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Introduction

Space-time is nonlocal on very short distances.
S. Doplicher, K. Fredenhagen and J. Roberts, PLB 331, 39
In general case:
[&H, RV] = oM.
Noncommutativity in Quantum Mechanics

© Noncommutativity with mixed spatial and spin degrees of
freedom
(%, %7] = ig?clksk.

@ Position-dependent noncommutativity in quantum mechanics
[%#, %V] = 0uwH” (%),
e.g.,
i0
1+ 0a(R2+9?2)

%91 =



Particle spin dynamics and its noncommutative deformation

F. Berezin, M. Marinov, Ann.Phys.104, 336
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Particle spin dynamics and its noncommutative deformation

F. Berezin, M. Marinov, Ann.Phys.104, 336
Phase superspace: (xi,p;,f’) ,1=1,2,3, 8¢ +¢E =0. The
Poisson bracket:

1F(©).8(© =i (o) (%)

For the canonical variables:

{§k7§/} — s {Xk,P/} _ 5;<_
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Particle spin dynamics and its noncommutative deformation

F. Berezin, M. Marinov, Ann.Phys.104, 336
Phase superspace: (xi,p;,fi) ,i=1,2,3,&¢ + &6 =0. The
Poisson bracket:

%
1F(€).8©r =i (o) (ong).
For the canonical variables:
{6} =i, {x*.pi} = of.
The rotation group in the Grassmann subspace:
i ki ek o ik ek G\ ijk ck
S'=—2elkgigk, {76} =cikek, (ST, 5T} = ik,
The orbital angular momentum:
L= s’klxkp’ {Li,xj} = glikxk, {Li,Lj} = glikk,
The complete angular momentum:

J=L+S, {J, F}=cMkJk
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Particle spin dynamics and its noncommutative deformation

The classical Hamiltonian action of the model reads
Y
So = /dt [px— 555_ H(X>p7£) )

where H(x, p, &) = p?/2+ Vo (x) + (LS) V1 (x) + SB ().
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Particle spin dynamics and its noncommutative deformation

The classical Hamiltonian action of the model reads
Y
So = /dt [px— 555_ H(X>p7£):| )

where H (x, p,€) = p?/2 + Vo (x) + (LS) V4 (x) + SB (x).
The simplest way to obtain nonvanishing PB is Bopp shift:

x' = XIIVC =x' = EQUPJ‘, {XIIVCaXfVC} = 0U7

but it breaks symmetries of the system.
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Particle spin dynamics and its noncommutative deformation

The classical Hamiltonian action of the model reads
o

So = /dt [px— 555 - H(X>p7£):| )
where H (x, p,€) = p?/2 + Vo (x) + (LS) V4 (x) + SB (x).
The simplest way to obtain nonvanishing PB is Bopp shift:

x' = XIIVC =x' = EGUPJ‘, {XIIVCaXfVC} = 0U7
but it breaks symmetries of the system.
To preserve rotational symmetry, consider a following deformation
X' = &% =x"+65",

New coordinates X' are even elements of the Grassmann algebra,
transform like a vector

{5} = elkgk,
{J H(x,p, &)} =0 = {J H(%p. &)} =0
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Nonvanishing Poisson Barckets are

{5} = 92k sk, (%' p;} = 6],

{51, = peigk, Lk ¢!} = —ia¥.
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Nonvanishing Poisson Barckets are
{5} = 92k sk, (%' p;} = 6],
{)?i,gj} _ Hgijkék’ {§k7§/} — skl
In course of quantization these PB determine
(%, 8] = i?VRsk, (&7 py] = i),

8] = oeiker, [¢6] — o
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Nonvanishing Poisson Barckets are
{5} = 92k sk, (%' p;} = 6],
{)?i,gj} _ Hgijkék’ {§k7§/} — skl
In course of quantization these PB determine
(%, 8] = i?VRsk, (&7 py] = i),

Ar

oi A _ cpliksk g g ij
[x,ﬁf} = [PV, [ ,EJ} =Y.
_l’_
Commutation relations involving 8 = —égijkfjfk are
NN :n2 _ijk ok ol n Y]
[x ,xf] = j6°eV"sx, [x ,pj} = idj,
[%1,8] = igTkek, [3, 8] = ichksk.
H. Falomir, et al, PLB 680, 384.



