Effects of non-decoupled mass hierarchies on cosmology

based on arXiv:1005.3848 and work in preparation

Sjoerd Hardeman¹

Ana Achúcarro¹, Jinn-Ouk Gong¹, Gonzalo Palma², Subodh Patil³

Instituut-Lorentz for Theoretical Physics, Leiden, The Netherlands ² Physics Department, FCFM, Universidad de Chile, Santiago, Chile ³ CPHT, Ecole Polytechnique, Palaiseau, France

Corfu Summer Institute Workshop, September 5th, 2010

Outline

Work in progress...

Goal Classify supergravity models for cosmology by their observational implications

In this talk Effects of non-decoupled mass hierarchies on cosmology

- Context: inflation
- Motivation: supergravity and its multiple fields
- Results: signatures of curved trajectories in field space Speed of sound Numerical results for trajectories and power spectra
- Conclusions

History of our universe?

History of our universe?

Figure: History of our universe (image courtesy of LAMBDA)

Figure: Launch of the Planck satellite, May 14th, 2009

What is inflation?

Cosmic inflation

- is a period of exponential expansion,
- is generated by a non-zero potential $V(\phi)$,
- leads to a homogeneous, isotropic and flat universe,
- generates density perturbations from quantum field perturbations.

Definition

Big bang cosmology starts when inflation ends.

Figure: Typical inflationary potential

What is inflation?

Cosmic inflation

- is a period of exponential expansion,
- is generated by a non-zero potential $V(\phi)$,
- leads to a homogeneous, isotropic and flat universe,
- generates density perturbations from quantum field perturbations.

Definition

Big bang cosmology starts when inflation ends.

Inflation?

Figure: CMB image from 5-year WMAP data, $\langle T \rangle \sim 2.7 \, {\rm K}$ (image courtesy of LAMBDA.)

- Inflation explains isotropy, homogeneity and flatness of the universe.
- Inflation explains the $O(10^{-5})$ perturbations.
- CMB opens a window to study the physics during inflation.

Inflation?

Figure: CMB power spectrum as a function of spherical harmonics P_l (image courtesy of LAMBDA)

Inflation should give

- $\gtrsim e^{55} \sim 10^{24}$ orders of expansion,
- scale invariant fluctuations, which can be studied from the CMB.

Inflation?

Figure: Scale invariant power spectrum k^{n_s-1} , with spectral index $n_s = 0.96$.

Inflation should give

- $\gtrsim e^{55} \sim 10^{24}$ orders of expansion,
- scale invariant fluctuations, which can be studied from the CMB.

Achieved by slow roll inflation, parametrised by

$$\begin{split} \epsilon &= \frac{M_{Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1 \\ \eta &= M_{Pl}^2 \frac{V''}{V} \ll 1 \end{split}$$

Non-Gaussianities and the speed of sound

- For Gaussian perturbations, the three-point function vanishes.
- Non-Gaussianity is the non-vanishing of the three-point function.

$$f(k_1k_2k_3) = \langle \varphi(k_1)\varphi(k_2)\varphi(k_3) \rangle$$

- Non-Gaussian perturbations \Rightarrow interactions
- Different relations between k_1,k_2,k_3 represent different types of interactions $^{\rm 1}$

¹ Maldacena, 2002; Criminelli, 2003 and many thereafter

Non-Gaussianities and the speed of sound

Generation of $c_s < 1$

A speed of sound for the inflaton perturbations $c_{s}<1$ results from higher order derivatives.

Examples

• K-inflation²

$$L_{\rm kin} \sim K(\varphi)(\nabla \varphi) + L(\phi)(\nabla \varphi)^2 + \dots$$

DBI-inflation³

$$L_{\text{eff}} \sim f(\varphi)^{-1} \sqrt{1 + f(\varphi)g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi}$$

Non-Gaussianities from $c_s < 1$

Non-local interactions give largest contributions when $k_1 \approx k_2 \approx k_3$, creating equilateral non-Gaussianities¹

¹Criminelli, 2003

²Garriga, Mukhanov, 1999 and many thereafter

³Alishahiha, Silverstein, Tong, 2008 and many thereafter

Supergravity and cosmology

- Inflation is a good probe for the physics at the highest energy scales of ${\cal O}(10^{13})\times$ LHC.
- For theoretical reasons supergravity/superstring theory is expected to play a role.

