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Outline

✔ On-shell gluon scattering amplitudes

✔ Iterative structure at weak/strong coupling in N = 4 SYM

✔ Dual conformal invariance – hidden symmetry of planar amplitudes

✔ Maximally helicity violating (MHV) scattering amplitude/Wilson loop duality in N = 4 SYM
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✔ Correlation function/Scattering amplitude/Wilson loop triality in N = 4 SYM
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Why is N = 4 super Yang-Mills theory interesting?

✔ Four-dimensional gauge theory with extended spectrum of physical states/symmetries

2 gluons with helicity ± 1 , 6 scalars with helicity 0 , 8 gauginos with helicity ± 1

2

all in the adjoint of the SU(Nc) gauge group

✔ Classical symmetries survive at the quantum level:

✗ β-function vanishes to all loops =⇒ the theory is (super)conformal

✗ Only two free parameters: ’t Hooft coupling λ = g2YMNc and number of colors Nc

✔ Why is N = 4 SYM fascinating?

✗ At weak coupling, LN=4 is more complicated than LQCD , the number of Feynman integrals
contributing to amplitudes is MUCH bigger compared to QCD ... but the final answer is
MUCH simpler (examples to follow)

✗ At strong coupling, the conjectured AdS/CFT correspondence [Maldacena],[Gubser,Klebanov,Polyakov],[Witten]

Strongly coupled planar N = 4 SYM ⇐⇒ Weakly coupled string theory on AdS5 × S5

✗ Final goal (dream or reality?):

N = 4 SYM is the unique example of a four-dimensional gauge theory that can be/ should
be/ will be solved exactly for arbitrary values of the coupling !!!
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Why scattering amplitudes?

. . .

An = S

1

2

n

✔ On-shell matrix elements of S−matrix:

✗ Probe (hidden) symmetries of gauge theory

✗ Are independent of gauge choice

✗ Nontrivial functions of Mandelstam’s variables sij = (pi + pj)
2

✔ Simpler than QCD amplitudes but they share many properties

✔ In planar N = 4 SYM they have a remarkable structure

✔ All-order conjectures and a proposal for strong coupling via AdS/CFT

✔ New dynamical symmetry: dual superconformal invariance ⇒ Yangian ⇒ integrability?

✔ Recently discovered recursive structure of the loop intgerlas
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On-shell gluon scattering amplitudes in N = 4 SYM

✔ Gluon scattering amplitudes in N = 4 SYM

. . .

An = S

1

2

n

✗ Quantum numbers of on-shell gluons |i〉 = |pi, hi, ai〉:
momentum ((pµi )

2 = 0), helicity (h = ±1), color (a)

✗ Suffer from IR divergences 7→ require IR regularization

✗ Close cousins of QCD gluon amplitudes

✔ Color-ordered planar partial amplitudes

An = tr
[

Ta1Ta2 . . . Tan
]

Ah1,h2,...,hn
n (p1, p2, . . . , pn) + [Bose symmetry]

✗ Color-ordered amplitudes are classified according to their helicity content hi = ±1

✗ Supersymmetry relations:

A++...+ = A−+...+ = 0 , A(MHV) = A−−+...+ , A(next−to−MHV) = A−−−+...+ , . . .

✗ The n = 4 and n = 5 planar gluon amplitudes are all MHV

{A++−−
4 , A+−+−

4 , . . .} , {A+++−−
5 , A+−+−−

5 , . . .}

✗ Weak/strong coupling corrections to all MHV amplitudes are described by a single function of
the ’t Hooft coupling and kinematical invariants! [Parke,Taylor]
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Four-gluon amplitude in N = 4 SYM at weak coupling

M4(s, t) ≡ A4/A(tree)
4 = 1+a

1

2 3

4

+O(a2) , a =
g2YMNc

8π2
, s = (p1+p2)

2 , t = (p3+p4)
2

All-order planar amplitudes can be split into (universal) IR divergent and (nontrivial) finite part

M4(s, t) = Div(s, t, ǫIR)Fin(s/t)

✔ IR divergences appear at all loops as poles in ǫIR (in dimreg with D = 4− 2ǫIR )

✔ IR divergences exponentiate (in any gauge theory!)

