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Introduction

Main features at LPA 1

Lagrangian

In Euclidean space time L = 1
2∂µφ∂µφ+ uΛcos(βφ)

Perturbative considerations

The Coleman perturbative UV �xed point : β2c = 8π

Asymptotic freedom of the broken phase β < βc
⇒ the IR is non-perturbative.

Perturbative non-renormabizability of the symmetric phase

β > βc

1. The following is based on V. P. hep-th/1008.0281
and V. P. & al. (to appear) PLB 2010 hep-th/0907.0496
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Wegner-Houghton

General features

Wegner-Hougthon RG

Properties

k∂k Ṽ + 2Ṽ = − 1
4πLog

(
1 + Ṽ ′′

)
For a periodic initial condition, the potential remains periodic.

The �ow equation is valid as long as ∀(k , φ), k2 + V ′′k (φ) > 0

The gradient expansion is ill-de�ned for higher order : only LPA

Perturbative features in d = 2

in the UV for weak coupling

k∂k ũ(k) = 2

(
β2

8π
− 1

)
ũ(k) + O(ũ(k)2)

The dimensionless quantities are the important ones.

The Coleman frequency is easily reproduced.
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Wegner-Houghton

General features

IR of the broken phase

Convexity

We expect Vk ' −k2

2 φ
2 in the concave regions and

periodically repeated a.

Vk(φ) is "maximally" concave at φn = 2nπ
β

The curvature 1 + Ṽ ′′(φn) > 0 tests the validity of

loop-expansion. Instability ?

a. Alexandre-Branchina-Polonyi, PLB (1999)

Order parameter

The curvature 1 + Ṽ ′′(φn)→ 1 for βr = β√
8π
> 1

The curvature 1 + Ṽ ′′(φn)→ 0+ for βr < 1 ?
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Weakly coupled bare theories

Fixed points of the broken phase

Curvature for βr = 0.70, ũΛ = 0.01
β2

as a function of φ
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Wegner-Houghton

Weakly coupled bare theories

Fixed points of the broken phase

Curvature for βr = 0.70, ũΛ = 0.01
β2

as a function of φ
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Wegner-Houghton

Weakly coupled bare theories

Fixed points of the broken phase

Flow of the curvature for βr = 0.70, ũΛ = 0.01
β2
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Wegner-Houghton

Weakly coupled bare theories

Fixed points of the broken phase

β-function of the curvature for βr = 0.70, ũΛ = 0.01
β2

as a

function of φ
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Wegner-Houghton

Weakly coupled bare theories

Fixed points of the broken phase

Flow of the curvature in φn for βr ∈ [0.55 : 0.90], ũΛ = 0.01
β2
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Wegner-Houghton

Weakly coupled bare theories

Fixed points of the broken phase

E�ective potential for βr = 0.70, ũΛ = 0.01
β2

as a function of φ
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Wegner-Houghton

Fourier serie convergence

Fixed-points as a �nely tune competition

Flow of the Fourier coe�cients of Ṽ ′′ for βr = 0.70, ũΛ = 0.01
β2
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Fourier serie convergence

Gibbs phenomenom

Curvature for βr = 0.70, ũΛ = 0.01
β2

as a function of φ
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The overshoot does not die out and violates loop-expansion validity.
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Strongly coupled bare theories

Strong coupling

Properties

De�ned by :

ũΛ .
1

β2
⇔ k∂k Ṽ + 2Ṽ =

2

β2c
Log

(
1− β2ũΛcos(βφ)

)
⇒ Soft modes in φn arising in the UV.

Linearization of the �ow equation fails.

Location of the phase boundary ?

Change of behavior wrt weakly coupled ?
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Strongly coupled bare theories

Universality

β-function of the curvature in φn for βr = 0.70 for di�erent ũΛ
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Strongly coupled bare theories

Generalized universality

Flow of the curvature in φn for βr = 0.70 for di�erent ũΛ
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Strongly coupled bare theories

Fixed-points line : summary

Fixed-point curvature in φn for di�erent βr
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Wegner-Houghton

Conclusion

Conclusion

What Average action at LPA should reproduce :

Coleman �xed point in the perturbative UV.

The line of �xed-points in the IR of the broken phase.

The strict independence on ũΛ of the β-functions and the

renormalized quantities.

The phase boundary for strongly coupled bare theories.

What Average action is not expected to reproduce

accurately :

the �xed-point curvature values

the power-law of the decay towards �xed points.

the critical exponent for suceptibility γ.
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Average action

Periodicity breaking ?

