Bundles over quantum projective spaces

Tomasz Brzeziński

Swansea University

Corfu, September 2011

References:

- TB & B Zieliński "Quantum principal bundles over quantum real projective spaces", arxiv:1105.5897
- TB & SA Fairfax "Quantum teardrops", arxiv:1107.1417

Quantum principal bundles

Definition

Let *H* be a Hopf algebra with bijective antipode and let *A* be a right *H*-comodule algebra with coaction $\varrho : A \to A \otimes H$. Let $B = A^{coH} := \{b \in A \mid \varrho(b) = b \otimes 1\}$. *A* is a *principal H*-comodule algebra if:

(a) the coaction ϱ is free, that is the canonical map

can :
$$A \otimes_B A \to A \otimes H$$
, $a \otimes a' \mapsto a\varrho(a')$,

is bijective (the Hopf-Galois condition);

(b) there exists a strong connection in A, that is

$$B \otimes A \rightarrow A, \qquad b \otimes a \mapsto ba,$$

splits as a left *B*-module and right *H*-comodule map (the equivariant projectivity).

A right *H*-comodule algebra *A* with coaction $\varrho : A \to A \otimes H$ is principal if and only if it admits a *strong connection*, that is if there exists a map $\omega : H \longrightarrow A \otimes A$, such that

$$\omega(\mathbf{1}) = \mathbf{1} \otimes \mathbf{1},$$

$$\mu \circ \omega = \eta \circ \varepsilon,$$

$$(\omega \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \varrho) \circ \omega,$$

$$(\mathcal{S} \otimes \omega) \circ \Delta = (\sigma \otimes \mathrm{id}) \circ (\varrho \otimes \mathrm{id}) \circ \omega.$$

Here $\mu : A \otimes A \to A$ denotes the multiplication map, $\eta : \mathbb{C} \to A$ is the unit map, $\Delta : H \to H \otimes H$ is the comultiplication, $\varepsilon : H \to \mathbb{C}$ counit and $S : H \to H$ the (bijective) antipode of the Hopf algebra H, and $\sigma : A \otimes H \to H \otimes A$ is the flip.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Trivial bundles

Cleft extension: an *H*-comodule algebra admitting a right *H*-colinear map $j : H \rightarrow A$ such that j(1) = 1, and for which there exists the *convolution inverse* $j^{-1} : H \rightarrow A$,

$$j(h_{(1)})j^{-1}(h_{(2)}) = j^{-1}(h_{(1)})j(h_{(2)}) = \varepsilon(h)1,$$

is principal. A strong connection can be defined as

$$\omega = (j^{-1} \otimes j) \circ \Delta.$$

Equivalently: principal *H*-comodule algebras isomorphic to $A^{coH} \otimes H$ as left A^{coH} -modules and right *H*-comodules. A right *H*-colinear algebra map $j : H \rightarrow A$ is convolution invertible with $j^{-1} = j \circ S$, so *A* is a cleft principal comodule algebra termed a *trivial principal comodule algebra*.

・ロト ・厚ト ・ヨト ・ヨト

Trivial bundles

Cleft extension: an *H*-comodule algebra admitting a right *H*-colinear map $j : H \rightarrow A$ such that j(1) = 1, and for which there exists the *convolution inverse* $j^{-1} : H \rightarrow A$,

$$j(h_{(1)})j^{-1}(h_{(2)}) = j^{-1}(h_{(1)})j(h_{(2)}) = \varepsilon(h)1,$$

is principal. A strong connection can be defined as

$$\omega = (j^{-1} \otimes j) \circ \Delta.$$

Equivalently: principal *H*-comodule algebras isomorphic to $A^{coH} \otimes H$ as left A^{coH} -modules and right *H*-comodules. A right *H*-colinear algebra map $j : H \rightarrow A$ is convolution invertible with $j^{-1} = j \circ S$, so *A* is a cleft principal comodule algebra termed a *trivial principal comodule algebra*.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Trivial bundles

Cleft extension: an *H*-comodule algebra admitting a right *H*-colinear map $j : H \rightarrow A$ such that j(1) = 1, and for which there exists the *convolution inverse* $j^{-1} : H \rightarrow A$,

$$j(h_{(1)})j^{-1}(h_{(2)}) = j^{-1}(h_{(1)})j(h_{(2)}) = \varepsilon(h)1,$$

is principal. A strong connection can be defined as

$$\omega = (j^{-1} \otimes j) \circ \Delta.$$

Equivalently: principal *H*-comodule algebras isomorphic to $A^{coH} \otimes H$ as left A^{coH} -modules and right *H*-comodules. A right *H*-colinear algebra map $j : H \rightarrow A$ is convolution invertible with $j^{-1} = j \circ S$, so *A* is a cleft principal comodule algebra termed a *trivial principal comodule algebra*.