Div(s, t, ǫIR) = exp

{

−1

2

∞
∑

l=1

al

(

Γ
(l)
cusp

(lǫIR)2
+

G(l)

lǫIR

)

[

(−s/µ2)lǫIR + (−t/µ2)lǫIR
]

}

✔ IR divergences are in one-to-one correspondence with UV divergences of cusped Wilson loops

Γcusp(a) =
∑

l a
lΓ

(l)
cusp = cusp anomalous dimension of Wilson loops

G(a) =
∑

l a
lG

(l)
cusp = collinear anomalous dimension

✔ What about the finite part of the amplitude Fin(s/t)? Does it have a simple structure?

FinQCD(s/t) = [4 pages long mess] , FinN=4(s/t) = BDS conjecture
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Finite part of four-gluon amplitude in QCD at two loops

FinQCD
(2)(s, t, u) = A(x, y, z)+O(1/N2

c , nf/Nc) [Glover,Oleari,Tejeda-Yeomans’01]

with notations x = − t
s

, y = −u
s

, z = −u
t

, X = log x, Y = log y, S = log z

A =
{(

48 Li4(x)−48 Li4(y)−128 Li4(z)+40 Li3(x)X−64 Li3(x) Y −

98
3

Li3(x)+64 Li3(y)X−40 Li3(y)Y +18 Li3(y)

+ 98
3

Li2(x)X−

16
3

Li2(x)π2
−18 Li2(y)Y −

37
6

X4+28X3 Y −

23
3

X3
−16X2 Y 2+ 49

3
X2 Y −

35
3

X2 π2
−

38
3

X2

−

22
3

S X2
−

20
3

X Y 3
−9X Y 2+8X Y π2+10X Y −

31
12

X π2
−22 ζ3 X+22

3
S X+37

27
X+11

6
Y 4

−

41
9

Y 3
−

11
3

Y 2 π2

−

22
3

S Y 2+ 266
9

Y 2
−

35
12

Y π2+ 418
9

S Y +257
9

Y +18 ζ3 Y −

31
30

π4
−

11
9

S π2+ 31
9

π2+ 242
9

S2+ 418
9

ζ3+ 2156
27

S

−

11093
81

−8S ζ3

)

t2

s2
+

(

−256 Li4(x)−96 Li4(y)+96 Li4(z)+80 Li3(x)X+48Li3(x)Y −

64
3

Li3(x)−48 Li3(y)X

+96 Li3(y)Y −

304
3

Li3(y)+ 64
3

Li2(x)X−

32
3

Li2(x)π2+ 304
3

Li2(y)Y +26
3

X4
−

64
3

X3 Y −

64
3

X3+20X2 Y 2

+ 136
3

X2 Y +24X2 π2+76X2
−

88
3

S X2+ 8
3

X Y 3+ 104
3

X Y 2
−

16
3

X Y π2+ 176
3

S X Y −

136
3

X Y −

50
3

X π2

−48 ζ3 X+2350
27

X+440
3

S X+4 Y 4
−

176
9

Y 3+ 4
3

Y 2 π2
−

176
3

S Y 2
−

494
9

Y π2+ 5392
27

Y −64 ζ3 Y +496
45

π4

−

308
9

S π2+ 200
9

π2+ 968
9

S2+ 8624
27

S−

44372
81

+ 1864
9

ζ3−32S ζ3

)

t
u

+

(

88
3

Li3(x)− 88
3

Li2(x)X+2X4
−8X3 Y

−

220
9

X3+12X2 Y 2+ 88
3

X2 Y +8
3

X2 π2
−

88
3

S X2+ 304
9

X2
−8X Y 3

−

16
3

X Y π2+ 176
3

S X Y −

77
3

X π2

+ 1616
27

X+968
9

S X−8 ζ3 X+4Y 4
−

176
9

Y 3
−

20
3

Y 2 π2
−

176
3

S Y 2
−

638
9

Y π2
−16 ζ3 Y +5392

27
Y −

4
15

π4
−

308
9

S π2

−20π2
−32S ζ3+ 1408

9
ζ3+ 968

9
S2

−

44372
81

+ 8624
27

S

)

t2

u2 +

(

44
3

Li3(x)− 44
3

Li2(x)X−X4+ 110
9

X3
−

22
3

X2 Y

+14
3

X2 π2+ 44
3

S X2
−

152
9

X2
−10X Y +11

2
X π2+4 ζ3 X−

484
9

S X−

808
27

X+ 7
30

π4
−

31
9

π2

+ 11
9

S π2
−

418
9

ζ3−

242
9

S2
−

2156
27

S+8S ζ3+ 11093
81

)

ut
s2

+

(

−176 Li4(x)+88 Li3(x)X−168 Li3(x) Y −...
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Four-gluon amplitude in N = 4 SYM at weak coupling II

