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May 14, 2010
Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010
The New York Times:

Physicists at the Fermi National Accelerator Laboratory
are reporting that they have discovered a new clue that
could help unravel one of the biggest mysteries of cos-
mology: why the universe is composed of matter and not
its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, “So I would not
say that this announcement is the equivalent of seeing the
face of God, but it might turn out to be the toe of God.”
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Basics

Flavour physics

studies transitions between fermions of different generations.

flavour = fermion species

(
uL,uL,uL

dL,dL,dL

) (
cL, cL, cL

sL, sL, sL

) (
tL, tL, tL

bL,bL,bL

)

uR ,uR ,uR cR , cR , cR tR , tR , tR
dR ,dR ,dR sR , sR , sR bR ,bR ,bR
(
νe,L

eL

) (
νµ,L
µL

) (
ντ,L
τL

)

eR µR τR



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Flavour quantum numbers:

quantum number d u s c b t e,νe µ,νµ τ ,ντ
D -1 0 0 0 0 0 0 0 0
U 0 1 0 0 0 0 0 0 0

strangeness S 0 0 -1 0 0 0 0 0 0
charm C 0 0 0 1 0 0 0 0 0
beauty B 0 0 0 0 -1 0 0 0 0

T 0 0 0 0 0 1 0 0 0
electron number Le 0 0 0 0 0 0 1 0 0

muon number Lµ 0 0 0 0 0 0 0 1 0
tau number Lτ 0 0 0 0 0 0 0 0 1
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Flavour quantum numbers:

quantum number d u s c b t e,νe µ,νµ τ ,ντ
D -1 0 0 0 0 0 0 0 0
U 0 1 0 0 0 0 0 0 0

strangeness S 0 0 -1 0 0 0 0 0 0
charm C 0 0 0 1 0 0 0 0 0
beauty B 0 0 0 0 -1 0 0 0 0

T 0 0 0 0 0 1 0 0 0
electron number Le 0 0 0 0 0 0 1 0 0

muon number Lµ 0 0 0 0 0 0 0 1 0
tau number Lτ 0 0 0 0 0 0 0 0 1

baryon number Bbaryon =
D + U + S + C + B + T

3
lepton number L = Le + Lµ + Lτ

antifermions have opposite quantum numbers
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Flavour quantum numbers are respected by the strong
interaction, so we can use them to categorise hadrons.
E.g. a B+ meson has B = U = 1, shorthand notation:

B+ ∼ bu

For a Bd ≡ B0 (with B = −D = 1) we write

Bd ∼ bd
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Some flavoured mesons

charged:

K+ ∼ su, D+ ∼ cd , D+
s ∼ cs, B+ ∼ bu, B+

c ∼ bc,

K− ∼ su, D− ∼ cd , D−
s ∼ cs, B− ∼ bu, B−

c ∼ bc,
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Some flavoured mesons

charged:

K+ ∼ su, D+ ∼ cd , D+
s ∼ cs, B+ ∼ bu, B+

c ∼ bc,

K− ∼ su, D− ∼ cd , D−
s ∼ cs, B− ∼ bu, B−

c ∼ bc,

neutral:

K ∼ sd , D ∼ cu, Bd ∼ bd , Bs ∼ bs,

K ∼ sd , D ∼ cu, Bd ∼ bd , Bs ∼ bs,

In flavour physics only the ground-state hadrons which decay
weakly rather than strongly are interesting.
Weakly decaying baryons are less interesting, because they
are produced in smaller rates and are theoretically harder to
cope with.
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Some flavoured mesons

charged:

K+ ∼ su, D+ ∼ cd , D+
s ∼ cs, B+ ∼ bu, B+

c ∼ bc,

K− ∼ su, D− ∼ cd , D−
s ∼ cs, B− ∼ bu, B−

c ∼ bc,

neutral:

K ∼ sd , D ∼ cu, Bd ∼ bd , Bs ∼ bs,

K ∼ sd , D ∼ cu, Bd ∼ bd , Bs ∼ bs,

The neutral K , D, Bd and Bs mesons mix with their
antiparticles, K , D, Bd and Bs thanks to the weak interaction
(quantum-mechanical two-state systems).

⇒ gold mine for fundamental parameters
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Strong isospin: Instead of U and D use (I, I3):

Fundamental doublets (I =
1
2

):
(

u
d

)
and

(
d
−u

)
.

For mu = md the QCD lagrangian is invariant under SU(2)

rotations of
(

u
d

)
and

(
d
−u

)
.
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Strong isospin: Instead of U and D use (I, I3):

Fundamental doublets (I =
1
2

):
(

u
d

)
and

(
d
−u

)
.

For mu = md the QCD lagrangian is invariant under SU(2)

rotations of
(

u
d

)
and

(
d
−u

)
.

“QCD cannot distinguish up and down”

Owing to md −mu ≪ Λhad ∼ 500 MeV, strong isospin holds to
∼ 2% accuracy. E.g. MBd

−MB+ = (0.37± 0.24)MeV.
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Isospin triplet:

π+ = ud , π0 =
uu − dd√

2
, π− = du.

Compare with spin triplet

↑↑, ↑↑ + ↓↓√
2

, ↓↓
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Flavour–SU(3):
Since ms −mu,d < Λhad we can try to enlarge isospin–SU(2) to

SU(3)F with fundamental triplet




u
d
s




U-spin subgroup: SU(2) rotations of
(

d
s

)
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Pedestrian’s use of U-spin:
(i) Draw all diagrams contributing to some process.
(ii) Replace s ↔ d to connect the hadronic interaction in

different processes.

Example: One can relate the strong interaction effects in
Bs → K+K− and Bd → π+π−. Dunietz; Fleischer
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Pedestrian’s use of U-spin:
(i) Draw all diagrams contributing to some process.
(ii) Replace s ↔ d to connect the hadronic interaction in

different processes.

Example: One can relate the strong interaction effects in
Bs → K+K− and Bd → π+π−. Dunietz; Fleischer

Accuracy of SU(3)F: 30% per s ↔ d exchange.
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Elektroweak interaction
Gauge group:

SU(2)× U(1)Y

doublets: Q j
L =

(
u j

L
d j

L

)
und L j =

(
ν j

L
ℓ j

L

)

j = 1, 2, 3 labels the generation.

Examples: Q3
L =

(
tL
bL

)
, L1 =

(
νeL

eL

)

singlets: u j
R, d j

R and e j
R.
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Elektroweak interaction
Gauge group:

SU(2)× U(1)Y

doublets: Q j
L =

(
u j

L
d j

L

)
und L j =

(
ν j

L
ℓ j

L

)

j = 1, 2, 3 labels the generation.

Examples: Q3
L =

(
tL
bL

)
, L1 =

(
νeL

eL

)

singlets: u j
R, d j

R and e j
R.