Renormalizing ' = 67/+/2, one gets the Clifford algebra,
[6/,67] =20,

realized by Pauli matrices o'
Representation: &' = o/ /\/2, 8" = —i/2eUkeick = 57 /2,

K =x"N+00"/2, pi=—id,
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Renormalizing ' = 67/+/2, one gets the Clifford algebra,
[6/,67] =20,

realized by Pauli matrices o'
Representation: &' = o/ /\/2, 8" = —i/2eUkeick = 57 /2,

£ =x"1+00"/2, p=—idi,
Modified Pauli equation:

i = H (%,5.€) .
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Renormalizing ' = 67/+/2, one gets the Clifford algebra,
6,67, =207,

realized by Pauli matrices o'
Representation: &' = o/ /\/2, 8" = —i/2eUkeick = 57 /2,

£ =x"1+00"/2, p=—idi,
Modified Pauli equation:

i = H (%,5.€) .

Nonlocality:

AxAx] > 02Tk ‘(\IJ| sk |w>‘ .
Let |W) be eigenstate for §,, 5, |V) =5, |V), s, = —s, ..., 5.

92
AxAy > 5
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Relativistic generalization

Hamiltonian form of the Berezin-Marinov action is
o . looop | Do 1
S= pHX” - *g,ufl + 288 — —xT1 — ATy | dT,
- 2 2 2

T1 = * (pu + €A,) + me®, To = (p, + eA,)? — m? + ieF, E1¢Y,
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Relativistic generalization

Hamiltonian form of the Berezin-Marinov action is
o . looop | Do 1
S= pHX” - *g,ufl + 288 — —xT1 — ATy | dT,
- 2 2 2

T1 = * (pu + €A,) + me®, To = (p, + eA,)? — m? + ieF, E1¢Y,

Poisson brackets between the canonical variables are
{xt,p'} =g, {e". €} =—ig", {8} =i,
where gt” =diag(1,—1,—1, —1). Two first-class constraints are

T1=0, T, =0.
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Relativistic generalization

Hamiltonian form of the Berezin-Marinov action is
o . looop | Do 1
S= pHX” - *g,ufl + 288 — —xT1 — ATy | dT,
- 2 2 2

Ty =& (pu+ €Au) + mE, To = (pu + eAy)” — m* + ieFu,¢¢”,
Poisson brackets between the canonical variables are
{x',py =g, {e", €} = —igh”, {£,6°} =1,
where gt” =diag(1,—1,—1, —1). Two first-class constraints are
T1=0, T, =0.
Generators of the Lorentz group are: JH = [M 4 S,
LM = xtp” — xVpt, SHY = —jgher.

{L,LLI/’X)\} _ g,LL)\sz o gu)\x,u’ {Sul/’é-)\} — g,ux\gu _gzz)\&u.
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Relativistic generalization

Noncommutative deformation is:

xt — xF = x* + oWH,

1 1
WH = Eauyp”ppr(, = Es“”P"pysp(,.
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Relativistic generalization

Noncommutative deformation is:

xt — xF = x* + oWH,

1 1
WH = Eauyp”ppr(, = Es“”P"pysp(,.

New coordinates X are even elements of the Grassmann algebra,
transform like a vector

{JHV’)?/\} — guk)?u —gy/\;(M,

and have nonvanishing Poisson brackets

02
(%%} = =017 Sy — 07 Wi,

(x4, p"} =g, (&, ¢}y = —igh”, {€,°} =1,
{)?#78/} = _QEquUppga_
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Relativistic generalization

Vladislav Kupriyanov Alternative models of noncommutativity



Relativistic generalization

Observe that T1 = &# (p, + eA,) + m&® is an odd element of the
Grassmann algebra, therefore

(T, Ti} = —iTo = —i [(pu +eAy)’ — m? + iergﬂg'f} .
T, is even, so that {Ty, To} =0, and
{TQ, Tl} = I{{Tl7 Tl}, Tl} =0.
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Relativistic generalization

Observe that T1 = &# (p, + eA,) + m&® is an odd element of the
Grassmann algebra, therefore

[T0 T} = =iTo = —i [(pu + €A,)” — m? + ieFu €.
T, is even, so that {Ty, To} =0, and
{To, i} =i{{T1, T1}, 1} =0.
We postulate the form of the first constraint as
T1 = " (py + €A, (X)) + me® = 0.
We determine the second constrained as T» = i{?’l, 7'1} =0,
T, = (P + eAu)2 —m?+ "Eﬁuufﬂfy + 2ie {&", AL} (pu + eAy) 7.