✔ Bern-Dixon-Smirnov (BDS) conjecture:

Fin4(s/t) = 1 +
a

2
ln2 (s/t) +O(a2)

all loops
=⇒ exp

[

1
4
Γcusp(a) ln

2 (s/t)
]

✗ Compared to QCD,

(i) the complicated functions of s/t are replaced by the elementary function ln2(s/t);

(ii) the coefficient of ln2(s/t) is determined by the cusp anomalous dimension Γcusp(a) just
like the coefficient of the double IR pole.

✗ The conjecture has been verified up to three loops

✗ A similar conjecture exists for n-gluon MHV amplitudes

✗ It has been confirmed for n = 5 at two loops

✗ Agrees with the strong coupling prediction from the AdS/CFT correspondence [Alday,Maldacena]

✔ Surprising features of the finite part of the MHV amplitudes in planar N = 4 SYM:

Why should finite corrections exponentiate? And be related to the cusp anomaly of Wilson
loops?
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Dual conformal symmetry

Examine one-loop ‘scalar box’ diagram

✔ Change variables to go to a dual ‘coordinate space’ picture (not a Fourier transform!)

p1 = x1 − x2 ≡ x12 , p2 = x23 , p3 = x34 , p4 = x41 , k = x10

p1

p2 p3

p4
x1

x2

x3

x4x0
=

∫

d4k (p1 + p2)2(p2 + p3)2

k2(k − p1)2(k − p1 − p2)2(k + p4)2
=

∫

d4x0 x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

Check conformal invariance by inversion xµ
i → xµ

i /x
2
i

[Broadhurst],[Drummond,Henn,Smirnov,ES]

✔ The integral is invariant under SO(2, 4) conformal transformations in dual space!

✔ This symmetry is not related to the SO(2, 4) conformal symmetry of N = 4 SYM

✔ All scalar integrals contributing to A4 up to 4 loops are dual conformal! [Bern,Czakon,Dixon,Kosower,Smirnov]

✔ The dual conformal symmetry allows us to determine four- and five-gluon planar scattering
amplitudes to all loops! [Drummond,Henn,Korchemsky,ES],[Alday,Maldacena]

✔ Dual conformality is “slightly" broken by the infrared regulator: d4x ⇒ d4−2ǫx

✔ For planar integrals only!
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From gluon amplitudes to Wilson loops

Properties of gluon scattering amplitudes in N = 4 SYM:

(1) IR divergences of M4 exactly match UV divergences of cusped Wilson loops

(2) Perturbative corrections to M4 possess a hidden dual conformal symmetry

☞ Is it possible to find an N = 4 SYM object for which both properties are manifest ?

Yes! The expectation value of a light-like Wilson loop in N = 4 SYM [Alday,Maldacena], [DHKS]

W (C4) =
1

Nc

〈0|TrP exp

(

ig

∮

C4

dxµAµ(x)

)

|0〉 , C4 =

x1

x2 x3

x4

✔ Gauge invariant functional of the integration contour C4 in Minkowski space-time

✔ The contour is made out of 4 light-like segments C4 = ℓ1 ∪ ℓ2 ∪ ℓ3 ∪ ℓ4 joining the cusp points xµ
i

xµ
i − xµ

i+1 = pµi = on-shell gluon momenta

✔ The contour C4 has four light-like cusps 7→ W (C4) has UV divergences

✔ Conformal symmetry of N = 4 SYM 7→ conformal invariance of W (C4) in dual coordinates xµ
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Cusp anomalous dimension

✔ Cusp anomaly is a very ‘unfortunate’ feature of Wilson loops evaluated on a Euclidean closed
contour with a cusp – generates an anomalous dimension [Polyakov’80]

〈trP exp

(

i

∮

C

dx ·A(x)

)