Important: Only left-handed fields couple to the W boson.
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How many interactions does the Standard Model comprise?

Five!

• three gauge interactions

• Yukawa interaction of Higgs with quarks and leptons

• Higgs self-interaction
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Yukawa interaction

Higgs doublet H =

(
G+

v + h0+iG0
√

2

)
with v = 174 GeV.

Charge-conjugate doublet: H̃ =

(
v + h0−iG0

√
2

−G−

)
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v + h0+iG0
√

2

)
with v = 174 GeV.

Charge-conjugate doublet: H̃ =

(
v + h0−iG0

√
2

−G−

)

H

Yukawa lagrangian:

−LY = Y d
jk Q j

L H d k
R + Y u

jk Q j
L H̃ u k

R + Y l
jk L j

L H e k
R + h.c.

Here neutrinos are (still) massless.
The Yukawa matrices Y f are arbitrary complex 3× 3 matrices.
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Yukawa interaction

Higgs doublet H =

(
G+

v + h0+iG0
√

2

)
with v = 174 GeV.

Charge-conjugate doublet: H̃ =

(
v + h0−iG0

√
2

−G−

)

H

Yukawa lagrangian:

−LY = Y d
jk Q j

L H d k
R + Y u

jk Q j
L H̃ u k

R + Y l
jk L j

L H e k
R + h.c.

Here neutrinos are (still) massless.
The Yukawa matrices Y f are arbitrary complex 3× 3 matrices.
The mass matrices M f = Y f v are not diagonal!

⇒ uj
L,R , d

j
L,R do not describe physical quarks!

We must find a basis in which Y f is diagonal!
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Any matrix can be diagonalised by a bi-unitary transformation.
Start with

Ŷ u = S†
QY uSu with Ŷ u =




yu 0 0
0 yc 0
0 0 yt


 and yu,c,t ≥ 0

This can be achieved via

Q j
L = SQ

jk Q k ′
L , u j

R = Su
jku k ′

R

with unitary 3× 3 matrices SQ, Su.
This transformation leaves Lgauge invariant (“flavour-blindness of
the gauge interactions”)!
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Next diagonalise Y d :

Ŷ d = V †S†
QY dSd with Ŷ d =




yd 0 0
0 ys 0
0 0 yb


 and yd ,s,b ≥ 0

with unitary 3× 3 matrices V , Sd .
Via d j

R = Sd
jkd k ′

R we leave Lgauge unchanged, while

−Lquark
Y = QLVŶ d H dR + QLŶ u H̃ uR + h.c.
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This breaks up the SU(2) doublet QL.
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Next diagonalise Y d :

Ŷ d = V †S†
QY dSd with Ŷ d =




yd 0 0
0 ys 0
0 0 yb


 and yd ,s,b ≥ 0

with unitary 3× 3 matrices V , Sd .
Via d j

R = Sd
jkd k ′

R we leave Lgauge unchanged, while

−Lquark
Y = QLVŶ d H dR + QLŶ u H̃ uR + h.c.

To diagonalise Md = VŶ dv transform

d j
L = Vjkd k ′

L

This breaks up the SU(2) doublet QL. ⇒ Lgauge changes!
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⇒ Also the neutral Higgs fields h0 and G0 have only
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In the new “physical” basis Mu = Y uv and Md = Y dv are
diagonal.
⇒ Also the neutral Higgs fields h0 and G0 have only

flavour-diagonal couplings!

The Yukawa couplings of the charged pseudo-Goldstone
bosons G± still involve V :

−Lquark
Y = uLVŶ d dR G+ − dLV †Ŷ u uR G− + h.c.

The transformation d j
L = Vjkd k ′

L changes the W-boson
couplings in Lgauge:

LW =
g2√

2

[
uLVγµ dL W+

µ + dLV †γµ uL W−
µ

]

The Z-boson couplings stay flavour-diagonal because of
V †V = 1.
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V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb
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Leptons: Only one Yukawa matrix Y l ; the mass matrix
M l = Y lv of the charged leptons is diagonalised with

L j
L = SL

jkL k ′
L , e k

R = Se
jke k ′

R

No lepton-flavour violation!
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V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




Leptons: Only one Yukawa matrix Y l ; the mass matrix
M l = Y lv of the charged leptons is diagonalised with

L j
L = SL

jkL k ′
L , e k

R = Se
jke k ′

R

No lepton-flavour violation!

⇒ Add a νR to the SM to mimick the quark sector or

add a Majorana mass term Y M LHHT Lc

M
.

The lepton mixing matrix is the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
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Discrete symmetries

Parity transformation P: ~x → −~x
Charge conjugation C: Exchange particles and

antiparticles, e.g. e− ↔ e+

Time reversal T: t → −t
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C and P

1954/1955: CPT is a symmetry of every Lorentz-invariant
quantum field theory.
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C and P

1954/1955: CPT is a symmetry of every Lorentz-invariant
quantum field theory.

1956/1957: P is not a symmetry of the microscopic laws
of nature!

1964: CP is not a symmetry of the microscopic laws
of nature!

⇒ Also the T symmetry must be violated,
there is a microscopic arrow of time!
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1973: Explanation of CP violation by postu-
lating a third fermion generation.
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Strong interaction

The QCD lagrangian permits a term which violates P, CP, and
T , but experimentally the corresponding coefficient θ is found to
be smaller than 10−11.
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Strong interaction

The QCD lagrangian permits a term which violates P, CP, and
T , but experimentally the corresponding coefficient θ is found to
be smaller than 10−11.

⇒ The strong interaction essentially respects
C, P, and therefore T ,
[
Hstrong, P

]
=
[
Hstrong,C

]
=
[
Hstrong,T

]
= 0

⇒ We can assign C and P quantum numbers, which
can be +1 or −1, to hadrons.
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Strong interaction

The QCD lagrangian permits a term which violates P, CP, and
T , but experimentally the corresponding coefficient θ is found to
be smaller than 10−11.

⇒ The strong interaction essentially respects
C, P, and therefore T ,
[
Hstrong, P

]
=
[
Hstrong,C

]
=
[
Hstrong,T

]
= 0

⇒ We can assign C and P quantum numbers, which
can be +1 or −1, to hadrons.

Example: A π0 meson has P = −1 and C = +1. A π+ has
P = −1, but is no eigenstate of C, because C|π+〉 = |π−〉.

Also QED respects C,P, and T .
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Parity violation

1956: θ − τ puzzle:
A seemingly degenerate pair (θ, τ) of two mesons with P= +1
and P= −1, weakly decaying as

“θ” → ππ P = +1

“τ ” → πππ P = −1
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Explanation by Lee and Yang:
“θ” and “τ ” are the same particle, instead the weak interaction
violates parity.



