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Content of the talk

• Theoretical background: complex couplings, the convergence of
perturbation theory and lattice models with compact field integration.

• Renormalization Group (RG) flows in the complex plane (numerical
results for 2D O(N) models and hierarchical model + remarks for FRG).

• Digression on (real) continuous RG flows for hierarchical models.

• Fisher’s zeros in Lattice Gauge Theory (zeros of the partition function in
the β = 2Nc/g

2 or 1/kT plane) .

1



General Motivations

• The fact that gauge theories are perturbatively renormalizable was
a crucial step in the development of the standard model, but the
perturbative series are expected to diverge (Dyson). The large order
behavior of the series can be estimated using dispersion relations in the
complex coupling plane (Bender and Wu, ...).

• In the path-integral formulation, the divergence of the perturbative series
can be traced to the large field contributions. Lattice gauge theories
with a compact group have a build-in large field cutoff

• We need a computational counterpart of Tomboulis picture of
confinement.
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Complex RG flows ( arXiv:1005.1993; PRL 104 251601)

• Losing conformality=confinement=complex fixed points (Kaplan et al. )

• New picture: Fisher’s zeros as boundary and gates for complex RG flows

• 2D O(N) nonlinear sigma models (with Haiyuan Zou)

• Ising Hierarchical model (D= 2 and 3) (with Yuzhi “Louis” Liu)

• Fisher’s zeros in U(1) and SU(2) LGT (with Alexei Bazavov, Alan
Denbleyker and Daping Du)
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Figure 1: By reducing the constant term in a quadratic β function, the
IR and UV fixed points merge and disappear in the complex plane, a mass
gap is created, conformality is replaced by confinement (Kaplan, Son and
Stephanov, PRD80). The model is integrable in the complex plane (circles,
see Moroz and Schmidt, Ann. of Ph. 325).
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Fisher’s zeros as “gates” for complex RG flows

• Motivated by KSS observation, we studied complex extensions of RG
flows in asymptotically free models where the weakly coupled flows reach
the strongly coupled fixed point.

• We considered modifications or deformations that may affect that
behavior (finite volume, change of dimension, additional pieces in the
action).

• In all cases, the Fisher’s zeros (of the partition function) seem to govern
the global behavior of the flows near the real axis. It is plausible that in
the infinite volume limit, these zeros delimit the boundary of the basin
of attraction of the strongly coupled fixed point. For confining models,
a “gate” remains open.
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2D O(N) non-linear sigma model

Z =
∫

∏

x
dNφxδ(~φx.~φx − 1)e−(1/g2

0)
P

x,e(1−
~φx.~φx+e)

Notations: β ≡ 1
(g2

0N)
(inverse ’t Hooft coupling), M ≡

mgap

ΛUV

Large N : β(M2) =
∫ π

−π

∫ π

−π
d2k

(2π)2
1

2(2−cos(k1)−cos(k2))+M2

Infinite volume, small coupling (AF): β(M2) ≃ 1/(4π) ln(1/M2)

Complex RG I: mgap = ǫeiθ (small circle around 0), ΛUV → ΛUV /b
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Remarks about complex FRG

• Non relativistic calculations exist (see talks by Moroz, Narain, Birse, ...)

• Complex values can be introduced in the initial conditions or the
regulators.

• Complex regulators as a probe? Take your favorite cutoff function Rk(q),

for instance, q2

eq2/k2
−1

. Replace k2 by k2eiθ in Rk(q). Proceed as usual

with k real but Γk complex. Patch together the flows in the complex
couplings planes for various acceptable θ.
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Zeros of the partition function (Y.M. PRD 80)

∮

C
db(dZ/db)/Z = i2π

∑

q nq(C) ,

where nq(C) is the number of zeros of order q inside C . For large N ,

∮

C
db(dZ/db)/Z ∝

∮

C′ dM2(db/dM2)(M2 − 1/b)

