On the SU(N) gauge beta functions in the conformal window

ERG 2010 @ Corfu Sep .16 2010

Yuki Kusafuka and Haruhiko Terao (Nara Women's Univ. Japan)

Introduction

Conformal window

- SU(Nc) gauge theory with Nf massless flavors
- 2-loop gauge beta function $\alpha_g = g^2/(4\pi)^2$

IR (Banks-Zaks) fixed point

goes towards strong coupling region as Nf decreases.

Spontaneous breaking of the chiral symmetry for Nf < Ncr</p>

Scale invariance is lost there. ⇒ Fixed point cannot exist !

Conformal window:
$$N_{\rm cr} < N_f < \frac{11}{2}N_c$$

Introduction

Lower bound of the conformal window Ncr

- Dyson-Schwinger analyses
- Lattice MC simulations

 $\Rightarrow 8 < N_{\rm cr} < 12$

How does the beta function change vs. Nf?

- Perturbative beta functions cannot transform into the asymptotically free one smoothly, then what happens?
- In order to look into this problem, it is necessary to examine the beta functions in the conformal window in a non-perturbative way.

Introduction

Use of ERG

Scale invariance:

Dyson-Schwinger equations treating the chiral order parameters are useless in the conformal window. Also it would be difficult to study almost scale invariant theories by the Lattice MC simulation.

Non-perturbative calculation:

In the Wilson RG, renormalized theories can be defined by the renormalized trajectories (RTs), which are given as the continuum limit of the Wilson RG flows. J.Polchinski, N.P. B231 (1984)

Beta function:

Then **non-perturbative beta functions** can be given by scale transformation on the RTs.

\Rightarrow So the ERG is a quite suitable framework.

Non-perturbative beta function

Scalar field theory as a toy model

- **Q** RG flows in (λ_4, λ_6) space
 - Operator truncation

$$\mathcal{L}_{\rm eff} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{\lambda_4}{4!} \phi^4 - \frac{\lambda_6}{6! \Lambda^2} \phi^6$$

Wetterich eqn (sharp cutoff limit)

$$\Lambda \frac{d\lambda_4}{d\Lambda} = a\lambda_4^2 - b\lambda_6$$

$$\Lambda \frac{d\lambda_6}{d\Lambda} = 2\lambda_6 - c\lambda_4^3 + 2d\lambda_4\lambda_6$$

 $a = 9A, \quad b = 10A, \quad c = 27A, \quad d = (45/2)A \quad (A = 1/(4\pi)^2)$

Renormalized trajectory

Perturbative analysis

$$\lambda_6 = \frac{c}{2}\lambda_4^3 + \frac{c}{4}(3a - 2d)\lambda_4^4 + O(A^2)$$

J.Polchinski, N.P. B231 (1984)

Non-perturbative beta function

Non-perturbative beta function

Renormalized trajectory

We can find the RT numerically without perturbative expansion.

 $\lambda_6 = \lambda_6^*(\lambda_4)$

"Non-perturbative" beta function

The beta function of a renormalized parameter is given by the scale transformation on the RT.

$$\beta_{4}(\lambda_{4}) = a\lambda_{4}^{2} - b\lambda_{6}^{*}(\lambda_{4})$$

$$= a\lambda_{4}^{2} - \frac{bc}{2}\lambda_{4}^{3} - \frac{bc}{4}(3a - 2d)\lambda_{4}^{4} + \cdots$$

$$\beta_{4}$$
"Non-perturbative"
beta
beta
beta
beta
beta

Wilsonian effective action

- Four-fermi operators
 - Important to describe the chiral symmetry breaking
 - Symmetries

Parity

- Gauge symmetry: $SU(N_c)$ $\psi_L^{ai} = L^{ai}, \psi_R^{ai} = R^{ai}$
- Chiral flavor symmetry : $SU(N_f)_L \times SU(N_f)_R$
- $(a = 1, \cdots, N_c)$ $(i = 1, \cdots, N_f)$

