Conclusion

The Phase Structure of the Polyakov–Quark-Meson Model beyond Mean Field

Tina Katharina Herbst

In Collaboration with B.-J. Schaefer and J.M. Pawlowski arXiv: 1008.0081 [hep-ph]

5th International Conference on the Exact Renormalization Group September 12 - 19, 2010 Corfu, Greece

Recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences at the Institute of Physics.

Conclusion

QCD Phase Structure

(approx.) order parameters

$$\langle \bar{q}q \rangle \left\{ egin{array}{c} = 0 & {
m symmetrie} \
eq 0 & {
m broken} \end{array}
ight.$$

Chiral Symmetry

- $\blacksquare m_q \to 0$
- chiral condensate $\langle \bar{q}q \rangle$
- Z_{N_c} Center Symmetry

$$\blacksquare m_q \to \infty$$

Polyakov loop $\Phi = \langle \ell(\vec{x}) \rangle_{\beta}$

$$\ell(\vec{x}) = \frac{1}{N_c} \operatorname{Tr}_c \mathcal{P} \exp\{i \int_0^\beta d\tau A_4(\vec{x}, \tau)\}$$

relation to confinement:

$$\Phi \sim e^{-\beta F_q}$$

$\Phi \left\{ \begin{array}{ll} = 0 & \text{ confined} \\ \neq 0 & \text{ deconfined} \end{array} \right.$

Chiral Symmetry

QCD Phase Structure

Polyakov-Quark-Meson Model

Lagrangian

$$\begin{aligned} \mathcal{L}_{PQM} &= \bar{q} \left[i \not{D} - h(\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \right] q + \frac{1}{2} (\partial_\mu \phi)^2 \\ &- \mathcal{U}(\sigma, \vec{\pi}) \quad - \quad \mathcal{U}(\Phi, \bar{\Phi}) \end{aligned}$$

- $\phi = (\sigma, \vec{\pi}) \dots O(4)$ -representation of the meson field $(N_f = 2)$
- $\mathcal{D}(\Phi) = \gamma_{\mu}\partial_{\mu} i g \gamma_0 A_0(\Phi)$
- g... gauge coupling
- h... Yukawa coupling

Meson Potential

$$U(\sigma,\vec{\pi}) = \frac{\lambda}{4}(\sigma^2 + \vec{\pi}^2 - v^2)^2 - c\sigma$$

Polyakov Loop Potential

[C. Ratti, M.A. Thaler, W. Weise, Phys.Rev. D73, 014019 (2006)]

Polynomial Ansatz

$$rac{\mathcal{U}(\Phi,ar{\Phi})}{T^4}=-rac{b_2(T)}{2}\Phiar{\Phi}-rac{b_3}{6}(\Phi^3+ar{\Phi}^3)+rac{b_4}{4}(\Phiar{\Phi})^2$$

coefficients fitted to lattice data (pure glue):

$$b_{2}(T) = a_{0} + a_{1} \left(\frac{T_{0}}{T}\right) + a_{2} \left(\frac{T_{0}}{T}\right)^{2} + a_{3} \left(\frac{T_{0}}{T}\right)^{3}$$

$$\boxed{\begin{array}{c|c} a_{0} & a_{1} & a_{2} & a_{3} & b_{3} & b_{4} \\ \hline 6.75 & -1.95 & 2.625 & -7.44 & 0.75 & 7.5 \\ \hline\end{array}}$$

$$T_0 = \begin{cases} 270 \text{ MeV (pure glue) }?\\ 208 \text{ MeV }?\\ \text{something else }? \end{cases}$$

$T_0(\mu)$ - One Motivation: Experiment

- experimental information on the QCD phase diagram: chemical freezeout points
- not raw data, but interpretation using Statistical Model
- increase of entropy (red band) and density suggests position of phase transition
- PNJL computation with T₀ = 200 MeV inconsistent (green band)
- polynomial ansatz for $T_0(\mu)$ \Rightarrow greater overlap (blue band)

[in these plots: $N_c = N_f = 3$]

[K. Fukushima, arXiv:1006.2596]

$T_0(\mu)$ - Another Motivation: Theory

[B.-J. Schaefer, J.M. Pawlowski, J. Wambach, Phys.Rev. D76, 074023 (2007)]

FRG flow for QCD:

 \rightarrow Talks by Jan Pawlowski and Lisa Haas

gluons

ghosts quarks

mesons

dynamical quarks modify the gluon contribution:

