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Random field Ising model (RFIM)

•prototypical model in theory of ‶disordered systems″

with quenched random field (e.g., Gaussian): h(x) = 0, h(x)h(y) = ∆B δ(d)(x− y)

•Generic difficulties:
✴Due to quenched disorder (h), loose translational invariance

Way out: average over disorder, but what ?, how ?

✴Presence of many ‶metastable states″

=>Partition function:

Sh[φ] = SB [φ]−
∫

x
h(x)φ(x); SB =

∫
ddx

{
1

2
(∂µφ(x))

2 +
τ

2
φ(x)2 +

u

4!
φ(x)4

}

Zh[J ] = eWh[J] =

∫
Dφ e−Sh[φ]+

∫
x J(x)φ(x)



Average over the disorder
[‶self-averaging″, ‶replica trick″, etc]

•           is a random functional of the source =>

✴ in principle, needs its whole probability distribution

✴ or equivalently, the infinite set of its cumulants:

•Crucial to get the full functional dependence (physics of 
disordered systems at T=0 may involve nonanalytic 
dependence in the arguments). However, usually, only the 
cumulants at equal arguments are considered.

W1[J ] = Wh[J ], W2[J1, J2] = Wh[J1]Wh[J2]|c, · · ·

Wh[J ]



Metastable states

δSB [φ]

δφ(x)
= h(x) + J(x)

•Many minima of the bare action in the region of interest:
At small ΔB, low T, the stochastic field equation (SFE)

has many solutions.

Focus on the critical behavior of the RFIM
Known: 

Yet, many puzzles, e.g. problem of ‶dimensional reduction″

✴ Existence of a Z2 symmetry breaking transition for d>2
✴ Critical behavior associated with a zero-temperature 

fixed point (can directly work at T=0)
✴ For a given h realization, the ground state is unique

•What is their effect on the long-distance properties ?
Also known to go with slow relaxation, hysteresis and ‶glassiness″



•At T=0, generating functional of the correlation functions:

If unique solution of SFE, usual manipulations: 
Introduce auxiliary fields                               , then average over disorder;
Introduce a superspace with 2 Grassmann coordinates                       ,
a superLaplacian                                        ,
a superfield                                                                         , super-etc...

•Generating functional obtained from a superfield theory

•Invariant under SUSY (super-rotations in superspace)
=> leads to ‶dimensional reduction″: RFIM in d dim. is 
equivalent to pure theory in d-2. Beautiful, but wrong!!

x = (x, θ, θ)

Φ(x) = φ(x) + θψ(x) + ψ(x)θ + θθφ̂(x)

φ̂(x), ψ(x), ψ(x)

∆SS = ∂2
µ +∆B∂θ∂θ

Parisi-Sourlas supersymmetric approach

Zh[J, Ĵ ] =

∫
Dφ δ

[δSB [φ]

δφ
− h− J

]∣∣∣∣
δ2SB [φ]

δφδφ

∣∣∣∣ e
∫
x Ĵ(x)φ(x)

SSUSY [Φ] =

∫

x

{
− 1

2
Φ(x)∆SSΦ(x) +

τ

2
Φ(x)2 +

u

4!
Φ(x)4

}



•Start the RG flow with a ‶regularized″ stochastic field 
equation having a unique solution.

•Select with high probability the ground state at the running 
IR scale k among the solutions if several of them.

•Describe full functional dependence of cumulants of 
renormalized disorder and allow for nonanalytical 
dependence on their arguments.

•Use a nonperturbative truncation and be able to recover 
dimensional reduction if it has a range of validity.

=> NP-FRG in a superfield setting

Program for RG study of RFIM
[Search for proper T=0 (critical) fixed point]



Superfield formalism for the RFIM

•Several copies+weighting factor => Generating functional:

Average over disorder generates cumulants with full functional dependence:

• Introduce superfields and (‶curved″) Grassmannian space

=>

Zh[{Ja, Ĵa}] =
∏

a

eWh[Ja,Ĵa] = e
∑

a Wh[Ja,Ĵa]+ 1
2

∑
ab Wh[Ja,Ĵa]Wh[Jb,Ĵb]|c+···

S1 =

∫

x

[
1

2

(
∂µΦa(θ, x)

)2
+ UB(Φa(θ, x)

]
; S2 =

∫

x
∆B Φa(θ1, x)Φb(θ2, x)

Φ(θ) = φ+ θψ + ψθ + θθφ̂ ;

∫

θ
=

∫ ∫
dθdθ(1 + βθθ)

Zh[{Ja, Ĵa}] =
∏

a

∫
Dφa δ

[δSB [φa]
δφa

− h− Ja

] ∣∣∣∣
δ2SB [φa]
δφaδφa

∣∣∣∣

×e−β
(
SB [φa]−

R
x[h(x)+Ja(x)]φa(x)

)
e

R
x Ĵa(x)φa(x)

S[{Φa}] =
∑

a

∫

θ
S1[Φa(θ)]− 1

2

∑

ab

∫ ∫

θ1θ2

S2[Φa(θ1),Φa(θ2)]



Superfield formalism (contnd.)