★ Ξ → ★ Ξ →

Definition

Let \overline{A} be an \overline{H} -comodule algebra. Denote by $B = \overline{A}^{\operatorname{co}\overline{H}}$ a subalgebra of \overline{H} -coaction invariant elements. Let $\pi : H \to \overline{H}$ be a Hopf algebra map and consider the cotensor product

$$A = \overline{A} \Box_{\overline{H}} H := \{ \sum_{i} a^{i} \otimes h^{i} \in \overline{A} \otimes H \mid \sum_{i} a^{i}_{(0)} \otimes a^{i}_{(1)} \otimes h^{i} = \sum_{i} a^{i} \otimes \pi(h^{i}_{(1)}) \otimes h^{i}_{(2)} \}$$

View A as a right H-comodule subalgebra of the tensor algebra $\overline{A} \otimes H$ with the coaction $\mathrm{id} \otimes \Delta_H$. A is called a *prolongation* of \overline{A} .

Question: When is A a principal H-comodule algebra?

ヘロト ヘ戸ト ヘヨト ヘヨト

Definition

Let \overline{A} be an \overline{H} -comodule algebra. Denote by $B = \overline{A}^{\operatorname{co}\overline{H}}$ a subalgebra of \overline{H} -coaction invariant elements. Let $\pi : H \to \overline{H}$ be a Hopf algebra map and consider the cotensor product

$$A = \overline{A} \Box_{\overline{H}} H := \{ \sum_{i} a^{i} \otimes h^{i} \in \overline{A} \otimes H \mid \sum_{i} a^{i}_{(0)} \otimes a^{i}_{(1)} \otimes h^{i} = \sum_{i} a^{i} \otimes \pi(h^{i}_{(1)}) \otimes h^{i}_{(2)} \}$$

View A as a right H-comodule subalgebra of the tensor algebra $\overline{A} \otimes H$ with the coaction $\mathrm{id} \otimes \Delta_H$. A is called a *prolongation* of \overline{A} .

Question: When is A a principal H-comodule algebra?

<回と < 回と < 回と

[H-J Schneider '90]

If \overline{A} is a principal \overline{H} -comodule algebra, then $\overline{A} \Box_{\overline{H}} H$ is a principal H-comodule algebra, with a strong connection

$$\omega: H \longrightarrow (\bar{A} \Box_{\bar{H}} H) \otimes (\bar{A} \Box_{\bar{H}} H),$$

 $\omega = (\sigma \otimes \mathrm{id} \otimes \mathrm{id}) \circ (S \otimes (\bar{\omega} \circ \pi) \otimes \mathrm{id}) \circ (\mathrm{id} \otimes \Delta_H) \circ \Delta_H.$

Question: When is A cleft?

< 回 > < 回 > < 回 > -

[H-J Schneider '90]

If \overline{A} is a principal \overline{H} -comodule algebra, then $\overline{A} \Box_{\overline{H}} H$ is a principal H-comodule algebra, with a strong connection

$$\omega: H \longrightarrow (\bar{A} \Box_{\bar{H}} H) \otimes (\bar{A} \Box_{\bar{H}} H),$$

 $\omega = (\sigma \otimes \mathrm{id} \otimes \mathrm{id}) \circ (S \otimes (\bar{\omega} \circ \pi) \otimes \mathrm{id}) \circ (\mathrm{id} \otimes \Delta_H) \circ \Delta_H.$

Question: When is A cleft?

(雪) (ヨ) (ヨ)

Theorem

The prolongation $\overline{A}\square_{\overline{H}}H$ is a cleft extension of B if and only if there exists a right \overline{H} -colinear, unital, convolution invertible map $f: H \rightarrow \overline{A}$.