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Parity violation

1956: θ − τ puzzle:
A seemingly degenerate pair (θ, τ) of two mesons with P= +1
and P= −1, weakly decaying as

“θ” → ππ P = +1

“τ ” → πππ P = −1

Explanation by Lee and Yang:
“θ” and “τ ” are the same particle, instead the weak interaction
violates parity.

K+ = “θ” = “τ ”.
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Maximal P violation

In the SM only left-handed fields feel the charged weak
interaction, no couplings of the W-boson to u j

R, d j
R, and e j

R.
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Early monograph on parity violation:



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Early monograph on parity violation:

Lewis Carroll:
Alice through the looking glass
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Maximal parity violation
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Maximal parity violation
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Charge conjugation C maps left-handed (particle) fields on
right-handed (antiparticle) fields and vice versa:

ψL
C←→ ψC

L , where ψC
L ≡ (ψC)R is right-handed.

⇒ The weak interaction also violates C!
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Charge conjugation C maps left-handed (particle) fields on
right-handed (antiparticle) fields and vice versa:

ψL
C←→ ψC

L , where ψC
L ≡ (ψC)R is right-handed.

⇒ The weak interaction also violates C!

But: Nothing prevents CP and T from being good
symmetries. . .

. . . except experiment!
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CP violation

Neutral K mesons:
Klong and Kshort (linear combinations of K and K ).

Dominant decay channels:

Klong → πππ CP = −1

Kshort → ππ CP = +1
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CP violation

Neutral K mesons:
Klong and Kshort (linear combinations of K and K ).

Dominant decay channels:

Klong → πππ CP = −1

Kshort → ππ CP = +1

1964: Christenson, Cronin, Fitch and Turlay observe

Klong → ππ

and therefore discover CP violation.

ǫK ≡
〈(ππ)I=0|Hweak |Klong〉
〈(ππ)I=0|Hweak |Kshort〉

= (2.229± 0.010) · 10−3ei0.97π/4.
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CP violation in the SM

Example: W coupling to b and u:

LW =
g2√

2

[
VubuLγ

µ bL W+
µ + V ∗

ubbLγ
µ uL W−

µ

]
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CP violation in the SM

Example: W coupling to b and u:

LW =
g2√

2

[
VubuLγ

µ bL W+
µ + V ∗

ubbLγ
µ uL W−

µ

]

CP transformation uLγ
µ bL

CP−→ −bLγµ uL

Wµ
CP−→ −Wµ



Basics C,P,T CKM new physics global analysis SUSY Conclusions

CP violation in the SM

Example: W coupling to b and u:

LW =
g2√

2

[
VubuLγ

µ bL W+
µ + V ∗

ubbLγ
µ uL W−

µ

]

CP transformation uLγ
µ bL

CP−→ −bLγµ uL

Wµ
CP−→ −Wµ

Hence
LW

CP−→ g2√
2

[
VubbLγ

µ uL W−
µ + V ∗

ubuLγ
µ bL W+

µ

]

Is CP violated?



Basics C,P,T CKM new physics global analysis SUSY Conclusions

CP violation in the SM

Example: W coupling to b and u:

LW =
g2√

2

[
VubuLγ

µ bL W+
µ + V ∗

ubbLγ
µ uL W−

µ

]

CP transformation uLγ
µ bL

CP−→ −bLγµ uL

Wµ
CP−→ −Wµ

Hence
LW

CP−→ g2√
2

[
VubbLγ

µ uL W−
µ + V ∗

ubuLγ
µ bL W+

µ

]

Is CP violated? Not yet. . .
Rephasing bL → eiφbL, uL → eiφ′uL amounts to

LW
CP+reph.−→ g2√

2

[
Vubei(φ′−φ)bLγ

µuLW−
µ + V ∗

ubei(φ−φ′)uLγ
µbLW+

µ

]
,

so that we can achieve Vubei(φ′−φ) = V ∗
ub.
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Alternatively we could have used the rephasing to render Vub

real from the beginning.

Observation by Kobayashi and Maskawa:

A unitary n × n matrix has
n(n + 1)

2
phases. In an n-generation

SM one can eliminate 2n − 1 phases from V by rephasing the

quark fields. The remaining
(n − 1)(n − 2)

2
phases are

physical, CP-violating parameters of the theory!
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Alternatively we could have used the rephasing to render Vub

real from the beginning.

Observation by Kobayashi and Maskawa:

A unitary n × n matrix has
n(n + 1)

2
phases. In an n-generation

SM one can eliminate 2n − 1 phases from V by rephasing the

quark fields. The remaining
(n − 1)(n − 2)

2
phases are

physical, CP-violating parameters of the theory!

n
(n − 1)(n − 2)

2
1 0
2 0
3 1 Kobayashi-Maskawa phase δKM

4 3
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CKM metrology

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




involves 4 parameters: 3 angles and the KM phase δKM.
Best way to parametrise V : Wolfenstein expansion
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Expand the CKM matrix V in Vus ≃ λ = 0.2246:




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 ≃




1− λ2

2 λ Aλ3
(
1 + λ2

2

)
(ρ− iη)

−λ− iA2λ5η 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 − iAλ4η 1




with the Wolfenstein parameters λ, A, ρ , η

CP violation⇔ η 6= 0
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Expand the CKM matrix V in Vus ≃ λ = 0.2246:




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 ≃




1− λ2

2 λ Aλ3
(
1 + λ2

2

)
(ρ− iη)

−λ− iA2λ5η 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 − iAλ4η 1




with the Wolfenstein parameters λ, A, ρ , η

CP violation⇔ η 6= 0

Unitarity triangle:
Exact definition:

ρ+ iη = −V ∗
ubVud

V ∗
cbVcd

=

∣∣∣∣
V ∗

ubVud

V ∗
cbVcd

∣∣∣∣ e
iγ

ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)
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In the SM the flavour violation only occurs in the couplings of
W±
µ and G± to fermions.
⇒ At tree-level flavour-changes only occur in charged-

current processes.



Basics C,P,T CKM new physics global analysis SUSY Conclusions

In the SM the flavour violation only occurs in the couplings of
W±
µ and G± to fermions.
⇒ At tree-level flavour-changes only occur in charged-

current processes.

Semileptonic decays:

�Wd �`u` �Ws �`u` �Wb �`` �Wb �`u`
determining |Vud | |Vus| |Vcb| |Vub|.
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Flavour-changing neutral current (FCNC) processes

Examples:

b

s

s

b

u,c,t

u,c,t

b s

t

W

Bs−Bs mixing penguin diagram

FCNC processes are the only possibility to gain information on
Vtd and Vts. However: FCNC processes are highly sensitive to
physics beyond the SM.

In principle can determine all parameters λ, A, ρ , η from
tree-level processes.