4 invariant four-fermi operators

Spontaneous breaking of the chiral symmetry

K.-I.Aoki, K.Morikawa, W.Souma, J.-I.Sumi, H.T., M.Tomoyose,

PTP97 (1997), PTP102 (1999), PRD61 (2000)

• $G_S \rightarrow \infty$: Chiral symmetry breaking

 $\langle \bar{\psi}_i \psi^j \rangle = M^3 \delta_i^j \quad \Rightarrow \quad SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V$

- Approximation scheme
 - Operator truncation

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4g^2} F^A_{\mu\nu} F^{A\mu\nu} + \bar{\psi}_f i \not\!\!\!D \,\psi^f + \mathcal{L}_{4\text{f}}$$

We discard gauge non-invariant corrections.
 Note: Cutoff breaks gauge invariance. Gauge non-invariant corrections may be controlled by the modified WT identities.

RG flow equations (sharp cutoff limit)

• Four-fermi couplings $(g_i = G_i/4\pi^2, \ \alpha_g = g^2/(4\pi)^2)$

$$\begin{split} \Lambda \frac{dg_S}{d\Lambda} &= 2g_S - 2N_c g_S^2 + 2N_f g_S g_V + 6g_S g_{V1} + 2g_S g_{V2} \\ &- 12C_2(F)g_S \alpha_g + 12g_{V1} \alpha_g - \frac{3}{2} \left(3N_c - \frac{4}{N_c} - \frac{1}{N_c^2} \right) \alpha_g^2 \\ \Lambda \frac{dg_V}{d\Lambda} &= 2g_V + (N_f/4)g_S^2 + (N_c + N_f)g_V^2 - 6g_V g_{V2} \\ &- \frac{6}{N_c} (g_V + g_{V2}) \alpha_g - \frac{3}{4} \left(N_c - \frac{8}{N_c} + \frac{3}{N_c^2} \right) \alpha_g^2 \\ \Lambda \frac{dg_{V1}}{d\Lambda} &= 2g_{V1} - (1/4)g_S^2 - g_S g_V - 3g_{V1}^2 - N_f g_S g_{V2} + 2(N_c + N_f)g_V g_{V1} \\ &+ 2(N_c N_f + 1)g_{V1}g_{V2} + \frac{6}{N_c} g_{V1} \alpha_g + \frac{3}{4} \left(1 + \frac{3}{N_c^2} \right) \alpha_g^2 \\ \Lambda \frac{dg_{V2}}{d\Lambda} &= 2g_{V2} - 3g_V^2 - N_c N_f g_{V1}^2 + (N_c N_f - 2)g_{V2}^2 - N_f g_S g_{V1} \\ &+ 2(N_c N_f + 1)g_V g_{V2} + 6(g_V + g_{V2}) \alpha_g - \frac{3}{4} \left(3 + \frac{1}{N_c^2} \right) \alpha_g^2 \end{split}$$

Loop corrections for the four-fermi operators

• Large Nc, Nf limit $(r = N_f/N_c : \text{fixed})$

rescale as $N_c g_{S(V)} \rightarrow g_{S(V)}, N_c^2 g_{V1(V2)} \rightarrow g_{V1(V2)},$ $N_c \alpha_g \rightarrow \alpha_g$

$$\Lambda \frac{dg_S}{d\Lambda} = 2g_S - 2g_S^2 + 2rg_S g_V - 6g_S \alpha_g - \frac{9}{2}\alpha_g^2$$
$$\Lambda \frac{dg_V}{d\Lambda} = 2g_V + \frac{r}{4}g_S^2 + (1+r)g_V^2 - \frac{3}{4}\alpha_g^2$$

- Note: Four-fermi couplings gv1, gv2 do not involve in the large Nc and Nf limit.
- Note: The large Nc corrections contain only the ladder diagrams. But the non-ladder ones come through the large Nf part.