▲御♪ ▲臣♪ ▲臣♪ 二臣

Let *q* be a real number, 0 < q < 1. The coordinate algebra $\mathcal{O}(S_q^{2n+1})$ of the odd-dimensional quantum sphere is the unital complex *-algebra with generators z_0, z_1, \ldots, z_n subject to the following relations:

$$z_i z_j = q z_j z_i$$
 for $i < j$, $z_i z_j^* = q z_j^* z_i$ for $i \neq j$,
 $z_i z_i^* = z_i^* z_i + (q^{-2} - 1) \sum_{m=i+1}^n z_m z_m^*$, $\sum_{m=0}^n z_m z_m^* = 1$.

The coordinate algebra $\mathcal{O}(S_q^{2n})$ of the even-dimensional quantum sphere is the unital complex *-algebra with generators z_0, z_1, \ldots, z_n and above relations supplemented with $z_n^* = z_n$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let *q* be a real number, 0 < q < 1. The coordinate algebra $\mathcal{O}(S_q^{2n+1})$ of the odd-dimensional quantum sphere is the unital complex *-algebra with generators z_0, z_1, \ldots, z_n subject to the following relations:

$$z_i z_j = q z_j z_i$$
 for $i < j$, $z_i z_j^* = q z_j^* z_i$ for $i \neq j$,
 $z_i z_i^* = z_i^* z_i + (q^{-2} - 1) \sum_{m=i+1}^n z_m z_m^*$, $\sum_{m=0}^n z_m z_m^* = 1$.

The coordinate algebra $\mathcal{O}(S_q^{2n})$ of the even-dimensional quantum sphere is the unital complex *-algebra with generators z_0, z_1, \ldots, z_n and above relations supplemented with $z_n^* = z_n$.

イロン 不良 とくほう 不良 とうほ

• Quantum spheres are right comodule algebras over the Hopf algebra $\mathcal{O}(\mathbb{Z}_2)$ generated by a self-adjoint grouplike element *u* satisfying $u^2 = 1$. The coaction is

$$Z_i \longmapsto Z_i \otimes U.$$

- The quantum real projective space O(ℝP^m_q) is defined as the O(ℤ₂)-coinvariant subalgebra of O(S^m_q).
- $\mathcal{O}(S_q^{2n}), \mathcal{O}(S_q^{2n+1})$ admit a strong connection

$$\omega(u)=\sum_{i=0}^n z_i\otimes z_i^*.$$

O(S^m_q) is a principal O(ℤ₂)-comodule algebra over the quantum real projective space O(ℝℙ^m_q)

• Quantum spheres are right comodule algebras over the Hopf algebra $\mathcal{O}(\mathbb{Z}_2)$ generated by a self-adjoint grouplike element *u* satisfying $u^2 = 1$. The coaction is

$$Z_i \longmapsto Z_i \otimes U.$$

- The quantum real projective space O(ℝP^m_q) is defined as the O(ℤ₂)-coinvariant subalgebra of O(S^m_q).
- $\mathcal{O}(S_q^{2n}), \mathcal{O}(S_q^{2n+1})$ admit a strong connection

$$\omega(u)=\sum_{i=0}^n z_i\otimes z_i^*.$$

O(S^m_q) is a principal O(Z₂)-comodule algebra over the quantum real projective space O(ℝP^m_q)

• Quantum spheres are right comodule algebras over the Hopf algebra $\mathcal{O}(\mathbb{Z}_2)$ generated by a self-adjoint grouplike element *u* satisfying $u^2 = 1$. The coaction is

$$Z_i \longmapsto Z_i \otimes U.$$

- The quantum real projective space O(ℝP^m_q) is defined as the O(ℤ₂)-coinvariant subalgebra of O(S^m_q).
- $\mathcal{O}(S_q^{2n}), \mathcal{O}(S_q^{2n+1})$ admit a strong connection

$$\omega(u)=\sum_{i=0}^n z_i\otimes z_i^*.$$

O(S^m_q) is a principal O(ℤ₂)-comodule algebra over the quantum real projective space O(ℝℙ^m_q)