Average action

Periodicity

The bare action SΛ[φ] is periodic

Zk involves a non-periodic contribution : 1
2

∫
p
φ(p)Rk(p)φ(−p)

The one-computation of the average action gives :

Γk [φ] = SΛ[φ] +
1

2
TrLog

(
S ′′ + Rk

)
The initial condition is actually periodic !

Periodicity is broken only by the "mass" of the �uctuations.

The genuine �ow equation still preserves periodicity :

k∂kΓk =
1

2
Tr

(
k∂kRk

Γ(2) + Rk

)
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Average action

Periodicity breaking ?

Average action

Convexity

The only assumption needed to obtain the �ow equation :

Γ(2) + Rk > 0

At LPA, it reads :

k
2

+ V ′′k > 0 , k
2

= minp

{
p2 + Rk(p)

}
k̃2 + Ṽ ′′(φn) > 0 , e. g. k̃2 = 1 for Litim regulator

The limit Vk = −k
2

2 φ
2 is IR attractive in concave regions a

k̃2 + Ṽ ′′(φn) will also be used as order parameter.

a. Tetradis-Wetterich, NPB (1992)
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Average action

Periodicity breaking ?

Phase boundary

Coleman �xed point

Linearizing the �ow equation

k∂k Ṽ + 2Ṽ =

(
1

4π

∫ ∞
0

dy
r ′(y)

(r(y) + 1)2

)
Ṽ ′′

Periodic UV �xed point characterized by :

β2c = 8π

(
−
[
−1

r(y) + 1

]∞
0

)−1
= 8π

All the regulators reproduce the Coleman �xed point !
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Average action

Litim regulator

Fixed points of the broken phase

Curvature for βr = 0.70, ũΛ = 0.01
β2

as a function of φ
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Average action

Litim regulator

Fixed points of the broken phase

β-function of the curvature for βr = 0.70, ũΛ = 0.01
β2

as a

function of φ
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Average action

Litim regulator

Universality

β-function of the curvature in φn for βr = 0.70 for di�erent ũΛ

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3 10-2 10-1

uΛ=0.10
uΛ=0.20
uΛ=0.30
uΛ=0.40
uΛ=0.50
uΛ=0.60
uΛ=0.70
uΛ=0.80
uΛ=0.90
uΛ=0.99

0.8 0.85 0.9 0.95
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1



Structure of the broken phase of the sine-Gordon model

Average action

Litim regulator

Generalized universality

Flow of the curvature in φn for βr = 0.70 for di�erent ũΛ
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Average action

Litim regulator

Fixed-points line : summary

Fixed-point curvature in φn for di�erent βr
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Average action

Power-law regulator

Smooth cut-o�

Power-law results

Testing if the results hold for smooth cut-o� needed for

inclusion of Z.

The regulator is parametrized :

r(y) = apy
−bp , (ap, bp) ∈ R+∗ × [1; +∞]

Special case bp = 1 de�nes Callan Symanzik RG and matches

in d = 2 the Wegner-Houghton equation.

Loop-integral analytical for bp = 2.

The important quantity for the curvature is :

k̃2 = (ap(bp − 1))
1

bp

[
1 +

1

bp − 1

]
bp→∞→ 1
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Average action

Power-law regulator

Fixed points of the broken phase

Flow of the curvature in φn
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Average action

Power-law regulator

Fixed points of the broken phase

β-function of curvature in φn
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Average action

Power-law regulator

Fixed points of the broken phase

β-function of curvature for βr = 0.70, ũΛ = 0.01
β2

as a function

of φ
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Average action

Power-law regulator

Comparison of RG schemes

Curvature for βr = 0.70, ũΛ = 0.01
β2

as a function of φ
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Conclusions

Conclusions

Structure of the broken phase

The IR of the broken phase is highly non-trivial

It exhibits a line of �xed points for βr > 0.55

No instability in the IR �ow

Generalized universality

Bad convergence of the Fourier series

Using Average action

The Coleman frequency is always reproduced

All the features of the broken phase are preserved when adding

a regulator.

The qualitative behavior is regulator-independent.
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Conclusions

Conclusion

Outlook

No conceptual problem to study Z

Possible dependence on the regulator ?

What happens in other (higher) dimensions ?

Test of propertime �ows

Study of SU(2) decon�nement transition.

. . .

Thank you for your attention !
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