, up to boundary terms, one

can rewrite the Einstein-Hilbert action as

S = SCS[A] − SCS[ �A] , (2.1) EH

with

SCS[A] =
k

4π

�
tr

�
A ∧ dA +

2

3
A ∧ A ∧ A

�
. (2.2) CS

The fields A and �A are sl(2,R)-valued differential forms so that, for instance, A =

Aµ
i Ji dxµ

, where the Ji generate the sl(2,R) algebra. We normalise the invariant form

entering the CS action such that

tr (JiJj) =
1

2
η ij ⇒ k =

l

4G
, (2.3)

where l denotes the AdS radius and G is Newton’s constant. The standard first-order

formulation of gravity is recovered by considering the combinations

e =
l

2

�
A − �A

�
, ω =

1

2

�
A + �A

�
, (2.4) viel

that identify the dreibein and the spin connection.

In a similar fashion, the first-order formulation of the free dynamics of massless bosonic

symmetric fields ϕµ1... µs with s ≥ 2 involves a vielbein-like 1-form and an auxiliary 1-form

which generalises the spin connection [45, 46]. In D = 2 + 1 these two differential forms
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Lorentz transformations
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g ⊇ sl(2,R) ∼ so(1, 2)

A = b−1(ρ) a(x+) b(ρ)dx+ + b−1∂ρb dρ

�A = b(ρ) ã(x−) b−1(ρ)dx− + b ∂ρb
−1dρ

a(x+), a(x−) ∈ g

(L−Dθ + L−L+ )λ(θ) = 0

δλa(θ) = P−

∞�

n=0

�
−DθRL−

�n
Dθλ+(θ) . (2.8)

a− =
2π

k

�
L(θ)J− +

�

� , a

W [a]
� (θ)(W �

−�)[a]
�
, λ+ = �(θ)J+ +

�

� , a

�[a]� (θ)(W �
� )[a] .

δλa(θ) = {Q(λ+), a(θ)}

g = ea e
a − 2 σ eab e

ab ∼ tr (e · e) (2.9)

ϕ = ea eb e
ab +

4

3
σ eac eb

ceab ∼ tr (e · e · e) (2.10)

4



METRIC-LIKE FIELDS

The Lorentz algebra is extended to

Metric-like fields must be invariant under generalised 
Lorentz transformations

This fixes the non-linear structure of fields in the SL(3)×SL(3) theory

16

g ⊇ sl(2,R) ∼ so(1, 2)

A = b−1(ρ) a(x+) b(ρ)dx+ + b−1∂ρb dρ
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This fixes the non-linear structure of fields in the SL(3)×SL(3) theory
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g ⊇ sl(2,R) ∼ so(1, 2)

Lorentz-like invariance guaranteed by the trace

For rank >3 multiple invariants in SL(N)×SL(N) theories!
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How to identify metric-like fields?

First look for possible candidates...

Invariant tensors of hs[λ] can be built with the help of the ★−product
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As a result, for s > 3 the invariance under Lorentz-like transformations does not suffice

to fix the structure of ϕµ1... µs . For instance, for s = 4 one can consider both tr(e4)

and tr(e2)tr(e2) and one has to single out the linear combination that defines ϕµνρσ. This

freedom corresponds to the existence of two Lorentz-like invariant combinations of rank-4:

ϕµνρσ and g(µν gρσ).

The realisation of the Lie algebra hs[λ] as a �-commutator algebra proposed in [30, 31]

provides a powerful tool to analyse this problem at least for the first values of the spin.

In fact,

kA1... As ≡ 1

s!
tr ( T(A1 . . . TAs) ) :=

6

(λ2 − 1) s!
T(A1 � . . . � TAs)

���
TA = 0

(3.14)

is a symmetric invariant tensor of hs[λ] (which coincides with the Killing metric (3.9)

for s = 2). Its contraction with the vielbeine eA gives a Lorentz-like invariant tensor of

rank s.9 Metric-like fields should then result from the contraction of the vielbeine with

the elements of a particular basis of the polynomial ring of invariant tensors of hs[λ].