Obviously,

{T2, T2} —0, {Tz, Tl} - i{{Tl, Tl},Tl} =0.



PB fix the commutation (anticommutation) relations
ol SV : Vpo ¢ i6? vpo A/ A
[XH, %7 = —i0cHP? S, + 78# PTW,,be
[&uvﬁy] = I'g,uu’ [é\uaé\y}_l_ = gHV’ [55755}_"_ = _1a

(30,87 | = —i0e 178, p,.
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PB fix the commutation (anticommutation) relations
ol oV N VPO & 192 RV VAR
[8F, %" = —ife Spo + - ¢ W,bs,

[&uvﬁy] = I'g,uu’ |:£lﬂé”:| = gHV’ [55755} = _1a
+ +
(30,87 | = —i0e 178, p,.
The operators ¢, £ are generators of the Clifford algebra Cs,
& =iy IV2, & =i /V2,
i

EUQB.

A,

Sap = —é (éaéﬁ — 5/3&2) = —i (Ya¥8 — V¥8Ya) =
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PB fix the commutation (anticommutation) relations
ol oV N VPO & 192 RV VAR
[8F, %" = —ife Spo + - ¢ W,bs,

[&uvﬁy] = I'g,uu’ |:£lﬂé”:| = gHV’ [55755} = _1a
+ +
(30,87 | = —i0e 178, p,.
The operators ¢, £ are generators of the Clifford algebra Cs,
& =iy V2, & =ir’/V2,
~ I (2 & Aoa i I
Saf = 3 (faiﬂ - 5/35a) = =7 (78 = 787%) = 50ap-
The representation for the operators of coordinates and momenta
0 0
M= xHl + Ze’””aﬁaag&, = xHl — %’ysa’“’@y,

Py = —idl,
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First-class constraints become conditions on the physical states
Tip =0, T =0.
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First-class constraints become conditions on the physical states
T =0, Top=0.
The first equation reads
0
[/fw (au +ieA, (x“l — ’275(7#”8”)) - m} W(x) =0,

where some ordering should be specified. The second eq. is a
consequence of the first one, since

%, = (?1)2.
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First-class constraints become conditions on the physical states
T =0, Top=0.
The first equation reads
0
[/fw (au +ieA, (x“l — ’275(7#”8”)) - m} W(x) =0,

where some ordering should be specified. The second eq. is a
consequence of the first one, since

%, = (?1)2.

The action of operator f (x*1 — £~55#(,) on spinor ¢(x) can be
represented as:

f (x”l - "2975qu3”> U(x) = X = f(x) exp {—;QEL’YSUWG_V)} ()

. 2
i 0
5 v 5 v1 .5 12
= fiy — Eﬁuf'y o o,p — 38”18#21‘7 ot gh2 29, 0,10 + ...



Noncommutative Dirac equation

The above equation can be represented in the form

i7" (3, + ieA, (x)) — m] %) = 0.
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Noncommutative Dirac equation

The above equation can be represented in the form
[iv" (O + ieA, (x)) — m %y = 0.
This equation is covariant under the Lorentz transformation
xt — X" = Nox”, = (X)) = S(N) ¢ (x),

A — A (X)) = NUAY (x).
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Noncommutative Dirac equation

The above equation can be represented in the form

[iv" (O + ieA, (x)) — m %y = 0.
This equation is covariant under the Lorentz transformation

xH — x'P = Nox¥, i — W’ (x’) =S(N)v(x),
A — A (X)) = NUAY (x).
Introduce modified multiplication between two spinors
0 =

P = Gexp {—’2%50””@} v,

with properties
(o) = dsg, [ dixpri= [ dxau.
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Conclusions and questions

Action functional for noncommutative Dirac field is:

i-. [ - - -
S = /d4x [2¢*7“8u¢ + Eaﬂwww — mpxp + eiﬂ*’y“Auﬂﬁ] .
Variation of this action over 1 gives

[iv" (3, + ieA, (x)) — m] %) = 0.