Polyakov Loop potential: from pure YM contribution

$$T_0 \rightarrow T_0(N_f,\mu) = T_\tau e^{-1/(\alpha_0 b(N_f,\mu))}$$

Polyakov–Quark-Meson Truncation

$$\Gamma_{k} = \int d^{4}x \left\{ \bar{q} \left(\not\!\!D + \mu \gamma_{0} + ih(\sigma + i\gamma_{5}\vec{\tau}\vec{\pi}) \right) q + \frac{1}{2} (\partial_{\mu}\phi)^{2} + \Omega_{k}[\sigma,\vec{\pi},\Phi,\bar{\Phi}] \right\}$$

at initial scale A: $\Omega_{\Lambda}[\sigma, \vec{\pi}, \Phi, \bar{\Phi}] = \mathcal{U}(\Phi, \bar{\Phi}) + U(\sigma, \vec{\pi}) + \Omega^{\infty}_{\Lambda}[\sigma, \vec{\pi}, \Phi, \bar{\Phi}]$

$$\partial_t \Gamma_k[\phi] = \underbrace{\frac{1}{2} \begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$$

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

PQM Flow Equation

[V. Skokov, B. Stokic, B. Friman, Phys.Rev. C82, 015206 (2010)]

$$\partial_k \Omega_k(T,\mu) = \frac{k^4}{12\pi^2} \left[\frac{3}{E_{\pi}} \operatorname{coth}\left(\frac{E_{\pi}}{2T}\right) + \frac{1}{E_{\sigma}} \operatorname{coth}\left(\frac{E_{\sigma}}{2T}\right) - \frac{2\nu_q}{E_q} \left\{ 1 - N_q(T,\mu;\Phi,\bar{\Phi}) - N_{\bar{q}}(T,\mu;\Phi,\bar{\Phi}) \right\} \right]$$

$$\begin{split} N_q(T,\mu;\Phi,\bar{\Phi}) &= \frac{1+2\bar{\Phi}e^{(E_q-\mu)/T} + \Phi e^{2(E_q-\mu)/T}}{1+3\bar{\Phi}e^{(E_q-\mu)/T} + 3\Phi e^{2(E_q-\mu)/T} + e^{3(E_q-\mu)/T}} \\ N_{\bar{q}}(T,\mu;\Phi,\bar{\Phi}) &\equiv N_q(T,-\mu;\bar{\Phi},\Phi) \\ E_{\pi} &= \sqrt{k^2 + 2\Omega'_k}, \quad E_{\sigma} &= \sqrt{k^2 + 2\Omega'_k + 4\sigma^2 \Omega''_k}, \quad \nu_q = 2N_c N_f \end{split}$$

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Phase Structure $T_0 = 208$ **MeV const.**

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081]

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Phase Structure $T_0 = 208$ **MeV const.**

[TKH, J.M. Pawlowski, B.-J. Schaefer and M. Wagner, Work in Progress]

Phase Structure $T_0(\mu)$, $T_0(0) = 208 \text{ MeV}$

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081]

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Normalized Pressure

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Normalized Pressure

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081] [B.-J. Schaefer, J.M. Pawlowski, J. Wambach, Phys.Rev. **D76**, 074023 (2007)]

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Normalized Entropy Density

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081]

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Quark Number Density

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081]

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Vicinity of the CEP

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081]

Introduction	Effective Description	Flow Equation	Phase Structure	Thermodynamics	Conclusion

Vicinity of the CEP

[TKH, J.M. Pawlowski, B.-J. Schaefer, arXiv:1008.0081]

The Phase Structure of the Polyakov-Quark-Meson Model beyond Mean Field

Introduction	Effective Description	Flow Equation	Phase	Structure	Thermodynamics	Conclusion
Sumn	nary					
• 1	PQM model beyor quark-meson fl Important feat back-reaction t	nd Mean Field uctuations includec ure: to gluonic sector	d wit	hin FRG	approach	
		$T_0 \rightarrow T_0$	Τ ₀ (Λ	f_f, μ)		
• 1	 Modifications of tl fluctuations pu T₀(μ): chiral a transitions coir → no quarkyou 	ne Phase Structur ish CEP downwards and deconfinement ncide nic phase	re s ² [NeN] ⊥	00	χ crossover Φ crossover	-
•	Thermodynamics ■ agree well with at µ = 0	lattice studies			Φ crossover CEP χ first order) 100 150 200 250 300 μ [MeV]	350