〉 ∼ (ΛUV)Γcusp(g,ϑ) , C =

ϑ

✔ A very ‘fortunate’ property of Wilson loops – the cusp anomaly controls the infrared asymptotics
of scattering amplitudes in gauge theories [Korchemsky, Radyushkin’86]

✗ The integration contour C is defined by the particle momenta

✗ The cusp angle ϑ is related to the scattering angles in Minkowski space-time, |ϑ| ≫ 1

Γcusp(g, ϑ) = ϑΓcusp(g) +O(ϑ0) ,

✔ The cusp anomalous dimension Γcusp(g) is an observable in gauge theories appearing in many
contexts:

✗ Logarithmic scaling of anomalous dimensions of high-spin Wilson operators;
✗ IR singularities of on-shell gluon scattering amplitudes;
✗ Gluon Regge trajectory;
✗ Sudakov asymptotics of elastic form factors;
✗ ...
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MHV scattering amplitudes/Wilson loop duality I

The one-loop expression for the light-like Wilson loop (with x2
jk

= (xj − xk)
2)

lnW (C4) =

x1 x1x1
x2 x2x2

x3 x3x3 x4 x4x4

=
g2

4π2
CF

{

− 1

ǫUV
2

[(

−x2
13µ

2
)ǫUV +

(

−x2
24µ

2
)ǫUV

]

+
1

2
ln2
(

x2
13

x2
24

)

+ const
}

+O(g4)

The one-loop expression for the gluon scattering amplitude

lnM4(s, t) =
g2

4π2
CF

{

− 1

ǫIR2

[

(

−s/µ2
IR

)ǫIR +
(

−t/µ2
IR

)ǫIR
]

+
1

2
ln2
( s

t

)

+ const
}

+O(g4)

✔ Identify the light-like segments with the on-shell gluon momenta xµ
i,i+1 ≡ xµ

i − xµ
i+1 := pµi :

x2
13 µ

2 := s/µ2
IR , x2

24 µ
2 := t/µ2

IR , x2
13/x

2
24 := s/t

☞ UV divergences of the light-like Wilson loop match IR divergences of the gluon amplitude

☞ the finite ∼ ln2(s/t) corrections coincide at one loop!
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MHV scattering amplitudes/Wilson loop duality II

Conjecture: MHV gluon amplitudes are dual to light-like Wilson loops

lnA4 = lnW (C4) +O(1/N2
c , ǫIR) .

✔ At strong coupling, the relation holds to leading order in 1/
√
λ [Alday,Maldacena]

✔ At weak coupling, the relation was verified at two loops [Drummond,Henn,Korchemsky,ES]

lnA4 = lnW (C4) =

































x3x2

x1
x4

































=
1

4
Γcusp(g) ln

2(s/t) + Div

✔ Generalization to n ≥ 5 gluon MHV amplitudes

lnA(MHV)
n = lnW (Cn) +O(1/N2

c ) , Cn = light-like n−(poly)gon

✗ At weak coupling, matches the n-gluon amplitude at one loop [Brandhuber,Heslop,Travaglini]

✗ The duality relation for n = 5 (pentagon) was verified at two loops [DHKS]
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Conformal Ward identities for light-like Wilson loops

Main idea: Make use of the conformal invariance of light-like Wilson loops in N = 4 SYM
+ duality relation to constrain the finite part of n−gluon amplitudes

✔ Conformal transformations map the light-like polygon Cn into another light-like polygon C′
n

✔ If the Wilson loop W (Cn) were well defined (=finite) in D = 4 dimensions, we would have

W (Cn)=W (C′
n)

✔ ... but W (Cn) has cusp UV singularities 7→ dimreg breaks conformal invariance

W (Cn) = W (C′
n)× [cusp anomaly]

✔ All-loop anomalous conformal Ward identities for the finite part of the Wilson loop

W (Cn) = exp(Fn)× [UV divergences]

Under dilatations, D, and special conformal transformations, Kµ, [DHKS]

DFn ≡
n
∑

i=1

(xi · ∂xi )Fn = 0

K
µ Fn ≡

n
∑

i=1

[

2xµ
i (xi · ∂xi )− x2

i ∂
µ
xi

]

Fn =
1

2
Γcusp(a)

n
∑

i=1

xµ
i,i+1 ln

( x2
i,i+2

x2
i−1,i+1

)

