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Motivation for GFT

Einstein-Hilbert-Palatini-Holst action

S =
1

8πG

∫
M

εABCDeA ∧ eB ∧RCD[ω]

+
1

γ
eA ∧ eB ∧RAB[ω]

with e ∈ Ω1(M), ω ∈ Ω1(M)× so(3,1), R ∈ Ω2(M)× so(3,1)

second term classically irrelevant if torsion is zero
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=⇒ BF theory with constraints

S =
∫
M

B ∧R[ω] + λαCα[B]

without constraints it is topological. It gives ω flat and DωB = 0

Plebanski simplicity constraints

εabcdBAB
ab ∧BCD

cd ∝ εABCD
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Discretization for BF (2+1)

eA → EA =
∫
`
eA

ω →
∫
`?

ω = logh`? ∈ L

Ω` = loghf∗ = log
∏

`?⊂∂f?

h`?

S(e, ω) → S(E,Ω) =
∑
`∈L

TrE`Ω`

Z(T ) =
∫
L

∏
`∈L

dE`

∫
G

∏
dh`? exp

i
∑
`

TrE`Ω`

 =
∫
G

∏
dhδ(

∏
f?

hf?)
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This is a spin foam amplitude, that is the amplitude we obtain

discretizing 3-d BF and associating to space-time triangulation

with tetraedra graphs in the dual triangulation.

In 3d easier

• tetraedron→point

• triangles (faces) f → edges `?

• edges ` →faces f?

This result can be obtained by a field theory
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Group field theory [Boulatov, Freidel, Oriti ...]

In GFT, the field arguments live on products of Lie groups.

Feynman amplitudes of GFT give back spin-foams (two-complexes

with vertices, stranded lines (propagators) and faces (closed cir-

cuits of strands)

Technically a generalization of matrix models (the fields are

higher order tensors)

• Fields

φ : (g1, ...gD) ∈ [SO(D)]D → φ(g1, ...gD)

D is spacetime dimension.

7



• Propagator

C : φ → Cφ Hermitian

with Hermitian kernel C(g1, . . . , gD; g′1, . . . , g′D):

[Cφ](g1, . . . , gD) =
∫

dg′1 . . . dg′DC(g1, . . . , gD; g′1, . . . , g′D)φ(g′1, . . . , g′D)

=⇒ propagators are stranded lines with D strands (figure).

The precise form of C defines the different models.
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• Vertices

Simple vertex joining 2p strands: its kernel is a product of p

delta functions matching strand arguments, so that each delta

function joins two strands in two different lines.

It is the same for all models.

while

in the spin-foam literature the term “vertex” refers to the vertex

together with the square roots of its dressing propagators.
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The usual vertex for D−dimensional GFT is a φD+1 simple vertex

(picture)

For instance the SU(2) BF vertex in 3 dimensions is simple (with

p = 6)

Sint[φ] =
λ

4

∫  12∏
i=1

dgi

 φ(g1, g2, g3)φ(g4, g5, g6)φ(g7, g8, g9)

φ(g10, g11, g12) K(g1, ..g12),

with

K(g1, ..g12) = δ(g3g−1
4 )δ(g2g−1

8 )δ(g6g−1
7 )δ(g9g−1

10 )δ(g5g−1
11 )δ(g1g−1

12 )
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• Graphs

A stranded graph is called regular if it has no tadpoles (hence
any line ` joins two distinct vertices) and no tadfaces (hence each
face f goes at most once through any line of the graph).

It is convenient to introduce orientations

• the ordinary incidence matrix ε`v which has value 1 (−1) if
the edge ` enters (exits) the vertex v, 0 otherwise.

• the incidence matrix ηf` which has value +1 if the face f

goes through edge ` in the same direction, −1 if the face f

goes through edge ` in the opposite direction, 0 otherwise.
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GFT for 3D BF [Boulatov]

• Propagator in direct space

It is just the projection on gauge invariant fields,

P(φ) =
∫
SO(D)

dhφ(g1h, . . . , gDh),

P2 = P so that the only eigenvalues are 0 and 1 (which means

that the BF theory has no dynamics).

P is Hermitian with kernel

P(g1, ..., gD; g′1, ...g′D) =
∫

dh
D∏

i=1

δ(gih(g′i)
−1).
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• Amplitudes in direct space

Choose an arbitrary orientation of the lines and faces of a graph

G (which for simplicity has no external legs).