⇒ View FCNC processes as new physics analysers
rather than ways to measure Vtd and Vts.
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B−B mixing basics

Consider Bq−Bq mixing with q = d or
q = s:
A meson identified (“tagged”) as a Bq at
time t = 0 is described by |Bq(t)〉.
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Consider Bq−Bq mixing with q = d or
q = s:
A meson identified (“tagged”) as a Bq at
time t = 0 is described by |Bq(t)〉.

b

q

q

b

u,c,t

u,c,t

For t > 0:

|Bq(t)〉 = 〈Bq|Bq(t)〉|Bq〉+ 〈Bq|Bq(t)〉|Bq〉+ . . . ,

with “. . . ” denoting the states into which Bq(t) can decay.
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B−B mixing basics

Consider Bq−Bq mixing with q = d or
q = s:
A meson identified (“tagged”) as a Bq at
time t = 0 is described by |Bq(t)〉.

b

q

q

b

u,c,t

u,c,t

For t > 0:

|Bq(t)〉 = 〈Bq|Bq(t)〉|Bq〉+ 〈Bq|Bq(t)〉|Bq〉+ . . . ,

with “. . . ” denoting the states into which Bq(t) can decay.

Analogously: |Bq(t)〉 is the ket of a meson tagged as a Bq at
time t = 0.
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Schrödinger equation:

i
d
dt

(
〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
=

(
Mq − i

Γq

2

)( 〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)

with the 2× 2 mass and decay matrices Mq = Mq† and
Γq = Γq†.(
〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
obeys the same Schrödinger equation.
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Schrödinger equation:

i
d
dt

(
〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
=

(
Mq − i

Γq

2

)( 〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)

with the 2× 2 mass and decay matrices Mq = Mq† and
Γq = Γq†.(
〈Bq|Bq(t)〉
〈Bq|Bq(t)〉

)
obeys the same Schrödinger equation.

3 physical quantities in Bq−Bq mixing:

∣∣Mq
12

∣∣ ,
∣∣Γq

12

∣∣ , φq ≡ arg

(
−Mq

12

Γq
12

)
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Diagonalise Mq − i Γq

2 to find the two mass eigenstates:

Lighter eigenstate: |BL〉 = p|Bq〉+ q|Bq〉.
Heavier eigenstate: |BH〉 = p|Bq〉 − q|Bq〉

with masses Mq
L,H and widths Γq

L,H .

Further |p|2 + |q|2 = 1.
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Diagonalise Mq − i Γq

2 to find the two mass eigenstates:

Lighter eigenstate: |BL〉 = p|Bq〉+ q|Bq〉.
Heavier eigenstate: |BH〉 = p|Bq〉 − q|Bq〉

with masses Mq
L,H and widths Γq

L,H .

Further |p|2 + |q|2 = 1.

Relation of ∆mq and ∆Γq to |Mq
12|, |Γ

q
12| and φq:

∆mq = MH −ML ≃ 2|Mq
12|,

∆Γq = ΓL − ΓH ≃ 2|Γq
12| cosφq
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Mq
12 stems from the dispersive (real)

part of the box diagram, internal t .
Γq

12 stems from the absorpive (imag-
inary) part of the box diagram, inter-
nal c, u.

b

q

q

b

u,c,t

u,c,t
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Solve the Schrödinger equation to find the desired Bq−Bq
oscillations:

|〈Bq |Bq(t)〉|2 = |〈Bq |Bq(t)〉|2 =
e−Γq t

2

[
cosh

∆Γq t
2

+ cos (∆mq t)
]

|〈Bq |Bq(t)〉|2 ≃ |〈Bq |Bq(t)〉|2 ≃ e−Γq t

2

[
cosh

∆Γq t
2
− cos (∆mq t)

]

with Γq ≡
Γq

L + Γq
H

2
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Time-dependent decay rate:

Γ(Bq(t)→ f ) =
1

NB

d N(Bq(t)→ f )
d t

,

where d N(Bq(t)→ f ) is the number of Bq(t)→ f decays within
the time interval [t , t + d t ].
NB is the number of Bq ’s present at time t = 0.
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Time-dependent decay rate:

Γ(Bq(t)→ f ) =
1

NB

d N(Bq(t)→ f )
d t

,

where d N(Bq(t)→ f ) is the number of Bq(t)→ f decays within
the time interval [t , t + d t ].
NB is the number of Bq ’s present at time t = 0.

With |f 〉 ≡ CP|f 〉 define the time-dependent CP asymmetry:

af (t) =
Γ(Bq(t)→ f )− Γ(Bq(t)→ f )

Γ(Bq(t)→ f ) + Γ(Bq(t)→ f )
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Example 1:
Bd → J/ψKS ⇒ |f 〉 = −|f 〉 (CP-odd eigenstate)

�d
c

s

b

c

Bd

J/ψ

KS

�
b

c
c

s
d

Bd

J/ψ

KS

aJ/ψKS
(t) ≃ − sin(2β) sin(∆md t),

where β = arg
[
−VcdV ∗

cb

VtdV ∗
tb

]
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Example 2:
Bs → (J/ψφ)L=0 ⇒ |f 〉 = |f 〉 (CP-even eigenstate)

�s
c

s

b

c

Bs

J/ψ

φ
�
b

c
c

s
s

Bs

J/ψ

φ

a(J/ψφ)L=0
(t) = − sin(2βs) sin(∆mst)

cosh(∆Γst/2)− cos(2βs) sinh(∆Γst/2)
,

where βs = arg
[
− VtsV ∗

tb

VcsV ∗
cb

]
≃ λ2η
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The Wolfenstein parameters λ and A are well determined from
the semileptonic decays K → πℓ+νℓ and B → Xcℓ

+νℓ, ℓ = e, µ.
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Metrology of the unitarity triangle:
The apex (ρ,η) is currently constrained from the following
experimental input:

• |Vub| ∝
√
ρ2 + η2 measured in B → πℓνℓ, B → Xuℓνℓ and

B+ → τ+ντ .
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Metrology of the unitarity triangle:
The apex (ρ,η) is currently constrained from the following
experimental input:

• |Vub| ∝
√
ρ2 + η2 measured in B → πℓνℓ, B → Xuℓνℓ and

B+ → τ+ντ .

• γ extracted from B± → ( )

DK±

• ∆md ∝
√
(1− ρ)2 + η2

• ∆md/∆ms ∝
√
(1− ρ)2 + η2

• sin(2β) from aJ/ψKS
(t) and other b → ccs decays

• α determined from CP asymmetries in B → ππ, B → ρρ
and B → ρπ decays.