The same relations also hold at strong coupling [Alday,Maldacena],[Komargodski]
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Finite part of MHV amplitudes

Corollaries of the conformal WI for the finite part of the Wilson loop/ MHV scattering amplitudes:

✔ n = 4, 5 are special: there are no conformal invariants (too few distances due to x2
i,i+1 = 0 )

=⇒ the Ward identity has a unique all-loop solution (up to an additive constant)

F4 =
1

4
Γcusp(a) ln

2
(x2

13

x2
24

)

+ const ,

F5 = −1

8
Γcusp(a)

5
∑

i=1

ln
(x2

i,i+2

x2
i,i+3

)

ln
(x2

i+1,i+3

x2
i+2,i+4

)

+ const

Exactly the functional forms of the BDS ansatz for the 4- and 5-point MHV amplitudes!

✔ Starting from n = 6 there are conformal invariants in the form of cross-ratios, e.g.

u1 =
x2
13x

2
46

x2
14x

2
36

, u2 =
x2
24x

2
15

x2
25x

2
14

, u3 =
x2
35x

2
26

x2
36x

2
25

Hence the general solution of the Ward identity for W (Cn) with n ≥ 6 contains an arbitrary
function of the conformal cross-ratios.

✔ The BDS ansatz is a solution of the conformal Ward identity for arbitrary n but does it actually
work for n ≥ 6? [Alday, Maldacena] [Bartels, Lipatov, Sabio Vera]

✔ If not, what is the “remainder" function

R(u1, u2, u3) = lnM(MHV)
6 − lnM(BDS)

6
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Remainder function

✔ We computed the two-loop hexagon Wilson loop W (C6) ... [DHKS]

lnW (C6) =























x6

x5

x4x3

x2

x1

1 2 3 4 5 6 7

8

15 16 2119

18 13 14

1217 20

9 10 11























... and found a discrepancy lnW (C6) 6= lnM(BDS)
6

✔ Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich computed the 6-gluon 2-loop amplitude

M(MHV)
6 = + . . .

... and found a discrepancy lnM(MHV)
6 6= lnM(BDS)

6

☞ The BDS ansatz fails for n = 6 starting from two loops.

☞ ... but the Wilson loop/MHV amplitude duality still holds lnM(MHV)
6 = lnW (C6)
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All-order MHV superamplitude

✔ All MHV amplitudes can be combined into a single superamplitude

AMHV
n (p1, η1; . . . ; pn, ηn) = i(2π)4

δ(4)
(
∑n

i=1 pi
)

δ(8)
(
∑n

i=1 λ
α
i η

A
i

)

〈12〉〈23〉 . . . 〈n1〉 M
(MHV)
n ,

Here pαα̇
i = λα

i λ̃
α̇
i solves p2i = 0, and ηAi (A = 1 . . . 4) are Grassmann variables.

Helicity: h[λ] = 1/2, h[λ̃] = h[η] = −1/2

✗ Perturbative corrections to all MHV amplitudes are factorized into a universal factor M (MHV)
n

✗ The all-loop MHV amplitudes are the coefficients in the expansion of AMHV
n in powers of η’s

AMHV
n = (2π)4δ(4)

(

n
∑

i=1

pi
)

∑

1≤j<k≤n

(ηj)
4(ηk)

4A
(MHV)
n (1+... j−... k−... n+) + . . . ,

✗ The function M
(MHV)
n is dual to a light-like n−gon Wilson loop

lnM
(MHV)
n = lnWn +O(ǫ, 1/N2)

✔ The MHV superamplitude possesses a bigger, dual superconformal symmetry which acts on the
dual coordinates xµ

i and their superpartners θAiα [DHKS]

pµi = xµ
i − xµ

i+1 , λα
i ηi = θαi − θαi+1
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Dual superconformal invariance

✔ Tree-level MHV superamplitude (in the spinor formalism 〈ij〉 = λα
i λj a)

AMHV;tree
n = i(2π)4

δ(4)
(
∑n

i=1 pi
)

δ(8)
(
∑n

i=1 λ
α
i η

A
i

)

〈12〉〈23〉 . . . 〈n1〉

✔ The same amplitude in the dual superspace pµi = xµ
i − xµ

i+1 , λα
i ηi = θαi − θαi+1

AMHV;tree
n = i(2π)4

δ(4) (x1 − xn+1) δ(8)(θ1 − θn+1)