Gauge coupling

- We use the perturbative 2-loop beta function in the large N_c, N_f limit and add a part of higher order corrections via the four-fermi effective couplings.
- Vertex correction : H.Gies, J.Jackel, C.Wetterich, PRD69 (2004) We discard all vertex corrections with the four-fermi couplings, since the gauge symmetry should forbid them.
- 2. Vacuum polarization :

The higher order corrections via four-fermi effective operators should be incorporated into the vacuum polarization.

$$\beta_g^{[2]} = -\frac{2}{3}(11 - 2r)\alpha_g^2 - \frac{2}{3}(34 - 13r)\alpha_g^3$$

 $2rg_V \alpha_a^2$

$$(3r)\alpha_g^3$$
 $(3r)\alpha_g^3$

Aspect of RG flows

Numerical analysis of the flow equations

RG flows in large Nc and Nf

RG flows are given in 3 dimensional coupling space of (α_g, g_V, g_S) .

Fixed points in the conformal window

- A UV fixed point exists as well as the IR fixed point.
- The UV fixed point and the IR fixed point merge with each other at r = 4.05.

RG flows in (gs, gv) space

One linear combination of gs and gv gives the relevant operator, which induces the chiral phase transition.

Aspect of RG flows

RG flows in the 3D space

- There is the phase boundary of chiral symmetry and the UV fixed point lies on the boundary.
- Flows in the unbroken phase approach towards the IR fixed point.
- The phase boundary disappears for r < 4.05 and the entire region becomes the broken phase.

"Non-perturbative" gauge beta functions

Gauge beta functions

- We define the non-perturbative gauge beta function by scale transformation of the gauge coupling on the RTs.
- A UV fixed point appears in the gauge beta function due to higher order corrections via four-fermi operators.

"Conformality lost"

- The IR fixed point merges with the UV fixed point at the edge of conformal window.
- Fermion mass generation

Miransky scaling

$$m_f \sim M e^{-\frac{C}{\sqrt{N_{\rm cr} - N_f}}} \quad N_f \leq N_{\rm cr}$$

D.B. Kaplan, J-W. Lee, D.T. Son, M.A. Stephanov, PRD80 (2009) J. Braun, H. Gies, JHEP 1005 (2010)

"Non-perturbative" gauge beta functions

"Conformality lost"

D.B. Kaplan, J-W. Lee, D.T. Son, M.A. Stephanov, PRD80 (2009)

BKT type phase transition

Suppose that a UV fixed point and an IR fixed point merge. The beta function with an external parameter α is given as $\beta(g; \alpha) = \mu \frac{dg}{d\mu} = (\alpha - \alpha_*) - (g - g_*)^2$ Then the fixed point couplings are $g_{\pm} = g_* \pm \sqrt{\alpha - \alpha_*}$

For
$$\alpha = \alpha_* - \epsilon$$

$$\frac{\Lambda_{\rm IR}}{\Lambda_{\rm UV}} = \exp\left(\int_{g_{\rm UV}}^{g_{\rm IR}} \frac{dg}{\beta(g;\alpha)}\right)$$
$$\simeq \exp\left(-\frac{\pi}{\sqrt{\alpha_* - \alpha}}\right)$$

More on the RT

Near upper bound of the conformal window

Perturbative RT

- We may extract the RT by solving the truncated RG flow equations in perturbative expansion.
- This survives for $N_f > (11/2)N_c$.
- This "RT" does not seem to give a continuum limit.

Non-perturbative RT = QCD*

- The flow steming from the UV fixed point gives a continuum limit. This RT defines a different theory from the ordinary QCD !.
 (non-perturbative renormalizable or asymptotically safe theory)
- \Rightarrow Two "renormalized trajectories"?

Summary and discussions

- We extended the RG flow equations for the gauge couplings so as to include "non-perturbative" corrections via the effective four-fermi operators.
- We analyzed the RG flows in large Nc, Nf limit and found the non-perturbative RT transforms smoothly to the continuum limit of the asymptotically free gauge theories.
- We gave the non-perturbative gauge beta functions by scale transformation on the RT, which shows merge of the UV and the IR fixed points. > manifestation of ``Conformality Lost''.