• ǫK (the measure of CP violation in K−K mixing), which
defines a hyperbola in the (ρ,η) plane.
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Global fit in the SM from CKMfitter:

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2
(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

α

βγ

ρ
−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

η
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Statistical method: Rfit, a Frequentist approach.
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Global fit in the SM from UTfit:

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1
γ

β

α

)γ+βsin(2

sm∆
dm∆ dm∆

Kε
cbV
ubV

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

Statistical method: Bayesian.
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Flavour experiments

B,D,τ : BELLE (upgrade: BELLE-II)
CDF, DØ
LHCb, also ATLAS, CMS

D,τ : BES-III

K: CERN-NA62, J-PARC, KLOE-2,

µ→ eγ search: MEG (at PSI)

. . . plus neutrino experiments like MINOS

Future: Project X at Fermilab for rare K and µ decays.
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New physics

In the LHC era CKM metrology is less important and constraints
on physics beyond the SM is the main focus of flavour physics.
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flips bring a factor of mb/MW or ms/MW .
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In the flavour-changing neutral current (FCNC) processes of
the Standard Model several suppression factors pile up:

• FCNCs proceed through electroweak loops, no FCNC tree
graphs,

• small CKM elements, e.g. |Vts| = 0.04, |Vtd | = 0.01,

• GIM suppression in loops with charm or down-type quarks,
∝ (m2

c −m2
u)/M

2
W , (m2

s −m2
d)/M

2
W .

• helicity suppression in radiative and leptonic decays,
because FCNCs involve only left-handed fields, so helicity
flips bring a factor of mb/MW or ms/MW .

Spectacular: In FCNC transitions of charged leptons the GIM
suppression factor is even m2

ν/M
2
W !

⇒ The SM predictions for charged-lepton FCNCs are es-
sentially zero!
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The suppression of FCNC processes in the Standard Model is
not a consequence of the SU(3)× SU(2)L × U(1)Y symmetry.
It results from the particle content of the Standard Model and
the accidental smallness of most Yukawa couplings. It is absent
in generic extensions of the Standard Model.
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Examples:

extra Higgses ⇒ Higgs-mediated FCNC’s at tree-level ,
helicity suppression possibly absent,

squarks/gluinos ⇒ FCNC quark-squark-gluino coupling,
no CKM/GIM suppression,

vector-like quarks ⇒ FCNC couplings of an extra Z ′,
SU(2)R gauge bosons ⇒ helicity suppression absent
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The suppression of FCNC processes in the Standard Model is
not a consequence of the SU(3)× SU(2)L × U(1)Y symmetry.
It results from the particle content of the Standard Model and
the accidental smallness of most Yukawa couplings. It is absent
in generic extensions of the Standard Model.
Examples:

extra Higgses ⇒ Higgs-mediated FCNC’s at tree-level ,
helicity suppression possibly absent,

squarks/gluinos ⇒ FCNC quark-squark-gluino coupling,
no CKM/GIM suppression,

vector-like quarks ⇒ FCNC couplings of an extra Z ′,
SU(2)R gauge bosons ⇒ helicity suppression absent

Bd−Bd mixing and Bs−Bs mixing are sensitive to scales up to
Λ ∼ 100 TeV.
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New-physics analysers:

• Global fit to UT: overconstrain (ρ, η),
probes FCNC processes K−K , Bd−Bd and Bs−Bs mixing.

s

d

d

s

u,c,t

u,c,t

b

d

d

b

u,c,t

u,c,t

b

s

s

b

u,c,t

u,c,t
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New-physics analysers:

• Global fit to UT: overconstrain (ρ, η),
probes FCNC processes K−K , Bd−Bd and Bs−Bs mixing.

• Global fit to Bs−Bs mixing: mass difference ∆ms, width
difference ∆Γs, CP asymmetries in Bs → J/ψφ and
( )

Bs → Xℓνℓ.
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New-physics analysers:

• Global fit to UT: overconstrain (ρ, η),
probes FCNC processes K−K , Bd−Bd and Bs−Bs mixing.

• Global fit to Bs−Bs mixing: mass difference ∆ms, width
difference ∆Γs, CP asymmetries in Bs → J/ψφ and
( )

Bs → Xℓνℓ.

• Penguin decays: B → Xsγ, B → Xsℓ
+ℓ−, B → Kπ,

Bd → φKshort, Bs → µ+µ−, K → πνν.

b s

t

W
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New-physics analysers:

• Global fit to UT: overconstrain (ρ, η),
probes FCNC processes K−K , Bd−Bd and Bs−Bs mixing.

• Global fit to Bs−Bs mixing: mass difference ∆ms, width
difference ∆Γs, CP asymmetries in Bs → J/ψφ and
( )

Bs → Xℓνℓ.

• Penguin decays: B → Xsγ, B → Xsℓ
+ℓ−, B → Kπ,

Bd → φKshort, Bs → µ+µ−, K → πνν.

• CKM-suppressed or helicity-suppressed tree-level decays:
B+ → τ+ν, B → πℓν, B → Dτν, probe charged Higgses
and right-handed W-couplings.



Basics C,P,T CKM new physics global analysis SUSY Conclusions

B−B mixing and new physics

New physics can barely affect
Γq

12, which stems from tree-level
decays.
Mq

12 is very sensitive to virtual
effects of new heavy particles.

b

q

q

b

u,c,t

u,c,t
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Generic new physics

The phase φs = arg(−Ms
12/Γ

s
12) is negligibly small in the

Standard Model:
φSM

s = 0.2◦.
Define the complex parameter ∆s through

Ms
12 ≡ MSM,s

12 ·∆s , ∆s ≡ |∆s|eiφ∆s .

In the Standard Model ∆s = 1. Use φs = φSM
s + φ∆s ≃ φ∆s .
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Generic new physics

The phase φs = arg(−Ms
12/Γ

s
12) is negligibly small in the

Standard Model:
φSM

s = 0.2◦.
Define the complex parameter ∆s through

Ms
12 ≡ MSM,s

12 ·∆s , ∆s ≡ |∆s|eiφ∆s .

In the Standard Model ∆s = 1. Use φs = φSM
s + φ∆s ≃ φ∆s .

The CDF measurement

∆ms = (17.77± 0.10± 0.07) ps−1

implies

|∆s| = 0.92± 0.14(th) ± 0.01(exp)
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Flavour-specific decay: Bs → f is allowed, while
Bs → f is forbidden

CP asymmetry in flavour-specific decays (semileptonic CP
asymmetry):

as
fs =

Γ(Bs(t)→ f )− Γ(Bs(t)→ f )

Γ(Bs(t)→ f ) + Γ(Bs(t)→ f )

with e.g. f = Xℓ+νℓ and f = Xℓ−νℓ. Untagged rate:

as
fs,unt ≡

∫∞
0 dt

[
Γ(

( )

Bs → µ+X )− Γ(
( )

Bs → µ−X )
]

∫∞
0 dt

[
Γ(

( )

Bs → µ+X ) + Γ(
( )

Bs → µ−X )
] ≃ as

fs

2
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Relation to Ms
12:

as
fs =

|Γs
12|
|Ms

12|
sinφs =

|Γs
12|

|MSM,s
12 |

· sinφs

|∆s|
= (4.97± 0.94)·10−3 · sinφs

|∆s|

A. Lenz, UN, 2006
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Dilepton events:

Compare the number N++ of decays (Bs(t),Bs(t))→ (f , f ) with
the number N−− of decays to (f , f ).