This is clear for all AN ⊕ AN , BN ⊕ BN and CN ⊕ CN CS theories that can be extracted

from the hs[λ] ⊕ hs[λ] one. In fact, their spectra are given by the exponents of the gauge

algebras, and are thus in one to one correspondence with the ranks of their independent

Casimir operators. Each Casimir operator is, in turn, uniquely associated to a symmetric

invariant tensor (see, for instance, [58] and references therein). It is natural to suppose

that the same is true even for non-integer λ.

Since the relative coefficients between different invariant tensors of the same rank

cannot be fixed by the extended Lorentz invariance, they should be fixed by the additional

requirements that ϕµ1... µs must satisfy:

1. it has to be doubly traceless as its linearised counterpart (see e.g. [44]);

2. in the linearised regime its rewriting in terms of the vielbeine has to reproduce the

definition in a free theory.

To impose the first condition one should invert the general definition of the metric (3.11).

For this reason we refrain from discussing it here, deferring to future work a full discussion

of the problem. On the other hand, the second condition is more tractable and already

suffices to fix the structure of spin-4 and spin-5 fields for any λ.

The linearised definition of ϕµ1... µs can be most conveniently recalled by describing the

vielbein e �,m of (2.10) as a symmetric traceless tensor ea1... a� (that has 2� + 1 indepen-

dent components as e �,m). Denoting the background vielbein by ēµ
a and the linearised

fluctuations by hµ
a1... as−1 , for s > 2 in a linear regime one has

ϕµ1... µs ∼ ē(µ1
a1 . . . ēµs−1

as−1hµs) a1... as−1 . (3.15)

9See [57] for a similar construction for D > 3.
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a1 . . . ēµs−1
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FIRST EXAMPLES & PROBLEMS...

Match the standard linearised expression for φs

No background for s > 2

                                                                .

First positive results...                                                                                     
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This means that, differently from gµν , it is usually assumed that higher-spin fields do not
receive any background contribution, while the tracelessness of ha1... as−1 guarantees the
doubly tracelessness of ϕµ1... µs .

Imposing the matching of the most general Lorentz-like invariant combination with
(3.15) one obtains

ϕ4 ∼ tr e4 − 1
10 (3λ2 − 7)

�
tr e2

�2
, (3.16)

ϕ5 ∼ tr e5 − 5
21 (3λ2 − 13) tr e2 tr e3 . (3.17)

However, starting from s = 6 this comparison does not suffice to fix all free coefficients.
In fact, the most general Lorentz-like invariant combination reads

ϕ6 ∼ tr e6 + α(λ) tr e2 tr e4 + β(λ)
�

tr e2
�3

+ γ(λ)
�

tr e3
�2

. (3.18)

The condition (3.15) gives

α(λ) = − 5
6 (λ2 − 7) , β(λ) = 1

42 (6λ4 − 71λ2 + 125) , (3.19)

but the term tr(e3) does not admit any background contribution. As a result, ( tr e3 )2

does not contribute at first order as well, and the matching with (3.15) cannot put any
constraint on γ(λ). Some extra information follows from the observation that all ϕs we
were able to identify vanish in the sl(N) ⊕ sl(N) theories with N < s. This is expected
because in these cases there are no fields of spin s in the spectrum.10 One can thus
impose the same condition on ϕ6 and this forces γ(λ) = (1/3)(λ2 −1) for N = 3, 4, 5. It is
however not clear to us if this condition suffices to also force the double trace constraint
for arbitrary values of λ, while the uniqueness of (3.16) and (3.17) should ensure the
double tracelessness of ϕ4 and ϕ5. An explicit check would anyway provide a non-trivial
consistency check of the whole construction, and we hope to report on it soon.