Combining the vertex and the propagator, integration over all g

leads to

AG =
∫ ∏

`∈LG

dh`

∏
f∈FG

δ

(
~∏

`∈f
h

η`f
`

)
,

this amplitude neither depends on the arbitrary orientation of the

lines, nor on those of the faces.
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• Amplitudes in the angular momentum basis |j, m >

1j =
∑
m
|j, m〉〈j, m|,

in 3D

AG =
∏
f

∑
jf

djf

∏
v
{6j}

In 4D g = (g+, g−) ∈ SU(2)× SU(2) j ≡ (j+, j−)

AG =
∏
f

∑
jf+,jf−

djf+
djf−

∏
v
{15j+}{15j−}.
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Coherent states representation

• In 3D we use SU(2) coherent states

|j, g〉 ≡ g|j, j〉 =
∑
m
|j, m〉[R(j)]mj (g).

1j = dj

∫
SU(2)

dg |j, g〉〈j, g| = dj

∫
G/H=S2

dn |j, n〉〈j, n|

with

|j, n〉 = gn|j, j〉

• In 4D we work with SU(2)×SU(2) coherent states |j+, n+〉⊗
|j−, n−〉

1j+ ⊗ 1j− = dj+dj−

∫
dn+dn−|j+, n+〉 ⊗ |j−, n−〉〈j+, n+| ⊗ 〈j−, n−|
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• 3D BF propagator

Since P2 = P we introduce two SU(2) gauge-averaging vari-

ables, u and v at the ends of the propagator, (u on the side

where εv` = −1 and v on the side where εv` = +1). Between

these two variables we insert the partition of unity. This does

not modify the propagator.

P(g; g′) =
∫

dudv
4∏

f=1

∑
jf

djfTrVjf

(
ugf(g

′
f)
−1v−11jf

)
The index f labels the four strands of the propagator, which

belong to four different faces
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• 3D BF amplitude

The amplitude is again factorized over faces:

AG =
∫ ∏

`∈LG

du`dv`

∏
f∈FG

Af .

To write down Af , let us number the vertices and lines in the

(anti)-cyclic order along a face f of length p as `1, v1 · · · `p, vp,

with `p+1 = `1.

Af =
∑
j

d
p+1
j

∫ p∏
a=1

dn`af < j, n`af |h
η`af
`a,va

h
η`a+1f

`a+1,va
|j, n`a+1,f >

h`a,va is v`a if ε`ava = +1 and u`a if ε`ava = −1.
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• 4D BF propagator [Ooguri]

P(g; g′) =
∫
SU(2)×SU(2)

dudv
4∏

f=1

∑
jf+,jf−

djf+
djf−

TrVjf+
⊗Vjf−

(
ugf(g

′
f)
−1v−11jf+

⊗ 1jf−

)

• 4D BF amplitude

Obvious generalization of 3D

Af =
∑

j+j−

(dj+dj−)p+1
∫ p∏

a=1

dn+
`afdn−`af

< j+, n+
`af |h

η`af
`a,va +h

η`a+1f

`a+1,va +
|j+, n+

`a+1,f > × [−]
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The EPRL/FK GFT [EPRLS ’08, FK ’08]

The EPRL/FK model introduces a modification of the propaga-

tor of the 4D BF model, while the vertex remains the same.

It implements in two steps the Plebanski constraints with a non

trivial value of the Immirzi parameter γ.

• j+/j− = (1 + γ)/(1− γ) and n+ = n− = n

γ > 1 j± =
γ ± 1

2
j,

γ < 1 j± =
1± γ

2
j.
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• In each strand the identity 1j+⊗1j− is replaced by a projector
T

γ
j

T
γ
j = dj++j−

[
δj−/j+=(1−γ)/(1+γ)

] ∫
dn|j+, n〉⊗|j−, n〉〈j+, n|⊗〈j−, n|.

In the angular momentum basis

T
γ
j =

∑
k,k̃,m,m̃

(
j+, k; j−, k̃|j+ + j−, k + k̃

) (
j+ + j−, m + m̃|j+, m; j−, m̃

)
|kk̃ >< mm̃|δm+m̃,k+k̃,

=⇒ (T γ
j )2 = T

γ
j

Grouping the four strands of a line defines a Tγ operator that acts
separately and independently on each strand of the propagator:

Tγ = ⊕jf ⊗
4
f=1 T

γ
jf
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so that the EPRL/FK propagator is C = PTγP [FK]

C(g, g′) =
∫

dudv
4∏

f=1

∑
jf

[
δjf−/jf+=(1−γ)/(1+γ)

]
αjfβjf

∫
dnf

Trjf+⊗jf−

(
ugf (g

′
f)
−1v−1|jf+, nf > ⊗|jf−, nf >< jf+, nf |⊗ < jf−, nf |

)
where

αj = dj+dj−, βj = djf++jf−

The operator C is symmetric
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• Since the propagator is hermitian, Feynman amplitudes are

independent of the orientations of faces and propagators.

• Since Tγ and P do not commute, the propagator C can have

non-trivial spectrum (with eigenvalues between 0 and 1).