• Quantum spheres are right comodule algebras over the Hopf algebra $\mathcal{O}(\mathbb{Z}_2)$ generated by a self-adjoint grouplike element *u* satisfying $u^2 = 1$. The coaction is

$$Z_i \longmapsto Z_i \otimes U.$$

- The quantum real projective space O(ℝP^m_q) is defined as the O(ℤ₂)-coinvariant subalgebra of O(S^m_q).
- $\mathcal{O}(S_q^{2n}), \mathcal{O}(S_q^{2n+1})$ admit a strong connection

$$\omega(u)=\sum_{i=0}^n z_i\otimes z_i^*.$$

O(S^m_q) is a principal O(ℤ₂)-comodule algebra over the quantum real projective space O(ℝP^m_q)

Quantum spheres form a hierarchy of right $\mathcal{O}(\mathbb{Z}_2)\text{-comodule}$ *-algebras

$$\cdots \mathcal{O}(S_q^5) \xrightarrow{f_4} \mathcal{O}(S_q^4) \xrightarrow{f_3} \mathcal{O}(S_q^3) \xrightarrow{f_2} \mathcal{O}(S_q^2) \xrightarrow{f_1} \mathcal{O}(S_q^1),$$

where each of the f_m is a surjective *-algebra and right $\mathcal{O}(\mathbb{Z}_2)$ -colinear map defined on generators as follows. In the odd case

$$f_{2n-1}: \mathcal{O}(S_q^{2n}) \longrightarrow \mathcal{O}(S_q^{2n-1}), \qquad z_i \longmapsto \begin{cases} z_i & \text{if } i \neq n \\ 0 & \text{if } i = n \end{cases}$$

In the even case

$$f_{2n}: \mathcal{O}(S_q^{2n+1}) \longrightarrow \mathcal{O}(S_q^{2n}), \qquad z_i \longmapsto z_i.$$

(雪) (ヨ) (ヨ)

Quantum unitary groups

• $\mathcal{O}(S_q^1) = \mathcal{O}(U(1))$ is a commutative Hopf algebra generated by a unitary grouplike element v, and there is a Hopf algebra map

$$\pi_2: \mathcal{O}(U(1)) \longrightarrow \mathcal{O}(\mathbb{Z}_2), \qquad v \longmapsto u.$$

• $\mathcal{O}(S_q^3)$ is the coordinate algebra of the quantum group $SU_q(2)$. The composites $f_1 \circ f_2 : \mathcal{O}(SU_q(2)) \to \mathcal{O}(U(1))$ and

$$\pi = \pi_2 \circ f_1 \circ f_2 : \mathcal{O}(SU_q(2)) \longrightarrow \mathcal{O}(\mathbb{Z}_2),$$

are Hopf algebra maps.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Quantum unitary groups

\$\mathcal{O}(S_q^1) = \mathcal{O}(U(1))\$ is a commutative Hopf algebra generated by a unitary grouplike element \$\nu\$, and there is a Hopf algebra map

$$\pi_2: \mathcal{O}(U(1)) \longrightarrow \mathcal{O}(\mathbb{Z}_2), \qquad v \longmapsto u.$$

• $\mathcal{O}(S_q^3)$ is the coordinate algebra of the quantum group $SU_q(2)$. The composites $f_1 \circ f_2 : \mathcal{O}(SU_q(2)) \to \mathcal{O}(U(1))$ and

$$\pi = \pi_2 \circ f_1 \circ f_2 : \mathcal{O}(SU_q(2)) \longrightarrow \mathcal{O}(\mathbb{Z}_2),$$

are Hopf algebra maps.

▲圖 > ▲ 臣 > ▲ 臣 > 二 臣

Since the algebra maps f_m are also right $\mathcal{O}(\mathbb{Z}_2)$ -colinear, the prolongation along π gives rise to the following hierarchy of quantum principal $SU_q(2)$ -bundles over \mathbb{RP}_q^m :

$$\mathcal{O}(S_q^{m+1}) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) \xrightarrow{f_m \otimes \mathrm{id}} \mathcal{O}(S_q^m) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) .$$