3.2 Gauge transformations preserving the highest-weight gauge

We now take the algebras of the last subsection as starting point for a DS reduction in
the highest-weight gauge, and we determine the structure of the corresponding family of
infinite-dimensional W-algebras. Since no sl(2)-singlets appear in (3.5), all generators
will be Virasoro primaries. The asymptotic symmetries of the hs[λ] ⊕ hs[λ] CS theories
that we just discussed are given by two copies of the resulting W-algebras, that we denote
by W∞[λ] as in [19]. The cases with λ ∈ N and λ = 1/2 were already discussed in [14] and

10A general expression for a basis of the centraliser of sl(N) whose elements vanish when their rank

exceeds N was considered in [58]. All tensors in this basis are orthogonal to each other and then, in

particular, they are all traceless. On the other hand, the invariant tensors that give the metric-like fields

do not satisfy this property. Therefore, they coincide with those in [58] only for λ = N < s.
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As a result, for s > 3 the invariance under Lorentz-like transformations does not suffice

to fix the structure of ϕµ1... µs . For instance, for s = 4 one can consider both tr(e4)

and tr(e2)tr(e2) and one has to single out the linear combination that defines ϕµνρσ. This

freedom corresponds to the existence of two Lorentz-like invariant combinations of rank-4:

ϕµνρσ and g(µν gρσ).

The realisation of the Lie algebra hs[λ] as a �-commutator algebra proposed in [30, 31]

provides a powerful tool to analyse this problem at least for the first values of the spin.

In fact,

kA1... As ≡ 1

s!
tr ( T(A1 . . . TAs) ) :=

6

(λ2 − 1) s!
T(A1 � . . . � TAs)

���
TA = 0

(3.14)

is a symmetric invariant tensor of hs[λ] (which coincides with the Killing metric (3.9)

for s = 2). Its contraction with the vielbeine eA gives a Lorentz-like invariant tensor of

rank s.9 Metric-like fields should then result from the contraction of the vielbeine with

the elements of a particular basis of the polynomial ring of invariant tensors of hs[λ].

This is clear for all AN ⊕ AN , BN ⊕ BN and CN ⊕ CN CS theories that can be extracted

from the hs[λ] ⊕ hs[λ] one. In fact, their spectra are given by the exponents of the gauge

algebras, and are thus in one to one correspondence with the ranks of their independent

Casimir operators. Each Casimir operator is, in turn, uniquely associated to a symmetric

invariant tensor (see, for instance, [58] and references therein). It is natural to suppose

that the same is true even for non-integer λ.

Since the relative coefficients between different invariant tensors of the same rank

cannot be fixed by the extended Lorentz invariance, they should be fixed by the additional

requirements that ϕµ1... µs must satisfy:

1. it has to be doubly traceless as its linearised counterpart (see e.g. [44]);

2. in the linearised regime its rewriting in terms of the vielbeine has to reproduce the

definition in a free theory.

To impose the first condition one should invert the general definition of the metric (3.11).

For this reason we refrain from discussing it here, deferring to future work a full discussion

of the problem. On the other hand, the second condition is more tractable and already

suffices to fix the structure of spin-4 and spin-5 fields for any λ.

The linearised definition of ϕµ1... µs can be most conveniently recalled by describing the

vielbein e �,m of (2.10) as a symmetric traceless tensor ea1... a� (that has 2� + 1 indepen-

dent components as e �,m). Denoting the background vielbein by ēµ
a and the linearised

fluctuations by hµ
a1... as−1 , for s > 2 in a linear regime one has

ϕµ1... µs ∼ ē(µ1
a1 . . . ēµs−1

as−1hµs) a1... as−1 . (3.15)

9See [57] for a similar construction for D > 3.
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No background for s > 2
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First positive results...                                                                                     
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. (3.18)

The condition (3.15) gives
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but the term tr(e3) does not admit any background contribution. As a result, ( tr e3 )2

does not contribute at first order as well, and the matching with (3.15) cannot put any
constraint on γ(λ). Some extra information follows from the observation that all ϕs we
were able to identify vanish in the sl(N) ⊕ sl(N) theories with N < s. This is expected
because in these cases there are no fields of spin s in the spectrum.10 One can thus
impose the same condition on ϕ6 and this forces γ(λ) = (1/3)(λ2 −1) for N = 3, 4, 5. It is
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for arbitrary values of λ, while the uniqueness of (3.16) and (3.17) should ensure the
double tracelessness of ϕ4 and ϕ5. An explicit check would anyway provide a non-trivial
consistency check of the whole construction, and we hope to report on it soon.