• Slicing the eigenvalues should allow a renormalization group

analysis. This is why we call this kind of theories dynamic

GFT’s.

• Since Tγ is a projector, the propagator C of the EPRL/FK

theory is bounded in norm by the propagator of the BF the-

ory, as well as Feynman amplitudes
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EPRL/FK Amplitudes

We combine the propagator and the vertex expressions and in-
tegrate over all g, g′ group variables =⇒ we get the amplitude of
any graph G.

It is given by an integral of a product over all faces of the graph.

• closed faces (no external edges)

Af =
∑

jf≤Λ

αjfTrjf+⊗jf−

p∏
a=1

(
h

η`af
`a,va

h
η`af
`a,va+1

T
γ
jf

)
.

that is

Af =
∑

jf≤Λ

αjf

∫ p∏
a=1

βjfdn`a,f < jf+n`a,f |h
η`af
`a,va,+h

η`a+1f
`a+1,va,+|jf+n`a+1,f >

× < jf−n`a,f |h
η`af
`a,va,−h

η`a+1f
`a+1,va,−|jf−n`a+1,f > .



• open faces (which end on external edges)

slightly modified but irrelevant in the large spin approximation.

We recover the SU(2) BF model in the limit γ = 1.

It can be shown that the graph amplitude is the same as spin

foam amplitudes passing to spin representation.
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Stationary phase for BF and EPRL/FK models

G a graph in a GFT corresponding to the BF or EPRL/FK
models, with V vertices, L edges and F faces

AG =
∑

jf≤Λ

N
∫ ∏

dh
∏

dn exp
{ ∑

f

jfSf [h, n]
}
,

N = N (j)

Λ ultraspin cutoff

To derive the superficial power counting, we set jf = jkf with
kf ∈ [0,1] and use the stationary phase method to derive the
large j behavior of∫ ∏

dh
∏

dn exp
{
j

∑
f

kfSf [h, n]
}
.
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If the action is complex but has a negative real part, the contri-

bution to this integral are quadratic fluctuations around zeroes

of the real part of S which are stationary points of its imaginary

part, otherwise the integral is exponentially suppressed as j →∞.

• Saddle point for 3D BF models

we use

〈n, j|g|n′, j〉 = 〈n|g|n′〉2j, and |n〉〈n| = 1
2

(
1 + σ · n

)
, then

Sf [h, n] = kf logTr
[( −→∏

`∈∂f

h
η`,f
`

)(
1 + σ · n

)]
.
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Since the action is the logarithm of the trace of the product of

a unitary element and a projector, its real part is negative and

maximal at h` = 1

To perform the saddle point expansion, we expand the group

element to second order as

h` = 1−
A2

`

2
+ iA` · σ + O(A3

` )

with A ∈ su(2). Also

nf = n
(0)
f + ξf −

ξ2f

2
n
(0)
f + O(ξ3f ), with n

(0)
f · ξf = 0.

(because n2
f = 1 up to third order terms).
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Let us consider a face with edges `1, . . . , `p, then to second order

−→∏
`∈∂f

h
η`,f
` = 1−

A2
f

2
+ iσ ·Af − iσ ·Φf

with

Af =
∑

1≤a≤p

η`a,fA`a and Φf =
∑

1≤a<b≤p

η`a,fη`b,f
A`a ∧A`b

.

=⇒

Sf [A`, ξf ] = 2kf

{
inf ·Af −

A2
f

2
+

(nf ·Af)
2

2
+ i ξf ·Af + inf ·Φf

}
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and we have to estimate∫ ∏
`

dA`

∏
f

dξf exp2j
∑
f

kf

{
inf ·Af−

A2
f

2
+

(nf ·Af)
2

2
+i ξf ·Af+inf ·Φf

}
as j →∞.

• We do not integrate over the vectors nf . They have to be
chosen so that they are extrema of the imaginary part of S.

• Because all terms except the first one
∑

f kfnf ·Af are of second
order, the imaginary part is stationary if and only if∑

f

i kfnf ·Af =
∑
`,f

i η`,fkfnf ·A` = 0 ∀A` ∈ R3,

which amounts to the closure condition∑
f

η`,fkfnf = 0, ∀`
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This is the requirement that, in the semi-classical limit, the vec-

tors jfnf are the sides of a triangle (resp. the area bivectors

of a tetrahedron) that propagates along ` in dimension 3 (resp.

dimension 4).

The solutions of the closure conditions range from non degen-

erate to maximally degenerate.

In three dimensional (resp. four dimensional ) BF theory, a so-

lution is said to be non degenerate if all the tetrahedra (resp.

4-simplices) corresponding to the vertices of the graph have max-

imal dimension.
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At the opposite end, we say that a solution is maximally de-

generate if all the vectors nf are proportional to a single one

n0,

nf = σfn0 with σf ∈ {−1,+1} .