Then as
fs =

N++ − N−−
N++ + N−−

.

At the Tevatron all b-flavoured hadrons are produced. Still only
those events contribute to (N++ −N−−)/(N++ +N−−), in which
one of the b hadronises as a Bd or Bs and undergoes mixing.
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May 15, 2010: DØ presents

afs = (−9.57± 2.51± 1.46) · 10−3

for a mixture of Bd and Bs mesons with

afs = (0.506± 0.043)ad
fs + (0.494± 0.043)as

fs

The result is 3.2σ away from aSM
fs =

(
−0.23

+0.05
−0.06

)
· 10−3.

A. Lenz, UN, 2006

Averaging with an older CDF measurement yields

afs = (−8.5± 2.8) · 10−3,

which is 3.0σ away from aSM
fs .
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as
fs = (4.97± 0.94) · 10−3 · sinφs

|∆s|

If there is no new physics in ad
fs, the Tevatron measurement of

afs = (−8.5± 2.8) · 10−3 roughly implies as
fs = (−17± 6) · 10−3.

With |∆s| ≥ 0.78 find

sinφs ≤ −2.2± 0.7.
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Closer look: Allow for new physics in Bd−Bd mixing as well:

Md
12

MSM,d
12

≡ ∆d = |∆d |eiφ∆d

Measurement by B factories: ad
fs = (−4.7± 4.6) · 10−3

However: ad
fs can be better determined indirectly through

ad
fs =

|Γd
12|

MSM,d
12

sin(φSM
d + φ∆d )

|∆d |
with φSM

d = (−5± 2)◦

using the measurements of ∆md = 2|Md
12| and of

2β + φ∆d = (21± 1)◦ from Amix
CP (Bd → J/ψKshort).
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Closer look: Allow for new physics in Bd−Bd mixing as well:

Md
12

MSM,d
12

≡ ∆d = |∆d |eiφ∆d

Measurement by B factories: ad
fs = (−4.7± 4.6) · 10−3

However: ad
fs can be better determined indirectly through

ad
fs =

|Γd
12|

MSM,d
12

sin(φSM
d + φ∆d )

|∆d |
with φSM

d = (−5± 2)◦

using the measurements of ∆md = 2|Md
12| and of

2β + φ∆d = (21± 1)◦ from Amix
CP (Bd → J/ψKshort).

⇒ requires fit to unitarity triangle to find β
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Other connection between Bd and Bs mixing:

The global fit to the unitarity triangle involves
∆md

∆ms
from which

hadronic uncertainties cancel to a large extent.
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Global analysis of Bs−Bs mixing and Bd−Bd mixing

Based on work with A. Lenz and the CKMfitter Group
(J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold,
H. Lacker, S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic
errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein
parameters and to the new physics parameters ∆s and ∆d in
three scenarios.
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Scenario I: arbitrary complex parameters ∆s and ∆d

Scenario II: new physics is minimally flavour violating (MFV)
(meaning that all flavour violation stems from the
Yukawa sector) and yb is small:
one real parameter ∆ = ∆s = ∆d

Scenario III: MFV with a large yb: one complex parameter
∆ = ∆s = ∆d
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Scenario I: arbitrary complex parameters ∆s and ∆d

Scenario II: new physics is minimally flavour violating (MFV)
(meaning that all flavour violation stems from the
Yukawa sector) and yb is small:
one real parameter ∆ = ∆s = ∆d

Scenario III: MFV with a large yb: one complex parameter
∆ = ∆s = ∆d

Examples: Scenario I covers the MSSM with generic flavour
structure of the soft terms and small tanβ.
Scenario II covers the MSSM with MFV and small
tanβ.
Scenario III covers certain two-Higgs models (but
not the MFV-MSSM).



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Results in scenario I:

α

)
s

(B
SL

) & A
d

(BSL & ASLA

sm∆ & dm∆

>0β; cos 2βsin 2

SM point

d∆Re 
-2 -1 0 1 2 3

d∆
Im

 

-2

-1

0

1

2

excluded area has CL > 0.68

FPCP 10

CKM
f i t t e r  mixing dB - 

d
 New Physics in B

SM point ∆d = 1 dis-
favoured by ≥ 2.5σ.

φ∆d < 0 helps to
explain DØ dimuon
asymmetry.
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Reason for the tension with the SM: B(B+ → τ+ντ )

SM prediction (CL= 2σ):

B(B+ → τ+ντ ) =
(

0.763
+0.214
−0.097

)
· 10−4

Average of several measurements by BaBar and Belle:

Bexp(B+ → τ+ντ ) = (1.68± 0.31) · 10−4
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Reason for the tension with the SM: B(B+ → τ+ντ )

SM prediction (CL= 2σ):

B(B+ → τ+ντ ) =
(

0.763
+0.214
−0.097

)
· 10−4

Average of several measurements by BaBar and Belle:

Bexp(B+ → τ+ντ ) = (1.68± 0.31) · 10−4

BSM(B+ → τ+ντ ) =
G2

F mB+m2
τ

8π

(
1− m2

τ

m2
B+

)2

|Vub|2f 2
BτB+ .

But with e.g. fB = 210 MeV and |Vub| = 4.4 · 10−3 find
BSM(B+ → τ+ντ ) = 1.51 · 10−4. These parameters comply with
the global fit to the UT only, if new physics changes the
constraints from Amix

CP (Bd → J/ψKshort), ∆md or ∆md/∆ms.
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Global fit in the SM:
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Global fit to UT hinting at φ∆d < 0:
Other authors have seen a tension with the SM in the same
direction stemming from ǫK .

Lunghi,Soni; Buras,Guadagnoli

In our fit the tension with ǫK is mild, because we use a more
conservative error on the hadronic parameter
B̂K = 0.724± 0.004± 0.067 and because the Rfit method is
more conservative.
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p-values:
Calculate χ2/Ndof with and without a hypothesis to find:

Hypothesis p-value

∆d = 1 2.5 σ

∆s = 1 2.7 σ

∆d = ∆s = 1 3.4 σ

∆d = ∆s 2.1 σ
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Fit result at 95%CL:

φ∆s = (−51
+32
−25)

◦ (and φ∆s = (−129
+28
−27)

◦)

Compare with the 2010 CDF/DØ result from Bs → J/ψφ:

CDF: φ∆s = −29
+44
−49 at 95%CL

DØ: φ∆s = −44
+59
−51 at 95%CL

Naive average: φavg
s = (−36± 35)◦ at 95%CL
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Is the result driven by the DØ dimuon asymmetry?
One can remove afs as an input and instead predict it from the
global fit:

afs =
(
−4.2

+2.7
−2.6

)
· 10−3 at 2σ.
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Is the result driven by the DØ dimuon asymmetry?
One can remove afs as an input and instead predict it from the
global fit:

afs =
(
−4.2

+2.7
−2.6

)
· 10−3 at 2σ.