- f₂: O(SU_q(2)) → O(S²_q) is a right O(Z₂)-colinear algebra map, hence O(S²_q)□_{O(Z₂)}O(SU_q(2)) is cleft (trivial).
- $\mathcal{O}(S_q^3) \Box_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2))$ is trivial via the identity map $\mathcal{O}(SU_q(2)) \to \mathcal{O}(S_q^3).$
- for m > 3 probably non-trivial (classically, by the Borsuk-Ulam theorem: there are no continuous odd (i.e. \mathbb{Z}_2 -equivariant) functions $S^{n+1} \to S^n$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Since the algebra maps f_m are also right $\mathcal{O}(\mathbb{Z}_2)$ -colinear, the prolongation along π gives rise to the following hierarchy of quantum principal $SU_q(2)$ -bundles over \mathbb{RP}_q^m :

$$\mathcal{O}(S_q^{m+1}) \Box_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) \xrightarrow{f_m \otimes \mathrm{id}} \mathcal{O}(S_q^m) \Box_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) .$$

- *f*₂ : *O*(*SU*_q(2)) → *O*(*S*²_q) is a right *O*(ℤ₂)-colinear algebra map, hence *O*(*S*²_q)□_{*O*(ℤ₂)}*O*(*SU*_q(2)) is cleft (trivial).
- $\mathcal{O}(S_q^3) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2))$ is trivial via the identity map $\mathcal{O}(SU_q(2)) \to \mathcal{O}(S_q^3).$
- for m > 3 probably non-trivial (classically, by the Borsuk-Ulam theorem: there are no continuous odd (i.e. \mathbb{Z}_2 -equivariant) functions $S^{n+1} \to S^n$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Since the algebra maps f_m are also right $\mathcal{O}(\mathbb{Z}_2)$ -colinear, the prolongation along π gives rise to the following hierarchy of quantum principal $SU_q(2)$ -bundles over \mathbb{RP}_q^m :

$$\mathcal{O}(S_q^{m+1}) \Box_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) \xrightarrow{f_m \otimes \mathrm{id}} \mathcal{O}(S_q^m) \Box_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) .$$

- f₂: O(SU_q(2)) → O(S²_q) is a right O(Z₂)-colinear algebra map, hence O(S²_q)□_{O(Z₂)}O(SU_q(2)) is cleft (trivial).
- $\mathcal{O}(S_q^3) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2))$ is trivial via the identity map $\mathcal{O}(SU_q(2)) \to \mathcal{O}(S_q^3)$.
- for m > 3 probably non-trivial (classically, by the Borsuk-Ulam theorem: there are no continuous odd (i.e. \mathbb{Z}_2 -equivariant) functions $S^{n+1} \to S^n$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Since the algebra maps f_m are also right $\mathcal{O}(\mathbb{Z}_2)$ -colinear, the prolongation along π gives rise to the following hierarchy of quantum principal $SU_q(2)$ -bundles over \mathbb{RP}_q^m :

$$\mathcal{O}(S_q^{m+1}) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) \xrightarrow{f_m \otimes \mathrm{id}} \mathcal{O}(S_q^m) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2)) .$$

- f₂: O(SU_q(2)) → O(S²_q) is a right O(Z₂)-colinear algebra map, hence O(S²_q)□_{O(Z₂)}O(SU_q(2)) is cleft (trivial).
- $\mathcal{O}(S_q^3) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(SU_q(2))$ is trivial via the identity map $\mathcal{O}(SU_q(2)) \to \mathcal{O}(S_q^3).$
- for m > 3 probably non-trivial (classically, by the Borsuk-Ulam theorem: there are no continuous odd (i.e. \mathbb{Z}_2 -equivariant) functions $S^{n+1} \rightarrow S^n$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Use the Hopf algebra map $\pi_2 : \mathcal{O}(U(1)) \to \mathcal{O}(\mathbb{Z}_2)$ to construct prolongations of the $\mathcal{O}(S_q^m)$ to principal $\mathcal{O}(U(1))$ -comodule algebras. Then there is a sequence of surjective algebra maps between principal $\mathcal{O}(U(1))$ -comodule algebras

$$\mathcal{O}(S_q^{m+1}) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1)) \xrightarrow{f_m \otimes \mathrm{id}} \mathcal{O}(S_q^m) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1)) .$$