M. Gomes, V.G.K, A.J. da Silva, PRD 81, 085024
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Conclusions and questions

Action functional for noncommutative Dirac field is:

S= / d*x [;@Z;fwaw + ééww;@z} — mpF) + e&;wAuw] .

Variation of this action over v gives
iv" (O + ieA, (x)) — m] %y = 0.

M. Gomes, V.G.K, A.J. da Silva, PRD 81, 085024
Questions:

e Unitarity

e Gauge invariance

e Conservation of current

etc.
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Position-dependent noncommutativety in QM
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Position-dependent noncommutativety in QM

Suppose that noncommutativity [%',%/] = w¥(%) is given, e.g.,
i0
1+ 60a (X2 +9?)

e The aim is to construct consistent quantum mechanics on such
noncommutative space.

%, 91 =
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Position-dependent noncommutativety in QM

Suppose that noncommutativity [%',%/] = w¥(%) is given, e.g.,
i0

1+ 60a (X2 +9?)

e The aim is to construct consistent quantum mechanics on such

noncommutative space.
The problem is to complete the algebra: [&', ;] =7, [pi, Bj] =7

%, 9] =
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Position-dependent noncommutativety in QM

Suppose that noncommutativity [%',%/] = w¥(%) is given, e.g.,
i0

140 (82 + 9?)

e The aim is to construct consistent quantum mechanics on such

noncommutative space.

The problem is to complete the algebra: [&', ;] =7, [pi, Bj] =7

[Brs [%187]] + [, [Be, X))+ [& [% Bl ] =0,
If [&', p;] = id], hence

%, 9] =

[P, w? (%)] =0.

Now if w? (%) = f,'j)?’, we have fk"j =0.

Vladislav Kupriyanov Alternative models of noncommutativity



Position-dependent noncommutativety in QM

Suppose that noncommutativity [%',%/] = w¥(%) is given, e.g.,
i0

140 (82 + 9?)

e The aim is to construct consistent quantum mechanics on such

noncommutative space.

The problem is to complete the algebra: [&', ;] =7, [pi, Bj] =7

[Brs [%187]] + [, [Be, X))+ [& [% Bl ] =0,
If [&', p;] = id], hence

%, 91 =

[P, w? (%)] =0.
Now if w"'f(A) f'jA’ we have fk"j =
o So, [¥,pj] = 511 » [Pi, Bj] = @ii(

><>O

)-
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Position-dependent noncommutativety in QM

Suppose that noncommutativity [%',%/] = w¥(%) is given, e.g.,
i0

140 (82 + 9?)

e The aim is to construct consistent quantum mechanics on such

noncommutative space.

The problem is to complete the algebra: [&', ;] =7, [pi, Bj] =7

[Brs [%187]] + [, [Be, X))+ [& [% Bl ] =0,
If [&', p;] = id], hence

%, 91 =

[P, w? (%)] =0.
Now if w? (%) = f,'j)?’, we have fk"j =0.
o So, [¥', Bj] = idj(%), [Bi. B] = wy(X).
To answer the question consider the quantization of the model:
g 0 L
L= pix’ = H(p,x) + 5 (pi + Bi (x,0)) ¥ (i + B (x,0)).



Position-dependent noncommutativety in QM

The Dirac brackets for canonical variables are:
{Xi,Xj}D = ed(X)é‘ij, {p,',pj}D =40 (82328181 — 81828251) dE,‘j,

il i ik . _ 1
{x,pj}D—d(fsj be 8ka)’ d_[1+9(8132—8281)]'
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Position-dependent noncommutativety in QM

The Dirac brackets for canonical variables are:
{Xi,Xj}D = ed(X)é‘ij, {p,',pj}D =40 (82328181 — 81828251) dE,‘j,

. H H 1
i i — I _ Ik . —
{x'.pi}p d((% be 8ka)’ d [1+6(0:1Bs — 32B1)]
From the equation

el
[1 + 0 (8182 — 8281)]

one can determine B; and complete the algebra.