3.2 Gauge transformations preserving the highest-weight gauge

We now take the algebras of the last subsection as starting point for a DS reduction in
the highest-weight gauge, and we determine the structure of the corresponding family of
infinite-dimensional W-algebras. Since no sl(2)-singlets appear in (3.5), all generators
will be Virasoro primaries. The asymptotic symmetries of the hs[λ] ⊕ hs[λ] CS theories
that we just discussed are given by two copies of the resulting W-algebras, that we denote
by W∞[λ] as in [19]. The cases with λ ∈ N and λ = 1/2 were already discussed in [14] and

10A general expression for a basis of the centraliser of sl(N) whose elements vanish when their rank

exceeds N was considered in [58]. All tensors in this basis are orthogonal to each other and then, in

particular, they are all traceless. On the other hand, the invariant tensors that give the metric-like fields

do not satisfy this property. Therefore, they coincide with those in [58] only for λ = N < s.

26

This means that, differently from gµν , it is usually assumed that higher-spin fields do not
receive any background contribution, while the tracelessness of ha1... as−1 guarantees the
doubly tracelessness of ϕµ1... µs .

Imposing the matching of the most general Lorentz-like invariant combination with
(3.15) one obtains

ϕ4 ∼ tr e4 − 1
10 (3λ2 − 7)

�
tr e2

�2
, (3.16)

ϕ5 ∼ tr e5 − 5
21 (3λ2 − 13) tr e2 tr e3 . (3.17)

However, starting from s = 6 this comparison does not suffice to fix all free coefficients.
In fact, the most general Lorentz-like invariant combination reads

ϕ6 ∼ tr e6 + α(λ) tr e2 tr e4 + β(λ)
�

tr e2
�3

+ γ(λ)
�

tr e3
�2

. (3.18)

The condition (3.15) gives

α(λ) = − 5
6 (λ2 − 7) , β(λ) = 1

42 (6λ4 − 71λ2 + 125) , (3.19)

but the term tr(e3) does not admit any background contribution. As a result, ( tr e3 )2

does not contribute at first order as well, and the matching with (3.15) cannot put any
constraint on γ(λ). Some extra information follows from the observation that all ϕs we
were able to identify vanish in the sl(N) ⊕ sl(N) theories with N < s. This is expected
because in these cases there are no fields of spin s in the spectrum.10 One can thus
impose the same condition on ϕ6 and this forces γ(λ) = (1/3)(λ2 −1) for N = 3, 4, 5. It is
however not clear to us if this condition suffices to also force the double trace constraint
for arbitrary values of λ, while the uniqueness of (3.16) and (3.17) should ensure the
double tracelessness of ϕ4 and ϕ5. An explicit check would anyway provide a non-trivial
consistency check of the whole construction, and we hope to report on it soon.

3.2 Gauge transformations preserving the highest-weight gauge

We now take the algebras of the last subsection as starting point for a DS reduction in
the highest-weight gauge, and we determine the structure of the corresponding family of
infinite-dimensional W-algebras. Since no sl(2)-singlets appear in (3.5), all generators
will be Virasoro primaries. The asymptotic symmetries of the hs[λ] ⊕ hs[λ] CS theories
that we just discussed are given by two copies of the resulting W-algebras, that we denote
by W∞[λ] as in [19]. The cases with λ ∈ N and λ = 1/2 were already discussed in [14] and

10A general expression for a basis of the centraliser of sl(N) whose elements vanish when their rank

exceeds N was considered in [58]. All tensors in this basis are orthogonal to each other and then, in

particular, they are all traceless. On the other hand, the invariant tensors that give the metric-like fields

do not satisfy this property. Therefore, they coincide with those in [58] only for λ = N < s.