Theorem

For all natural numbers m > 1, the principal $\mathcal{O}(U(1))$ -comodule algebras $\mathcal{O}(S_q^m) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1))$ are non-trivial.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Use the Hopf algebra map $\pi_2 : \mathcal{O}(U(1)) \to \mathcal{O}(\mathbb{Z}_2)$ to construct prolongations of the $\mathcal{O}(S_q^m)$ to principal $\mathcal{O}(U(1))$ -comodule algebras. Then there is a sequence of surjective algebra maps between principal $\mathcal{O}(U(1))$ -comodule algebras

$$\mathcal{O}(S_q^{m+1}) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1)) \xrightarrow{f_m \otimes \mathrm{id}} \mathcal{O}(S_q^m) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1)) .$$

Theorem

For all natural numbers m > 1, the principal $\mathcal{O}(U(1))$ -comodule algebras $\mathcal{O}(S_q^m) \Box_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1))$ are non-trivial.

イロト イポト イヨト イヨト 三日

The structure of $\mathcal{O}(S_q^m) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1))$

Theorem

- $\mathcal{O}(S_q^{2n+1}) \square_{\mathcal{O}(\mathbb{Z}_2)} \mathcal{O}(U(1))$ is an algebra isomorphic to $\mathcal{O}(S_q^{2n+1}) \otimes \mathcal{O}(U(1)).$
- O(S²ⁿ_q)□_{O(Z₂)}O(U(1)) is isomorphic to a polynomial
 *-algebra A²ⁿ generated by ζ₀, ζ₁,..., ζ_n and a central unitary ξ subject to the following relations

$$\zeta_i \zeta_j = q \zeta_j \zeta_i \quad \text{for } i < j, \qquad \zeta_i \zeta_j^* = q \zeta_j^* \zeta_i \quad \text{for } i \neq j,$$

$$\zeta_i \zeta_i^* = \zeta_i^* \zeta_i + (q^{-2} - 1) \sum_{m=i+1}^n \zeta_m \zeta_m^*, \quad \sum_{m=0}^n \zeta_m \zeta_m^* = 1,$$

$$\zeta_n^* = \zeta_n \xi.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Quantum weighted projective spaces [TB & SAF]

For any n + 1 pairwise coprime numbers l₀,..., l_n, O(U(1)) coacts on O(S_q²ⁿ⁺¹), as

$$\varrho_{l_0,\ldots,l_n}: z_i \mapsto z_i \otimes v^{l_i}, \qquad i = 0, 1, \ldots, n.$$

• The quantum weighted projective space is the subalgebra of $\mathcal{O}(S_q^{2n+1})$ containing all elements invariant under the coaction $\varrho_{l_0,...,l_n}$, i.e.

 $\mathcal{O}(\mathbb{WP}_q(I_0, I_1, \ldots, I_n)) = \{ x \in \mathcal{O}(S_q^{2n+1}) \mid \varrho_{I_0, \ldots, I_n}(x) = x \otimes 1 \}.$

In the case $l_0 = l_1 = \cdots = 1$ one obtains the algebra of functions on the quantum complex projective space \mathbb{CP}_q^n defined in **[YaS Soibel'man & LL Vaksman '90]**.

ヘロン ヘアン ヘビン ヘビン

Quantum weighted projective spaces [TB & SAF]

For any n + 1 pairwise coprime numbers l₀,..., l_n, O(U(1)) coacts on O(S_q²ⁿ⁺¹), as

$$\varrho_{l_0,\ldots,l_n}: z_i \mapsto z_i \otimes v^{l_i}, \qquad i = 0, 1, \ldots, n.$$

• The quantum weighted projective space is the subalgebra of $\mathcal{O}(S_q^{2n+1})$ containing all elements invariant under the coaction $\varrho_{l_0,...,l_n}$, i.e.

$$\mathcal{O}(\mathbb{WP}_q(I_0, I_1, \ldots, I_n)) = \{ x \in \mathcal{O}(S_q^{2n+1}) \mid \varrho_{I_0, \ldots, I_n}(x) = x \otimes 1 \}.$$

In the case $l_0 = l_1 = \cdots = 1$ one obtains the algebra of functions on the quantum complex projective space \mathbb{CP}_q^n defined in **[YaS Soibel'man & LL Vaksman '90]**.