= Wi(x),
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Position-dependent noncommutativety in QM

The Dirac brackets for canonical variables are:
{Xi,Xj}D = ed(X)é‘ij, {p,',pj}D =40 (82328181 — 81828251) dE,‘j,

. H H 1
i i — I _ Ik . —
{x'.pi}p d((% be 8ka)’ d [1+6(0:1Bs — 32B1)]
From the equation

el
[1 +6 (3182 — 8281)]

one can determine B; and complete the algebra.
Let B; = €U8j¢, and

wi =eT/{1+0f [a (x* +y?)]}, f(0) = const.

= wi()
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Position-dependent noncommutativety in QM

The Dirac brackets for canonical variables are:
{Xi,Xj}D = 0C/(X)€ij, {p,',pj}D =40 (82328181 — 81828251) dE,‘j,

. H H 1
i i — I _ Ik . —
{x'.pi}p d((% be 3ka)’ d [1+6(0:1Bs — 32B1)]
From the equation

el
[1 +6 (3182 — 8281)]
one can determine B; and complete the algebra.
Let B; = €'j8j¢, and
wi =eT/{1+0f [a (x* +y?)]}, f(0) = const.
In this case
Fa(®+y?) - F(0)
2a0 (x2 + y?)

= Wi(x),

Fla(24y2) ~F(0)

B =
1=y 2a(x2 + y?) ’

782:*

Fl=f
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Local noncommutativety

i0 3002

PPN aAA 2 2
= Pyl = —— d,
kI = T e gy Pobl= 15 (45
n af . " . af .
[%, Bl = [1 + (% +3y2)} d, [%.p)] =~ 35,
" a af ,_ . . A af
[y, py] = [1 + - (3% +y2)} d, [7,B = ——-%yd.
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Local noncommutativety

i0 3002

591 TGy Pebl = (790
%, B] = [1 + %9 (32 + 3y2)} d, [%p)]= —%%fxd ,
5pd = [145 (%2497 0 1pd = -G i
Another possibility, By = By,
%] i [P byl = 0,

T 14 6a(2+52)
[%,5x] = [L+ ab9?] d , [%,By] = abK*d ,
[yvﬁy] = [1 + 049)?2] d ’ [yvi\)X] = ae},}Zd'
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Local noncommutativety

i0 3002

PPN A A ) A2\ 2
~ Byl = d.
kI = T e gy Pobl= 15 (45
n af . " . af .
[%, Bl = [1 + (% +3y2)} d, [%.p)] =~ 35,
" a af ,_ . . A af
[y, py] = [1 + - (3% +y2)} d, [7,B = ——-%yd.

Another possibility, By = By,
B i0
S 14+ 0a(R2+y

[X7y] 2)’ [ﬁX’ﬁY]:Ov

[%,5x] = [L+ ab9?] d , [%,By] = abK*d ,
[yvﬁy] = [1 + 049)?2] d ’ [yvi\)X] = ae},}Zd'

M. Gomes, V.G.K, PRD 79, 125011
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e Scattering of plane waves on local noncommutativity
A~ 1
H=>p?
2P

Vladislav Kupriyanov Alternative models of noncommutativity



e Scattering of plane waves on local noncommutativity

po 1
H=-p
5P

e Relativistic generalization d = 2:

0 .
L= p,x" + \[p? — m*] + 5 (P + By (x,a))e?” <by + B, (x, a)) .
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e Scattering of plane waves on local noncommutativity

po 1
H=-p
5P

e Relativistic generalization d = 2:
: 0 _ .
L= p,x" + \[p? — m*] + 5 (P + By (x,a))e?” <py + B, (x, a)) .
After quantization one gets
[$#,&"] = 0 d(%), [&", ] = i0}(X), [Pu,Bv] = e (%),

[p* — m?]d = 0.
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e Scattering of plane waves on local noncommutativity

po 1
H=-p
5P

e Relativistic generalization d = 2:
L= p,x" + \[p? — m*] + g (pu + By (x, ) e <by + B, (x, oz)) :
After quantization one gets
[, 8] = 0" d(R), [%,pu] = i0L(R), [Bus Bl = £ (R),

[p* — m?]d = 0.

e Relativistic wave equations on curved noncommutative space.
$ = x'+ 0(8), pu =iy + O(),
[p? — m?|d =[0— m?o =0,
O =0+ o(6).