26

This means that, differently from gµν , it is usually assumed that higher-spin fields do not
receive any background contribution, while the tracelessness of ha1... as−1 guarantees the
doubly tracelessness of ϕµ1... µs .

Imposing the matching of the most general Lorentz-like invariant combination with
(3.15) one obtains

ϕ4 ∼ tr e4 − 1
10 (3λ2 − 7)

�
tr e2

�2
, (3.16)

ϕ5 ∼ tr e5 − 5
21 (3λ2 − 13) tr e2 tr e3 . (3.17)

However, starting from s = 6 this comparison does not suffice to fix all free coefficients.
In fact, the most general Lorentz-like invariant combination reads

ϕ6 ∼ tr e6 + α(λ) tr e2 tr e4 + β(λ)
�

tr e2
�3

+ γ(λ)
�

tr e3
�2

. (3.18)

The condition (3.15) gives

α(λ) = − 5
6 (λ2 − 7) , β(λ) = 1

42 (6λ4 − 71λ2 + 125) , (3.19)

but the term tr(e3) does not admit any background contribution. As a result, ( tr e3 )2

does not contribute at first order as well, and the matching with (3.15) cannot put any
constraint on γ(λ). Some extra information follows from the observation that all ϕs we
were able to identify vanish in the sl(N) ⊕ sl(N) theories with N < s. This is expected
because in these cases there are no fields of spin s in the spectrum.10 One can thus
impose the same condition on ϕ6 and this forces γ(λ) = (1/3)(λ2 −1) for N = 3, 4, 5. It is
however not clear to us if this condition suffices to also force the double trace constraint
for arbitrary values of λ, while the uniqueness of (3.16) and (3.17) should ensure the
double tracelessness of ϕ4 and ϕ5. An explicit check would anyway provide a non-trivial
consistency check of the whole construction, and we hope to report on it soon.

3.2 Gauge transformations preserving the highest-weight gauge

We now take the algebras of the last subsection as starting point for a DS reduction in
the highest-weight gauge, and we determine the structure of the corresponding family of
infinite-dimensional W-algebras. Since no sl(2)-singlets appear in (3.5), all generators
will be Virasoro primaries. The asymptotic symmetries of the hs[λ] ⊕ hs[λ] CS theories
that we just discussed are given by two copies of the resulting W-algebras, that we denote
by W∞[λ] as in [19]. The cases with λ ∈ N and λ = 1/2 were already discussed in [14] and

10A general expression for a basis of the centraliser of sl(N) whose elements vanish when their rank

exceeds N was considered in [58]. All tensors in this basis are orthogonal to each other and then, in

particular, they are all traceless. On the other hand, the invariant tensors that give the metric-like fields

do not satisfy this property. Therefore, they coincide with those in [58] only for λ = N < s.

26

This means that, differently from gµν , it is usually assumed that higher-spin fields do not
receive any background contribution, while the tracelessness of ha1... as−1 guarantees the
doubly tracelessness of ϕµ1... µs .

Imposing the matching of the most general Lorentz-like invariant combination with
(3.15) one obtains

ϕ4 ∼ tr e4 − 1
10 (3λ2 − 7)

�
tr e2

�2
, (3.16)

ϕ5 ∼ tr e5 − 5
21 (3λ2 − 13) tr e2 tr e3 . (3.17)

However, starting from s = 6 this comparison does not suffice to fix all free coefficients.
In fact, the most general Lorentz-like invariant combination reads

ϕ6 ∼ tr e6 + α(λ) tr e2 tr e4 + β(λ)
�

tr e2
�3

+ γ(λ)
�

tr e3
�2

. (3.18)

The condition (3.15) gives

α(λ) = − 5
6 (λ2 − 7) , β(λ) = 1

42 (6λ4 − 71λ2 + 125) , (3.19)

but the term tr(e3) does not admit any background contribution. As a result, ( tr e3 )2

does not contribute at first order as well, and the matching with (3.15) cannot put any
constraint on γ(λ). Some extra information follows from the observation that all ϕs we
were able to identify vanish in the sl(N) ⊕ sl(N) theories with N < s. This is expected
because in these cases there are no fields of spin s in the spectrum.10 One can thus
impose the same condition on ϕ6 and this forces γ(λ) = (1/3)(λ2 −1) for N = 3, 4, 5. It is
however not clear to us if this condition suffices to also force the double trace constraint
for arbitrary values of λ, while the uniqueness of (3.16) and (3.17) should ensure the
double tracelessness of ϕ4 and ϕ5. An explicit check would anyway provide a non-trivial
consistency check of the whole construction, and we hope to report on it soon.