The second term has a pole at b = 0, but it is compensated by a pole in
M2. The poles of (db/dM2) in the cut (the real interval [−8, 0]). If the
contour C ′ in the M2 plane does not cross the cut, then there are no zeros
of the partition function inside the corresponding C in the b-plane. We
conclude that in the large-N limit, there are no Fisher’s zero in the image
of the cut M2 plane. This image limited by four approximate hyperbolas
with asymptotes along a cross shaped figure.
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Figure 2: Infinite L RG flows (arrows). The blending blue crosses are the β
images of two lines of points located very close above and below the [−8, 0]
cut of β(M2) in the M2 plane.
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Figure 3: Same procedure and initial conditions but for L = 32. β(M2) is
now a rational function; the crosses are the images of the singular points.
The image of the two singular points closest to 0 appear as two large filled
circles. 10



Complex RG II: Two-lattice matching

We consider the sums of the spins in four L/2 × L/2 blocks B; NB is a
nearest neighbor block of B. We define (possibly by reweighting):

R(β, L) ≡

〈

(
∑

x∈B
~φx)(

∑

y∈NB
~φy)

〉

β
〈

(
∑

x∈B
~φx)(

∑

y∈B
~φy))

〉

β

.

A discrete RG transformation mapping β into β′ while the lattice spacing
changes from a to 2a is obtained by matching: R(β, L) = R(β′, L/2).

Search with Newton’s method: ambiguity≡ |β − βclosest|/|β − β2d.closest|
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Figure 4: Complex RG flows L = 4; Color scale :-Ln(ambiguity)
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Hierarchical Model (review in JPA 40)

• It is a lattice model with block interactions depending on the block
configurations in a minimal way. The LPA is exact

• Its recursion formula is related to Wilson’s approximate recursion formula
(that allowed the first numerical RG calculations) but the exponents are
different. (JPA 29)

• It is a model on the 2-adic line. The classification of the multiplative
characters provides in principle a systematic method of improvement of
the hierarchical approximation (YM, Europhysics 93, hep-th/9307128).
This has a wavelet translation (Haar system). Analogous to the derivative
expansion. Never tried beyond one dimension.
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Figure 5: Unambiguous RG flows for the hierarchical model in the complex
β = 1/kT plane obtained by the two lattice method. The crosses and open
boxes are at the Fisher’s zeros for 24 and 25 sites.
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D=3,n=3 vs n=4
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Figure 8: Imaginary part of the lowest Fisher’s zero for the D = 3
hierarchical model for 2n sites (the zeros pinch the real axis).
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Continuous flows? (real case, with Y. Liu and B. Oktay)

For the hierarchical model, we calculate recursively the Fourier transform
Rn(k) of the local measure after n blockings where 2 sites are replaced by
1 site. This is a discrete RG transformation with scale b = 21/D. We can in
principle extend to an arbitrary real number of sites being blocked: 2 → bD

and c
4 → b−2−D (blocks of size 2q have a coupling (c/4)q). The recursion

formula becomes

Rn+1(k) = Cn+1 e
−1

2β ∂2

∂k2

(

Rn(b−(D+2)/2 k)
)bD

,

For bD integer, polynomial approximations converge rapidly. For bD

noninteger, we need expansions of ln(Rn(k)) = ln(1 + ak2 + . . . ) but
no apparent convergence is observed.
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Linear analysis near bD = 2

We set bD = 2 + ζ for small ζ

RGζ[R
∗
0 + ζR∗

1] = R∗
0 + ζR∗

1 + O(ζ2)

R∗
1 obeys the equation R∗

1 = L[R∗
1 + G]

with G = −5
6k

2∂R∗
0

∂k2 + 1
2R

∗
0 lnR∗

0

Note: R∗
0(k) has zeros!

L is the linear map at ζ = 0: RG0[R
∗
0 + δR] = R∗

0 + L[δR]

Expansions of lnR∗
0 in terms of the eigenvectors of L fail to converge

19



Exponents for bD integer and D = 3

The exponents ω and ν for D = 3 fall on a curve found by Litim (PRD 76)
for a variety of FRG flows in the local potential approximation.

This curve represents values of N(ν, µ) ≡ −log10((ν−νopt)
2 +(ω−ωopt)

2)
versus ν/ω. A-priori, we would expect no correlations between these two
quantities for the large set of models considered.