This is just 1.5σ away from the DØ/CDF average

afs = (−8.5± 2.8) · 10−3.
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The fit in scenario II (real ∆s = ∆d ) is not better than the SM fit
and gives ∆ = 0.907

+0.091
−0.067.

Scenario III (complex ∆s = ∆d ) fits the data quite well
irrespective of whether B(B+ → τ+ντ ) is included or not.

Hypothesis p-value

∆ = 1 3.1 σ
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Supersymmetry

The MSSM has many new sources of flavour violation, all in the
supersymmetry-breaking sector.

No problem to get big effects in Bs−Bs mixing, but rather to
suppress the big effects elsewhere.



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Squark mass matrix

Diagonalise the Yukawa matrices Y u
jk and Y d

jk
⇒ quark mass matrices are diagonal, super-CKM basis
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Squark mass matrix

Diagonalise the Yukawa matrices Y u
jk and Y d

jk
⇒ quark mass matrices are diagonal, super-CKM basis

E.g. Down-squark mass matrix:

M2
d̃
=




(
M d̃

1L

)2
∆d̃ LL

12 ∆d̃ LL
13 ∆d̃ LR

11 ∆d̃ LR
12 ∆d̃ LR

13

∆d̃ LL
12

∗
(

M d̃
2L

)2
∆d̃ LL

23 ∆d̃ RL
12

∗

∆d̃ LR
22 ∆d̃ LR

23

∆d̃ LL
13

∗

∆d̃ LL
23

∗
(

M d̃
3L

)2
∆d̃RL

13

∗

∆d̃ RL∗
23 ∆d̃ LR

33

∆d̃ LR
11

∗

∆d̃RL
12 ∆d̃RL

13

(
M d̃

1R

)2
∆d̃ RR

12 ∆d̃ RR
13

∆d̃ LR
12

∗

∆d̃ LR∗

22 ∆d̃RL
23 ∆d̃ RR

12

∗
(

M d̃
2R

)2
∆d̃ RR

23

∆d̃ LR
13

∗

∆d̃ LR
23

∗

∆d̃ LR
33

∗

∆d̃ RR
13

∗

∆d̃ RR
23

∗
(

M d̃
3R

)2






Basics C,P,T CKM new physics global analysis SUSY Conclusions

Squark mass matrix

Diagonalise the Yukawa matrices Y u
jk and Y d

jk
⇒ quark mass matrices are diagonal, super-CKM basis

E.g. Down-squark mass matrix:

M2
d̃
=




(
M d̃

1L

)2
∆d̃ LL

12 ∆d̃ LL
13 ∆d̃ LR

11 ∆d̃ LR
12 ∆d̃ LR

13

∆d̃ LL
12

∗
(

M d̃
2L

)2
∆d̃ LL

23 ∆d̃ RL
12

∗

∆d̃ LR
22 ∆d̃ LR

23

∆d̃ LL
13

∗

∆d̃ LL
23

∗
(

M d̃
3L

)2
∆d̃RL

13

∗

∆d̃ RL∗
23 ∆d̃ LR

33

∆d̃ LR
11

∗

∆d̃RL
12 ∆d̃RL

13

(
M d̃

1R

)2
∆d̃ RR

12 ∆d̃ RR
13

∆d̃ LR
12

∗

∆d̃ LR∗

22 ∆d̃RL
23 ∆d̃ RR

12

∗
(

M d̃
2R

)2
∆d̃ RR

23

∆d̃ LR
13

∗

∆d̃ LR
23

∗

∆d̃ LR
33

∗

∆d̃ RR
13

∗

∆d̃ RR
23

∗
(

M d̃
3R

)2




Not diagonal! ⇒ new FCNC transitions.
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b q

q b

g̃ g̃

b̃

q̃

q̃

b̃

δdLL
q3

δdLL
q3

b q

q b

g̃ g̃

b̃

q̃

q̃

b̃

δdLL
q3

δdLL
q3

b q

q b

χ̃− χ̃−

t̃

c̃

c̃

t̃

δu LL
23

δu LL
23
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Model-independent analyses constrain

δq XY
ij =

∆q̃ XY
ij

1
6

∑
s

[
M2

q̃

]
ss

with XY = LL, LR,RR and q = u, d

using data on FCNC (and also charged-current) processes.
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Model-independent analyses constrain

δq XY
ij =

∆q̃ XY
ij

1
6

∑
s

[
M2

q̃

]
ss

with XY = LL, LR,RR and q = u, d

using data on FCNC (and also charged-current) processes.

Remarks:

• For Mg̃ & 1.5Mq̃ the gluino contribution is small for
AB = LL,RR, so that chargino/neutralino contributions are
important.
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Model-independent analyses constrain

δq XY
ij =

∆q̃ XY
ij

1
6

∑
s

[
M2

q̃

]
ss

with XY = LL, LR,RR and q = u, d

using data on FCNC (and also charged-current) processes.

Remarks:

• For Mg̃ & 1.5Mq̃ the gluino contribution is small for
AB = LL,RR, so that chargino/neutralino contributions are
important.

• To derive meaningful bounds on δq LR
ij chirally enhanced

higher-order contributions must be taken into account.
A. Crivellin, UN, 2009



Basics C,P,T CKM new physics global analysis SUSY Conclusions
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The gluino contribution vanishes for Mg̃ ≈ 1.5Mq̃, independently
of the size of ∆d LL

23 (curves correspond to 4 different values).
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Are there natural ways to motivate sizable new flavour violation
in Bs−Bs mixing and Bd−Bd mixing while simultaneous
suppressing flavour violation elsewhere?
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Flavour violation from trilinear terms

Origin of the SUSY flavour problem: Misalignment of squark
mass matrices with Yukawa matrices.
Unorthodox solution: Set Y u

ij and Y d
ij to zero, except for

(i , j) = (3, 3).
⇒ No flavour violation from Y u,d

ij and VCKM = 1.
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Flavour violation from trilinear terms

Origin of the SUSY flavour problem: Misalignment of squark
mass matrices with Yukawa matrices.
Unorthodox solution: Set Y u

ij and Y d
ij to zero, except for

(i , j) = (3, 3).
⇒ No flavour violation from Y u,d

ij and VCKM = 1.

VCKM 6= 1 is then generated radiatively, through finite
squark-gluino loops. ⇒ SUSY-breaking is the origin of flavour.
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Flavour violation from trilinear terms

Origin of the SUSY flavour problem: Misalignment of squark
mass matrices with Yukawa matrices.
Unorthodox solution: Set Y u

ij and Y d
ij to zero, except for

(i , j) = (3, 3).
⇒ No flavour violation from Y u,d

ij and VCKM = 1.