・ 同 ト ・ ヨ ト ・ ヨ ト

The quantum teardrop $\mathcal{O}(\mathbb{WP}_q(k, l))$ is the *-algebra generated by *a* and *b* subject to the following relations

$$a^* = a$$
, $ab = q^{-2l}ba$, $bb^* = q^{2kl}a^k \prod_{m=0}^{l-1}(1-q^{2m}a)$,

$$b^*b = a^k \prod_{m=1}^{l} (1 - q^{-2m}a).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Representations

Theorem

Up to a unitary equivalence, the following is the list of all bounded irreducible *-representations of $\mathcal{O}(\mathbb{WP}_q(k, l))$.

(i) One dimensional representation

$$\pi_0: a \mapsto 0, \qquad b \mapsto 0.$$

(ii) Infinite dimensional (faithful) representations $\pi_s : \mathcal{O}(\mathbb{WP}_q(k, l)) \to \operatorname{End}(V_s), s = 1, 2, ..., l. V_s \simeq l^2(\mathbb{N})$ has orthonormal basis $e_p^s, p \in \mathbb{N}, \pi_s(b)e_0^s = 0$ and

$$\pi_s(a)e^s_{
ho} = q^{2(lp+s)}e^s_{
ho},$$
 $\pi_s(b)e^s_{
ho} = q^{k(lp+s)}\prod_{r=1}^l \left(1-q^{2(lp+s-r)}
ight)^{1/2}e^s_{
ho-1}.$

Theorem

The algebra $\mathcal{O}(S_q^3)$ is a principal $\mathcal{O}(U(1))$ -comodule algebra over $\mathcal{O}(\mathbb{WP}_q(k, l))$ by the coaction $\varrho_{k,l}$ if and only if k = l = 1 (the quantum Hopf fibration).

Brzeziński Quantum projective spaces

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Quantum lens spaces

[JH Hong & W Szymański '03] The quantum lens space
 \$\mathcal{O}(L_q(l; 1, l))\$ is a *-algebra generated by c and d:

$$cd = q^{l}dc,$$
 $cd^{*} = q^{l}d^{*}c,$ $dd^{*} = d^{*}d,$
 $cc^{*} = \prod_{m=0}^{l-1}(1 - q^{2m}dd^{*}),$ $c^{*}c = \prod_{m=1}^{l}(1 - q^{-2m}dd^{*}).$

• $\mathcal{O}(L_q(I; 1, I))$ is a right comodule algebra over $\mathcal{O}(U(1))$,

$$\varrho_I: \mathbf{C} \mapsto \mathbf{C} \otimes \mathbf{V}, \qquad \mathbf{d} \mapsto \mathbf{d} \otimes \mathbf{V}^*.$$

• $\mathcal{O}(L_q(l;1,l))^{co\mathcal{O}(U(1))} \simeq \mathcal{O}(\mathbb{WP}_q(1,l)), (a = cd, b = dd^*).$

★御≯ ★理≯ ★理≯ 二臣…

Quantum lens spaces

[JH Hong & W Szymański '03] The quantum lens space
 \$\mathcal{O}(L_q(l; 1, l))\$ is a *-algebra generated by c and d:

$$cd = q^{l}dc, \qquad cd^{*} = q^{l}d^{*}c, \quad dd^{*} = d^{*}d,$$

 $cc^{*} = \prod_{m=0}^{l-1} (1 - q^{2m}dd^{*}), \quad c^{*}c = \prod_{m=1}^{l} (1 - q^{-2m}dd^{*}).$

• $\mathcal{O}(L_q(l; 1, I))$ is a right comodule algebra over $\mathcal{O}(U(1))$,

$$\varrho_I: \mathbf{c} \mapsto \mathbf{c} \otimes \mathbf{v}, \qquad \mathbf{d} \mapsto \mathbf{d} \otimes \mathbf{v}^*.$$

• $\mathcal{O}(L_q(l; 1, l))^{co\mathcal{O}(U(1))} \simeq \mathcal{O}(\mathbb{WP}_q(1, l)), (a = cd, b = dd^*).$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Quantum lens spaces

[JH Hong & W Szymański '03] The quantum lens space
 \$\mathcal{O}(L_q(l; 1, l))\$ is a *-algebra generated by c and d:

$$cd = q^{l}dc, \qquad cd^{*} = q^{l}d^{*}c, \quad dd^{*} = d^{*}d,$$

 $cc^{*} = \prod_{m=0}^{l-1} (1 - q^{2m}dd^{*}), \quad c^{*}c = \prod_{m=1}^{l} (1 - q^{-2m}dd^{*}).$