The values for bD = 2, 3 . . . , 8 appear to be ordered on that curve. This
suggests that the information lost during the RG transformation could be
used as a parameter on this curve.
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Fisher’s zeros in 4D LGT

Spectral decomposition: Z =
∫ Smax

0
dSn(S)e−βS

n(S) : density of states; N : number of plaquettes.

n(S)e−βNs = eN (f(s)−βs) = eN (f(s0)+(1/2)f ′′(s0)(s−s0)
2+... )

with s = S/N and f ′(s0) = β. f(s) is a color entropy density.

If Ref ′′(s0) < 0, the distribution becomes Gaussian in the infinite volume.
Gaussian distributions have no complex zeros. The level curve Ref ′′(s0) = 0
is the boundary of the region where Fisher’s zeros may appear.

In the U(1) case, conjugate pairs pinch the real axis, but for SU(2) a finite
gap remains present.
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Figure 10: Complex zeros and zeros of the real part of f ′′(s) in the complex
s plane with a Chebyshev (40) on 44 for SU(2) (left) and U(1) (right).
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Images in the β plane
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Figure 11: f ′(s) evaluated at the complex zeros of f ′′(s) shown on the
previous figure for SU(2) (left) and U(1) (right). n(S) = eNf(S/N ).
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These pictures suggest that Fisher’s zeros should appear on approximately
vertical linear structures. This is confirmed numerically.

For U(1), naive histogram reweighting works well. δZ can be estimated
from (ni(S) − < n(S) >), where i is an index for independent runs. Zeros
can be excluded if |δZ| << |Z|.

For SU(2), the imaginary part of Fisher’s zeros are too large to use
simple reweighting methods. By using Chebyshev interpolation for f(s) and
monitoring the numerical stability of the integrals with the residue theorem,
it is possible to obtain reasonably stable results. Unlike the U(1) case,
the imaginary part of the lowest zeros does not decrease as the volume
increases, but their linear density increases at a rate compatible with L−4.

25



-7

-6

-5

-4

-3

-2

-1

 0

 1

 2
U(1) 4 4  ln| δZ/Z| 

 0.97  0.975  0.98  0.985

Reβ

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Im
β

Figure 12: |δZ/Z| for U(1) on 44.
26



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.97  0.975  0.98  0.985  0.99

Im
β

Reβ

 U(1) 4 4

ReZ=0
ImZ=0

Figure 13: Zeros of the Re (blue) and Im (red) part of Z for U(1) using
the density of states for 44.

27



-7

-6

-5

-4

-3

-2

-1

 0

 1

 2
U(1) 6 4 ln| δZ/Z|

 0.99  0.995  1  1.005  1.01

Reβ

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Im
β

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.99  0.995  1  1.005  1.01

Im
β

Reβ

 U(1) 6 4 ReZ=0
ImZ=0

Figure 14: Same figures for a 64 lattice.

28



 0

 0.1

 0.2

 0.3

 0.7  0.8  0.9  1  1.1

Im
(

β)

Re( β)

U(1) zeros

L=4 f’’=0
  L=4 res.
L=6 f’’=0
 L=6 res.

Figure 15: Images of the zeros of f ′′(s) in the β plane (open symbols)
and Fisher’s zeros (filled symbols) for U(1) on 44 (squares) and 64 (circles)
lattices.
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Figure 16: Images of the zeros of f ′′(s) in the β plane (open symbols) and
Fisher’s zeros (filled symbols) for SU(2) on 44 (squares) and 64 (circles)
lattices.

30



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1.2  1.4  1.6  1.8  2

I
m
(

β)

Re(β)

SU(2) Adj βa=0.5 V=4
4

(1.766,0.087)

L=4 f’’=0
  L=4 res.

Figure 17: Effect of an adjoint term (+0.5), the lowest zero goes down by
about 40 percent.
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Conclusions

• It is possible to extend various RG flows to the complex β plane.

• When the size of the system is comparable to the Compton wavelength
of the gap, there is a strong scheme dependence.

• Fisher’s zeros control the global behavior of the RG flows.

• Confinement=“open gate”.

• Plans: QED, SU(3) with various Nf .

• ǫυχαριστω!
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