In both cases we find

AG ∼ Λ3F−3r

with r the rank of the L× F incidence matrix η`,f .

In particular for the self-energy graph we find Λ9.
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The self-energy in the EPRL/FK model (2P-fig)

The self-energy graph G2 (figure) has 4 open faces. It has 6

closed faces with two edges.

AG2
=

∑
jf

∫ ∏
a

du±a
∏
a

dv±a
∏
i

dni

∏
f

{
(djf)

2d
j+f

d
j−f

exp
{
jS+

f +jS−f
}}

with j±f = jγ±kf , kf ∈ [0,1] and j large. There is one coherent

state per strand i = (f, l) such that ηl,f 6= 0.

S±f = 2γ±kf log
{
〈nf,a|u±a (u±b )−1|nf,b〉〈nf,b|v±b (v±a )−1|nf,a〉

}
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• We employ the saddle point technique around the identity

u±a = 1−
(A±a )2

2
+iσ·A±a +O(A±a )3, v±a = 1−

(B±
a )2

2
+iσ·B±

a +O(B±
a )3

• we introduce the projector |ni〉〈ni| = 1+iσ·ni
2

• the action at the identity for the face f = ab reads

S±f [1,1, ni] = γ±kab log
{1 + nf,a · nf,b

2

}
which is negative except for nf,a = nf,b = nf .
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=⇒ we perform the expansion of the coherent state around
a unit vector common to all the strands of the face

ni = nf + ξi −
(ξi)

2

2
nf + O(ξi)

3, with nf · ξi = 0,

otherwise the integral is exponentially damped.

• It is convenient to perform the following change of variables

A±a = Aa ± γ∓Xa and B±
a = Ba ± γ∓Ya

• Terms linear in A± and B± only involve A and B, while in the
quadratic terms, the pair of variables A and B on one side and
the pair X and Y on the other side decouple.

=⇒ For arbitrary graph, we can separate the action, at the level
of the quadratic approximation, into a SU(2) BF action (variables
A and B) and an ultralocal potential that only involves uncoupled
variables attached to the vertices (variables X and Y ).
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Back to the self-energy, performing the Gaussian integration over

the two dimensional vector χf = ξf,a − ξf,b,

AG2
=

∑
jf

j18
{ ∫ ∏

a
dAa

∏
a

dBa
∏
f

dξf exp jSBF (A, B, ξ)

×
∫ ∏

a
dXa exp jQ(X)×

∫ ∏
a

dYa exp jQ(Y )
}

with ξf = ξf,a + ξf,b. The BF-like action is

SBF [A, B, ξ] =
∑
a<b

kab

{
−

1

2

[
nf ∧

(
Aa −Ab + Bb −Ba

)]2
+inab ·

(
Aa −Ab + Bb −Ba

)
+ inab ·

(
Aa ∧Ab + Bb ∧Ba

)
+i ξab ·

(
Aa −Ab + Bb −Ba

)}
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while the ultra local terms are

Q[X] = γ+γ−
∑
a<b

kab

{[
nab ∧ (Xa −Xb)

]2
+ inab ·

(
Xa ∧Xb

)}
.

The Gaussian integral over the variables A and B can be evalu-

ated using the same techniques as previously.∑
6 independent spins ∼j <Λ

j12 × j−9 ∼ Λ9,

which is the known result for SU(2) BF theory.

while the the Gaussian integral over the independent variables

Xa and Ya, ∫ ∏
a

dXa exp jQ(X) ∼ j−
rank(Q)

2



yield a power of j−9/2 each.

Therefore, we obtain the power counting for the self-energy with

non degenerate configurations as follows∑
6 independent spins ∼j <Λ

j24 × j−6 × j−9 ×
(
j−9/2

)2
∼ Λ6,

• j24 arises from a dj+dj− ∼ j2 for each of the 6 faces

• dj ∼ j for each of the two strands in each face

• j−6 results from the Gaussian integration over the 6 variables

χf = (ξf,a − ξf,b)



• j−9 from the integration over A and B

This reproduces the result of [PRS], with non degenerate con-

figurations.

However, degenerate configurations are more divergent. Maxi-

mally degenerate have a behavior in Λ9.



Conclusions

• Hint for a phase transition: we can expect the amplitude of G2
to provide the dominant correction to the effective propagator
of the model.

Since it is positive, the whole self-energy correction Σ should be
also positive. The corresponding geometric power series for the
dressed or effective propagator

Cdressed = C + CΣC + CΣCΣC + ... = C(
1

1−ΣC
).

should be singular when the spectrum of ΣC has eigenvalue 1.
This should occur for λ large enough, depending on the ultravi-
olet cutoff Λ. This is usually the signal of a phase transition.

• Renormalization analysis
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