Future issues

- Derivation of the RG flow equation for the gauge coupling including the four-fermi couplings from the Wetterich equation.
- Evaluation of the chiral order parameters near conformal regime.
- Relation to the supersymmetric conformal gauge theories.

Many Thanks

Invariant four-fermi operators

 $\psi_L^{ai} = L^{ai}, \psi_R^{ai} = R^{ai} \ (a = 1, \cdots, N_c)$ Apparent invariants $(i=1,\cdots,N_f)$ $2\bar{L}_{ai}\gamma^{\mu}L^{ai}\bar{R}_{bj}\gamma_{\mu}R^{bj} = \frac{1}{2}\left[(\bar{\psi}_{ai}\gamma^{\mu}\psi^{ai})^2 - (\bar{\psi}_{ai}\gamma^{\mu}\gamma_5\psi^{ai})^2\right]$ $2\bar{L}_{ai}\gamma^{\mu}L^{bi}\bar{R}_{bj}\gamma_{\mu}R^{aj} = \frac{1}{2}\left[\bar{\psi}_{ai}\gamma^{\mu}\psi^{bi}\bar{\psi}_{bj}\gamma_{\mu}\psi^{aj} - \bar{\psi}_{ai}\gamma^{\mu}\gamma_{5}\psi^{bi}\bar{\psi}_{bj}\gamma_{\mu}\gamma_{5}\psi^{aj}\right]$ $\bar{L}_{ai}\gamma^{\mu}L^{ai}\bar{L}_{bj}\gamma_{\mu}L^{bj} + (L\leftrightarrow R) = \frac{1}{2}\left[(\bar{\psi}_{ai}\gamma^{\mu}\psi^{ai})^2 + (\bar{\psi}_{ai}\gamma^{\mu}\gamma_5\psi^{ai})^2\right]$ $\bar{L}_{ai}\gamma^{\mu}L^{bi}\bar{L}_{bj}\gamma_{\mu}L^{aj} + (L\leftrightarrow R)$ $=\frac{1}{2}\left[\bar{\psi}_{ai}\gamma^{\mu}\psi^{bi}\bar{\psi}_{bj}\gamma_{\mu}\psi^{aj}+\bar{\psi}_{ai}\gamma^{\mu}\gamma_{5}\psi^{bi}\bar{\psi}_{bj}\gamma_{\mu}\gamma_{5}\psi^{aj}\right]$ $\bar{L}_{ai}\gamma^{\mu}L^{aj}\bar{L}_{bi}\gamma_{\mu}L^{bi} + (L\leftrightarrow R)$ $=\frac{1}{2}\left[\bar{\psi}_{ai}\gamma^{\mu}\psi^{aj}\bar{\psi}_{bj}\gamma_{\mu}\psi^{ai}+\bar{\psi}_{ai}\gamma^{\mu}\gamma_{5}\psi^{aj}\bar{\psi}_{bj}\gamma_{\mu}\gamma_{5}\psi^{bi}\right]$ $\bar{L}_{ai}\gamma^{\mu}L^{bj}\bar{L}_{bj}\gamma_{\mu}L^{ai} + (L \leftrightarrow R)$ $=\frac{1}{2}\left[\bar{\psi}_{ai}\gamma^{\mu}\psi^{bj}\bar{\psi}_{bj}\gamma_{\mu}\psi^{ai}+\bar{\psi}_{ai}\gamma^{\mu}\gamma_{5}\psi^{bj}\bar{\psi}_{bj}\gamma_{\mu}\gamma_{5}\psi^{ai}\right]$ 19