3.2 Gauge transformations preserving the highest-weight gauge

We now take the algebras of the last subsection as starting point for a DS reduction in
the highest-weight gauge, and we determine the structure of the corresponding family of
infinite-dimensional W-algebras. Since no sl(2)-singlets appear in (3.5), all generators
will be Virasoro primaries. The asymptotic symmetries of the hs[λ] ⊕ hs[λ] CS theories
that we just discussed are given by two copies of the resulting W-algebras, that we denote
by W∞[λ] as in [19]. The cases with λ ∈ N and λ = 1/2 were already discussed in [14] and

10A general expression for a basis of the centraliser of sl(N) whose elements vanish when their rank

exceeds N was considered in [58]. All tensors in this basis are orthogonal to each other and then, in

particular, they are all traceless. On the other hand, the invariant tensors that give the metric-like fields

do not satisfy this property. Therefore, they coincide with those in [58] only for λ = N < s.

26

As a result, for s > 3 the invariance under Lorentz-like transformations does not suffice

to fix the structure of ϕµ1... µs . For instance, for s = 4 one can consider both tr(e4)

and tr(e2)tr(e2) and one has to single out the linear combination that defines ϕµνρσ. This

freedom corresponds to the existence of two Lorentz-like invariant combinations of rank-4:

ϕµνρσ and g(µν gρσ).

The realisation of the Lie algebra hs[λ] as a �-commutator algebra proposed in [30, 31]

provides a powerful tool to analyse this problem at least for the first values of the spin.

In fact,

kA1... As ≡ 1

s!
tr ( T(A1 . . . TAs) ) :=

6

(λ2 − 1) s!
T(A1 � . . . � TAs)

���
TA = 0

(3.14)

is a symmetric invariant tensor of hs[λ] (which coincides with the Killing metric (3.9)

for s = 2). Its contraction with the vielbeine eA gives a Lorentz-like invariant tensor of

rank s.9 Metric-like fields should then result from the contraction of the vielbeine with

the elements of a particular basis of the polynomial ring of invariant tensors of hs[λ].

This is clear for all AN ⊕ AN , BN ⊕ BN and CN ⊕ CN CS theories that can be extracted

from the hs[λ] ⊕ hs[λ] one. In fact, their spectra are given by the exponents of the gauge

algebras, and are thus in one to one correspondence with the ranks of their independent

Casimir operators. Each Casimir operator is, in turn, uniquely associated to a symmetric

invariant tensor (see, for instance, [58] and references therein). It is natural to suppose

that the same is true even for non-integer λ.

Since the relative coefficients between different invariant tensors of the same rank

cannot be fixed by the extended Lorentz invariance, they should be fixed by the additional

requirements that ϕµ1... µs must satisfy:

1. it has to be doubly traceless as its linearised counterpart (see e.g. [44]);

2. in the linearised regime its rewriting in terms of the vielbeine has to reproduce the

definition in a free theory.

To impose the first condition one should invert the general definition of the metric (3.11).

For this reason we refrain from discussing it here, deferring to future work a full discussion

of the problem. On the other hand, the second condition is more tractable and already

suffices to fix the structure of spin-4 and spin-5 fields for any λ.

The linearised definition of ϕµ1... µs can be most conveniently recalled by describing the

vielbein e �,m of (2.10) as a symmetric traceless tensor ea1... a� (that has 2� + 1 indepen-

dent components as e �,m). Denoting the background vielbein by ēµ
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... and first problems

.

Imposing the matching at linearised level

γ(λ) =; ; ?
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