• $\mathcal{O}(L_q(l; 1, I))$ is a right comodule algebra over $\mathcal{O}(U(1))$,

$$\varrho_I: \mathbf{c} \mapsto \mathbf{c} \otimes \mathbf{v}, \qquad \mathbf{d} \mapsto \mathbf{d} \otimes \mathbf{v}^*.$$

• $\mathcal{O}(L_q(l; 1, l))^{co\mathcal{O}(U(1))} \simeq \mathcal{O}(\mathbb{WP}_q(1, l)), (a = cd, b = dd^*).$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Theorem

The coordinate algebra of the quantum lens space $\mathcal{O}(L_q(I; 1, I))$ is a (non-cleft) principal $\mathcal{O}(U(1))$ -comodule algebra over $\mathcal{O}(\mathbb{WP}_q(1, I))$.

A strong connection is defined recursively: $\omega(1) = 1 \otimes 1$, and then, for all n > 0,

$$\omega(v^{n}) = c^{*}\omega(v^{n-1})c - \sum_{m=1}^{l} (-)^{m}q^{-m(m+1)} {l \choose m}_{q^{-2}} d^{m}d^{*m-1}\omega(v^{n-1})d^{*},$$

$$\omega(v^{-n}) = c\omega(v^{-n+1})c^* - \sum_{m=1}^{l} (-)^m q^{m(m-1)} {l \choose m}_{q^2} d^{m-1} d^{*m} \omega(v^{-n+1}) d.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem

The coordinate algebra of the quantum lens space $\mathcal{O}(L_q(I; 1, I))$ is a (non-cleft) principal $\mathcal{O}(U(1))$ -comodule algebra over $\mathcal{O}(\mathbb{WP}_q(1, I))$.

A strong connection is defined recursively: $\omega(1) = 1 \otimes 1$, and then, for all n > 0,

$$\omega(\mathbf{v}^{n}) = c^{*}\omega(\mathbf{v}^{n-1})c - \sum_{m=1}^{l} (-)^{m}q^{-m(m+1)} {l \choose m}_{q^{-2}} d^{m}d^{*m-1}\omega(\mathbf{v}^{n-1})d^{*},$$

$$\omega(v^{-n}) = c\omega(v^{-n+1})c^* - \sum_{m=1}^{l} (-)^m q^{m(m-1)} {l \choose m}_{q^2} d^{m-1} d^{*m} \omega(v^{-n+1}) d.$$

イロト イポト イヨト イヨト 三日

- The Z₂-action on quantum spheres produces noncommutative principal bundles over quantum real projective spaces.
- These bundles can be prolonged to non-trivial U(1) bundles and trivial/non-trivial $SU_q(2)$ -bundles.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

- The Z₂-action on quantum spheres produces noncommutative principal bundles over quantum real projective spaces.
- These bundles can be prolonged to non-trivial U(1) bundles and trivial/non-trivial $SU_q(2)$ -bundles.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- The *U*(1)-action on quantum spheres produces weighted projective spaces.
- In the S_q^3 -case:
 - the action is free iff the weights are equal (the quantum Hopf fibration);
 - WP_q(1, *l*) is a base of the noncommutative principal U(1)-bundle with the quantum lens space L_q(*l*; 1, *l*) as the total space.

ヘロン 人間 とくほ とくほ とう

3

- The *U*(1)-action on quantum spheres produces weighted projective spaces.
- In the S_q^3 -case:
 - the action is free iff the weights are equal (the quantum Hopf fibration);
 - WP_q(1, *l*) is a base of the noncommutative principal U(1)-bundle with the quantum lens space L_q(*l*; 1, *l*) as the total space.

<ロ> (四) (四) (三) (三) (三)

- The *U*(1)-action on quantum spheres produces weighted projective spaces.
- In the S_q^3 -case:
 - the action is free iff the weights are equal (the quantum Hopf fibration);
 - Wℙ_q(1, *l*) is a base of the noncommutative principal U(1)-bundle with the quantum lens space L_q(*l*; 1, *l*) as the total space.

イロト イポト イヨト イヨト 三日