Fiertz identities

$$\begin{split} \bar{\psi}_{1}\gamma^{\mu}\psi_{2} \ \bar{\psi}_{3}\gamma_{\mu}\psi_{4} + \bar{\psi}_{1}\gamma^{\mu}\gamma_{5}\psi_{2} \ \bar{\psi}_{3}\gamma_{\mu}\gamma_{5}\psi_{4} \\ = \ \bar{\psi}_{1}\gamma^{\mu}\psi_{4} \ \bar{\psi}_{3}\gamma_{\mu}\psi_{2} + \bar{\psi}_{1}\gamma^{\mu}\gamma_{5}\psi_{4} \ \bar{\psi}_{3}\gamma_{\mu}\gamma_{5}\psi_{2} \\ \bar{\psi}_{1}\psi_{2} \ \bar{\psi}_{3}\psi_{4} - \bar{\psi}_{1}\gamma_{5}\psi_{2} \ \bar{\psi}_{3}\gamma_{5}\psi_{4} \\ = \ -\frac{1}{2} \left[\bar{\psi}_{1}\gamma^{\mu}\psi_{4} \ \bar{\psi}_{3}\gamma_{\mu}\psi_{2} - \bar{\psi}_{1}\gamma^{\mu}\gamma_{5}\psi_{4} \ \bar{\psi}_{3}\gamma_{\mu}\gamma_{5}\psi_{2} \right] \end{split}$$

Current-current interactions

$$2\sum_{A=1}^{\dim G} (T^{A})_{d}^{a} (T^{A})_{b}^{c} = \delta_{b}^{a} \delta_{d}^{c} - \frac{1}{N_{c}} \delta_{d}^{a} \delta_{b}^{c}$$

$$2\sum_{A} \bar{L}_{i} T^{A} \gamma^{\mu} L^{i} \bar{R}_{j} T^{A} \gamma_{\mu} R^{j} = -\mathcal{O}_{S} - \frac{1}{2N_{c}} \mathcal{O}_{V1}$$

$$\sum_{A} \bar{L}_{i} T^{A} \gamma^{\mu} L^{i} \bar{L}_{j} T^{A} \gamma_{\mu} L^{j} + (L \leftrightarrow R) = \frac{1}{2} \mathcal{O}_{V} - \frac{1}{2N_{c}} \mathcal{O}_{V2}$$

$$\sum_{A} \bar{L}_{i} T^{A} \gamma^{\mu} L^{j} \bar{L}_{j} T^{A} \gamma_{\mu} L^{i} + (L \leftrightarrow R) = \frac{1}{2} \mathcal{O}_{V2} - \frac{1}{2N_{c}} \mathcal{O}_{V}$$

$$20$$

Higher order correction to the vacuum polarization

- Here we consider to take in the abelian gauge type corrections, which are partly given as corrections via effective four-fermi operators.
- In the large Nc limit, the four-fermi operator Ov is generated.

For the 3-loop correction, the induced coupling is given by

$$G_V = -\frac{3N_c}{16}\alpha_g^2$$

In large Nc, the induced effective operator is represented as

$$\mathcal{L}_{\text{eff}} \simeq \frac{2G_V}{\Lambda^2} \left[\bar{L}_i \gamma^{\mu} T^A L^i \bar{L}_j \gamma_{\mu} T^A L^j + (L \leftrightarrow R) \right]$$

Therefore it may be regarded as a 2-loop correction with the effective coupling.

Modification of the 2-loop beta function

We may evaluate divergence in the effectively 2-loop vacuum polarization as

$$\Pi_{\mu\nu}(q) = -N_f \left[\frac{4}{3}\alpha_g + 2\alpha_g^2 + \alpha_g g_V\right] \log \Lambda \left(q^2 g_{\mu\nu} - q_\mu q_\nu\right)$$

Eventually we may incorporate the higher order corrections via the four-fermi operator in the 2-loop gauge beta function as

$$\beta_g = \Lambda \frac{d\alpha_g}{d\Lambda} = \eta_A \alpha_g$$

$$\eta_A = -2b_0 - 2b_1 \alpha_g^2 + 2N_f \alpha_g g_V$$

Anomalous dimensions

ullet Dimension of $ar{\psi}\psi\,$ at the fixed points

23