VCKM 6= 1 is then generated radiatively, through finite
squark-gluino loops. ⇒ SUSY-breaking is the origin of flavour.

Radiative flavour violation: S. Weinberg 1972

flavour from soft SUSY terms:
W. Buchmüller, D. Wyler 1983,
T. Banks 1988,
F. Borzumati, G.R. Farrar,

N. Polonsky, S.D. Thomas 1998, 1999
J. Ferrandis, N. Haba 2004
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Today: Strong constraints from FCNCs probed at B factories.
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Today: Strong constraints from FCNCs probed at B factories.

But: Radiative flavour violation in the MSSM is still viable, albeit
only with Ad

ij and Au
ij entering

M d̃ LR
ij = Ad

ij vd + δi3δj3ybµvu, M ũ LR
ij = Au

ij vu + δi3δj3ytµvd .

Andreas Crivellin, UN, PRD 79 (2009) 035018
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Today: Strong constraints from FCNCs probed at B factories.

But: Radiative flavour violation in the MSSM is still viable, albeit
only with Ad

ij and Au
ij entering

M d̃ LR
ij = Ad

ij vd + δi3δj3ybµvu, M ũ LR
ij = Au

ij vu + δi3δj3ytµvd .

Andreas Crivellin, UN, PRD 79 (2009) 035018

dfL diR diRdfLY
d
fi

H0

d

H0

d

Ad
fi
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Electric dipole moments

Darkest corner of the MSSM: The phases of Aq
ii and µ generate

too large EDMs. If light quark masses are generated radiatively
through soft SUSY-breaking terms, this “supersymmetric CP
problem” is substantially alleviated:

• The phases of Aq
ii and mq are aligned, i.e. zero.

• The phase of µ (essentially) does not enter the EDMs at
the one-loop level, because the Yukawa couplings of the
first two generations are zero.

Borzumati, Farrar, Polonsky, Thomas 1998,1999
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Flavour and SUSY GUTs

Linking quarks to neutrinos: Flavour mixing:
quarks: Cabibbo-Kobayashi-Maskawa (CKM) matrix
leptons: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Consider SU(5) multiplets:

51 =




dc
R

dc
R

dc
R

eL

−νe



, 52 =




sc
R

sc
R

sc
R
µL

−νµ



, 53 =




bc
R

bc
R

bc
R
τL

−ντ



.

If the observed large atmospheric neutrino mixing angle stems
from a rotation of 52 and 53, it will induce a large
b̃R − s̃R-mixing (Moroi; Chang,Masiero,Murayama).

⇒ new bR−sR transitions from gluino–squark loops possible.
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Key ingredients: Some weak basis with

Yd = V ∗
CKM




yd 0 0
0 ys 0
0 0 yb


UPMNS

and right-handed down squark mass matrix:

m2
d̃
(MZ ) = diag

(
m2

d̃
, m2

d̃
, m2

d̃
−∆d̃

)
.

with a calculable real parameter ∆d̃ , typically generated by
top-Yukawa RG effects.
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Rotating Yd to diagonal form puts the large atmospheric
neutrino mixing angle into m2

d̃
:

U†
PMNS m2

d̃
UPMNS =




m2
d̃

0 0
0 m2

d̃
− 1

2 ∆d̃ −1
2 ∆d̃ eiξ

0 −1
2 ∆d̃ e−iξ m2

d̃
− 1

2 ∆d̃




The CP phase ξ affects Bs−Bs mixing!
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Realistic GUTs involve further dimension-5 Yukawa terms to fix
the Yukawa unification in the first two generations. One can use
these terms to shuffle a part of the effect from bR → sR into
bR → dR transitions. This “leakage” is strongly constrained by
K−K mixing. Trine,Wiesenfeldt,Westhoff 2009
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Realistic GUTs involve further dimension-5 Yukawa terms to fix
the Yukawa unification in the first two generations. One can use
these terms to shuffle a part of the effect from bR → sR into
bR → dR transitions. This “leakage” is strongly constrained by
K−K mixing. Trine,Wiesenfeldt,Westhoff 2009

Similar constraints can be found from µ→ eγ.
Borzumati,Yamashita 2009; Girrbach,Mertens,UN,Wiesenfeldt 2009
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Chang-Masiero-Murayama model

We have considered Bs−Bs mixing, b → sγ, τ → µγ, vacuum
stability bounds, lower bounds on sparticle masses and the
mass of the lightest Higgs boson.
The analysis involves 7 parameters in addition to those of the
Standard Model.

Generic results: Largest effect in Bs−Bs mixing
tension with Mh ≥ 114 GeV

J. Girrbach, S. Jäger, M. Knopf, W. Martens, UN, C. Scherrer, S. Wiesenfeldt
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Conclusions

• The DØ result for the dimuon asymmetry in Bs decays
supports the hints for φs < 0 seen in Bs → J/ψφ data. The
central value is easier to accomodate if both as

fs and ad
fs

receive negative contributions from new physics.
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• The DØ result for the dimuon asymmetry in Bs decays
supports the hints for φs < 0 seen in Bs → J/ψφ data. The
central value is easier to accomodate if both as

fs and ad
fs

receive negative contributions from new physics.

• A global fit to the UT indeed shows a slight preference for a
new CP phase φ∆d < 0, driven by B(B+ → τ+ντ ) (and
possibly ǫK ). In a simultaneously global fit to the UT and
the Bs−Bs mixing complex a plausible picture of new
CP-violating physics emerges.
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• Large CP-violating contributions to Bs−Bs mixing are
possible in supersymmetry without violating constraints
from other FCNC processes. If confirmed the DØ/CDF
results imply physics beyond the MFV-MSSM.



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Conclusions

• Large CP-violating contributions to Bs−Bs mixing are
possible in supersymmetry without violating constraints
from other FCNC processes. If confirmed the DØ/CDF
results imply physics beyond the MFV-MSSM.

• An attractive variant is the MSSM with vanishing Yukawa
couplings for the first two generations and radiative flavour
violation.



Basics C,P,T CKM new physics global analysis SUSY Conclusions

Conclusions

• Large CP-violating contributions to Bs−Bs mixing are
possible in supersymmetry without violating constraints
from other FCNC processes. If confirmed the DØ/CDF
results imply physics beyond the MFV-MSSM.

• An attractive variant is the MSSM with vanishing Yukawa
couplings for the first two generations and radiative flavour
violation.

• Models of GUT flavour physics with b̃R−s̃R mixing driven
by the atmospheric neutrino mixing angle can explain the
Tevatron data on Bs−Bs mixing without conflicting with
b → sγ and τ → µγ.
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A pinch of new physics in
B−B mixing?
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