• Add coupling to supersources                                      ->

+ Legendre transform -> Effective action 

• Action is invariant under a large group of symmetries and 
supersymmetries (Sn between copies, global Z2 and Euclidean translations 
+ rotations, isometries of the curved Grassmann subspace copy by copy)

• Additional properties:
✴If a unique solution is included in the partition function
✴=> joint expansion (ultra-locality in Grassmann subspace):

✴In addition, for supersources that reduce the theory to a 1-copy 
problem AND for β=0: invariance under superrotations 

=> Ward-Takahashi identities

Γ[{Φa}]
W[{Ia}]

∑

a

∫

θ,x
Ia(θ, x)Φa(θ, x)

W[{Ia}] =
∑

a

∫

θ
W1[Ia(θ)] +

1

2

∑

ab

∫ ∫

θ1θ2

W2[Ia(θ1), Ib(θ2)] + · · ·



NP-FRG in superfield formalism

• Add an IR regulator to the action:

• ERGE for the effective average action at scale k:

• If at scale k, the stoch. field eq. has a unique solution or if for large 
enough β, one only selects the ground state (occasional errors will 
lead to subdominant terms... another story!): then, joint expansion

∆Sk[{Φa}] =
1

2

∑

ab

∫

x1

∫

x2

Φa(x1)Rk,ab(x1, x2)Φb(x2)

∂kΓk[{Φa}] =
1

2

∑

ab

∫

x1

∫

x2

∂kRk,ab(x1, x2)(Γ
(2)
k [{Φa}] +Rk)

−1
(b,x2)(a,x1)

Γk[{Φa}] =
∑

a

∫

θ
Γk,1[Φa(θ)]−

1

2

∑

ab

∫

θ1

∫

θ2

Γk,2[Φa(θ1),Φb(θ2)] + ...

: suppresses fluctuations of ϕ field and random fieldRk,ab(x1, x2) = δθ1,θ2
R̂k(q

2) + R̃k(q
2)



NP-FRG and SUSY breaking
• ERGE+joint expansion => hierarchy of ERGE’s for the cumulants

!!!!!!  The auxiliary parameter β drops out of the flow equations  !!!!!!

• As a result, superrotation invariance for 1 copy is a priori preserved 
along the RG flow: Can show that it leads (nonperturbatively) to 
dimensional reduction.

• What can go wrong ?
✴ Spontaneous breaking of superrotation invariance: 

some 1PI vertex blows up when copy fields become equal.
✴ Dimension reduction is broken when a cusp

appears at a finite scale kL

∂tΓk1[φ] =
1

2
∂̃t Tr

{[
Γ(2)
k1 [φ] + R̂k

]−1[
Γ(11)
k2 [φ,φ]− R̃k

]}

∂tΓk2[φ1,φ2] = · · ·
[t = ln(k/Λ)]

asΓ(11)
k,2 (ϕ1,ϕ2)− Γ(11)

k,2 (ϕ1,ϕ1) ∼ |ϕ2 − ϕ1| ϕ2 → ϕ1



SUSY-compatible approximation and RG flow

•Ansatz for effective average action:

+ Regulator:

• Introduce scaling dimensions for T=0 fixed point (critical):

• If no linear cusp in              , then                             (Ward id.)
•and exact dim. reduction follows: found for d > dDR ≃ 5.15

ηk = −∂tZk

η̄k = 2ηk + ∂t∆k

Γk1[φ] =

∫

x

[
Uk(φ(x)) +

1

2
Zk(φ(x))(∂µφ(x))

2
]

Γk2[φ1,φ2] =

∫

x
Vk(φ1(x),φ2(x)), Γk,p>2 = 0

R̂k = Zkk
2 r(q2/k2), R̃k = −(∆k/Zk)∂q2R̂(q2)

[ SUSY Ward identity: Δk=ΔB Zk ]

∂tu
′
k(ϕ) = · · ·

∂tzk(ϕ) = · · ·
∂tδk(ϕ1,ϕ2) = ∂tv

(11)
k (ϕ1,ϕ2) = · · ·

∂tδk(ϕ,ϕ) = ∂tzk(ϕ)δk(ϕ1,ϕ2)



Results

12

Dimensionless cumulant of disorder at fixed point in d=3
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Results: Critical exponents η and ῆ
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Breakdown from dim. red. appears continuously in dimension d
•Dim. reduction:
•Pending speculation:                         wrong!

η̄ = η
η̄ = 2 η

no dim. red.
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Results: Critical exponents η and ῆ
(contnd.)
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To go to low dimension (d≲4), need optimization of cut-off 
(versus stability of results)
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•NP-FRG in a superfield setting 
•= useful formalism for dealing with long-distance 

behavior in (some) disordered systems and solutions of 
(some ?) stochastic field equations.

•It solves the 30-year-old pending problems concerning 
the critical behavior in random field systems.

•It can be generalized to treat excitations (droplets) and 
the effect of temperature, out-of-equibrium criticality in 
hysteresis behavior, dynamics.

Conclusion



Region IV:       Weak non-analyticity (at fixed pt.); dim. red. predictions O.K.

Regions I and II:     Spontaneous SUSY breaking at finite RG scale; 

cusp in renormalized second cumulant; breakdown of dim. red.   (II: QLRO)

Region III:       No phase transition
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Results:N-d phase diagram of the RFO(N)M