〈12〉〈23〉 . . . 〈n1〉

✔ Define inversions in the dual superspace

I[λα
i ] = (x−1

i )α̇βλiβ , I[θαA
i ] = (x−1

i )α̇βθAi β

Neighboring contractions are dual conformal covariant

I[〈i i+ 1〉] = (x2
i )

−1〈i i+ 1〉

✔ The tree-level MHV amplitude is covariant under dual conformal inversions

I
[

AMHV;tree
n

]

=
(

x2
1x

2
2 . . . x

2
n

)

×AMHV;tree
n

✔ Generalization: dual superconformal covariance is a property of all tree-level superampli-
tudes (MHV, NMHV, N2MHV, ...) in N = 4 SYM theory
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Triality correlators/Wilson loops/amplitudes in planar N = 4 SYM

✔ Three natural observables in a conformal gauge theory:

✗ Correlators of gauge inv. operators: Gn(xi) = 〈O(x1)O(x2) . . .O(xn)〉

✗ Light-like Wilson loops: W [Cn] =
1

Nc

〈0| tr P exp

(

i

∮

Cn

dx ·A(x)

)

|0〉

✗ Scattering amplitudes: An(pi) = 〈p1, p2, . . . , pn|S|0〉

✔ They seem to be related to each other in planar N = 4 SYM:

pi=xi,i+1

x2
i,i+1→0

Cn=p1∪...∪pn

Gn(xi) W [Cn]

AMHV
n (pi)

✗ The duality AMHV
n (pi) ↔ W [Cn] is well studied (but still not understood)

✗ The dualities AMHV
n ↔ Gn and Gn ↔ W [Cn] are new [Alday,Eden,Korchemsky,Maldacena,ES’10]

✗ Triality relation in planar N = 4 SYM
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Correlation functions

✔ Protected superconformal operators made from the 6 scalars φAB = 1
2
ǫABCDφ̄CD

O(x) = Tr(φ12φ12) , Õ(x) = Tr(φ̄12φ̄12) : 20
′ of SU(4)

Quantum conformal dimension = tree-level canonical dimension

Two- and three-point correlation functions do not receive quantum corrections

✔ Simplest non-trivial correlation function

G4 = 〈O(x1)Õ(x2)O(x3)Õ(x4)〉 =
N2

c

x2
12x

2
23x

2
34x

2
41

F(u, v; a)

Conformal cross-ratios

u =
x2
14x

2
23

x2
13x

2
24

, v =
x2
12x

2
34

x2
13x

2
24

The conformally invariant (coupling dependent) function F(u, v; a) is finite as long as xi 6= xj

The limit xi → xj corresponds to the standard OPE

✔ Novel limit: all neighboring points simultaneously become light-like separated

x2
i,i+1 → 0 , xi 6= xi+1 , (i = 1, . . . , n)
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Correlation functions on the light-cone

The light-cone limit of G4 is singular:

(i) For x2
i,i+1 → 0 the correlator develops pole singularities already at tree level

G
(tree)
4 ∼ N2

c

x2
12x

2
23x

2
34x

2
41

+ subleading terms

The way out – consider the ratio

F4 ≡ lim
x2
i,i+1→0

G4(xi)/G
(tree)
4 (xi)

(ii) Loop integrals develop additional light-cone singularities (cross-ratios vanish u, v → 0)

F4 = 1 + a
i

π2

∫

d4x0 x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

+ . . . = 1− a lnu ln v + . . . .

Leading divergent terms can be resummed to all loops

F4 ∼ exp

(

−1

2
Γcusp(a) lnu ln v

)

✔ Light-cone singularities need to be regularized
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Correlation functions on the light-cone II

✔ Two choices of regularization procedure:

✗ Use the small distances δ = x2
i,i+1 as a cutoff in D = 4 dimensions;

✗ Employ dimensional regularization with D = 4− 2ǫ and set x2
i,i+1 = 0 from the start

✔ One-loop calculation of the correlation function in dimreg for x2
i,i+1 = 0

[

Gn/G
(tree)
n

]

light−cone
=

n
∑

k>l=1

0

xl+1

xk xk+1

xl

✔ Result (xsk = xk − skxk,k+1; Dµν – gluon propagator in Landau gauge)

ln
[

Gn/G
(tree)
n

]

l.c.
= (ig)2Nc

∑

k>l

∫ 1

0
dsk

∫ 1

0
dsl x

µ
k,k+1x

ν
l,l+1Dµν(xsk,sl ) + . . . = 2 lnW [Cn]

Coincides with the one-loop expression for the light-like polygonal Wilson loop!
[

Gn/G
(tree)
n

]

l.c.
∝ (W [Cn])

2

The square comes from adjoint = (fundamental)2 of the gauge group
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From correlation functions to Wilson loops

✔ Correlation function on the light-cone

Gn →
∑

C

e−iL(C) 〈0|Tradj Pei
∮
C

dxµAµ(x)|0〉 , C =

x1 x2

x3xn . . .

Infinitely fast particle interacting with a slowly varying gauge field (for x2
i,i+1µ

2 ≪ 1 only!)

✔ The path-integral is dominated by the saddle point Cn = classical trajectory of a particle

Gn → G
(tree)
n × 〈0|Tradj Pe

i
∮
Cn

dxµAµ(x)|0〉 , Cn =

x1 x2

x3xn . . .

✔ All-loop result, valid in any gauge theory

lim
x2
i,i+1→0

(

Gn/G
(tree)
n

)

= Wadj[Cn] =
(

W [Cn]
)2

+O(1/N2
c )

W [Cn] satisfies anomalous conformal Ward identity −→ new results for light-cone asymptotics
of the correlation functions Gn!
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From correlation functions to amplitudes

New duality between integrands of correlators and amplitudes

✔ Correlation functions as path integrals

Gn =

∫

Dφ exp

{

i

g2

∫

d4x0LN=4(x0)

}

O(x1)Õ(x2) . . .O(xn−1)Õ(xn)

✔ Compute one-loop correction via Lagrangian insertion:

g2
∂

∂g2
Gn = −i

∫

d4x0〈L(x0)O(x1)Õ(x2) . . .O(xn−1)Õ(xn)〉tree +O(g4)

✔ Multiloop corrections ⇔ multiple Lagrangian insertions

✔ Example: four points at one loop

lim
x2
i,i+1→0

〈L(x0)O(x1)Õ(x2)O(x3)Õ(x4)〉tree
〈O(x1)Õ(x2)O(x3)Õ(x4)〉tree

=
x2
13x

2
24

x2
10x

2
20x

2
30x

2
40

⇔ (p1 + p2)2(p2 + p3)2

k2(k − p1)2(k − p1 − p2)2(k + p4)2

This is the integrand of the one-loop amplitude!

✔ New duality between conformal objects in four dimensions (no regularization!)

✔ Has been verified at one loop for arbitrary n and at two loops for n = 4, 5, 6

✔ New result: Complete agreement with the twistor construction of Arkani-Hamed et al
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Conclusions and recent developments

✔ MHV amplitudes in N = 4 theory

✗ possess dual conformal symmetry both at weak and at strong coupling

✗ Dual to light-like Wilson loops

... but what about NMHV, NNMHV, etc. amplitudes?

✔ This symmetry is part of a bigger dual superconformal symmetry of all planar tree-level
superamplitudes in N = 4 SYM [DHKS], [Brandhuber,Heslop,Travaglini]

✗ Relates various particle amplitudes with different helicity configurations (MHV, NMHV,...)
✗ Interesting twistor space structure [Witten’03], [Arkani-Hamed et al], [Hodges], [Mason,Skinner], [Korcemsky,ES]

✗ Broken by loop corrections, but how?

✔ Dual superconformal symmetry is now explained better through the AdS/CFT correspondence
by a combined bosonic [Kallosh,Tseytlin] and fermionic T-duality symmetry [Berkovits,Maldacena],

[Beisert,Ricci,Tseytlin,Wolf]

✔ What is the generalization of the Wilson loop/amplitude duality beyond MHV?
✔ What is the role of ordinary superconformal symmetry?

✗ Exact symmetry at tree level, closure [ordinary, dual] = Yangian [Drummond,Henn,Plefka]

✗ Not sufficient to fix the tree, need analytic properties [Korchemsky,ES], [Beisert et al]

✗ At loop level broken by IR divergences, hard to control
✔ Is the theory integrable (in some sense)?
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