Global challenge

There is (worldwide) a large body of work trying to

- make inflation work within the supergravity/superstring framework,
- make testable predictions for cosmological observables.

Our approach

Try to classify/identify general features of supergravity models of inflation, such as

- multifield inflation,
- curved inflaton trajectories,
- decoupling why did inflation only inflate 3 + 1d spacetime?⁴

⁴eg. work by Choi, Falkowski, Nilles, Olechowski, Pokorski, 2004; De Alwis, 2005; (Covi,) Gomez-Reino, Scrucca, (Palma) 2006-2008; Achúcarro, SH, Sousa 2007-2008

Supergravity and cosmology

- Inflation is a good probe for the physics at the highest energy scales of ${\cal O}(10^{13})\times$ LHC.
- For theoretical reasons supergravity/superstring theory is expected to play a role.

Global challenge

There is (worldwide) a large body of work trying to

- make inflation work within the supergravity/superstring framework,
- make testable predictions for cosmological observables.

Our approach

Try to classify/identify general features of supergravity models of inflation, such as

- multifield inflation,
- curved inflaton trajectories.

⁴eg. work by Choi, Falkowski, Nilles, Olechowski, Pokorski, 2004; De Alwis, 2005; (Covi, Gomez-Reino, Scrucca, (Palma) 2006-2008; Achúcarro, SH, Sousa 2007-2008

$\mathcal{N}\!=\!1$ supergravity

The $\mathcal{N} = 1$ supergravity action for uncharged scalar fields $S = M_{Pl}^2 \int d^4x \sqrt{g} \left(\frac{1}{2} R + K_{i\bar{j}}(\phi, \bar{\phi}) \nabla_\mu \phi^i \nabla^\mu \bar{\phi}^{\bar{j}} - V(\phi, \bar{\phi}) \right)$

- $K_{i\bar{j}} = \partial_i \partial_{\bar{j}} K \Rightarrow$ Kähler metric determined by real $K(\phi, \bar{\phi})$.
- Usually $i > 1 \Rightarrow$ more than one field.
- $V = e^{K/M_{Pl}^2} \left(K^{i\bar{j}} D_i W \overline{D_j W} \frac{3|W|^2}{M_{Pl}^2} \right) \Rightarrow$ potential determined by $K(\phi, \bar{\phi})$ and holomorphic $W(\phi)$

• If
$$W \neq 0$$
, K, W can (unlike SUSY) be combined into one function
 $G(\phi, \bar{\phi}) = M_{Pl}^{-2} K(\phi, \bar{\phi}) + \log \left| \frac{W(\phi)}{M_{Pl}^3} \right|^2$

What the equations tell

- Supergravity is determined by only one function (plus one function for charged fields)
- Supergravity action generally has many fields

Multiple fields from $\mathcal{N} = 1$ supergravity

The $\mathcal{N} = 1$ supergravity action for uncharged scalar fields $S = M_{Pl}^2 \int d^4x \sqrt{g} \left(\frac{1}{2} R + K_{i\bar{j}}(\phi, \bar{\phi}) \nabla_{\mu} \phi^i \nabla^{\mu} \bar{\phi}^{\bar{j}} - V(\phi, \bar{\phi}) \right)$

Figure: An example of a curved trajectory.

- Metric $K_{i\bar{j}}(\phi, \bar{\phi}) \Rightarrow$ geometry
- Potential $V(\phi, \bar{\phi}) \rightsquigarrow$ trajectory
- Usually trajectory ≠ geodesic⁵, inflaton field mixes with other fields⁶, even in the case of a large hierarchy of scales⁷
- Gives a (time-dependent) perpendicular acceleration $\eta_{\perp} = \sqrt{2E_{\rm kin}}/\kappa$

For slow roll €, η_{||} ≪ 1
 η_⊥ not necessarily small!

⁵In case of "decoupling" the trajectory is a geodesic

 $^{6}\mathrm{Known}$ for multiple light fields, eg. Groot-Nibbelink, van Tent, 2000-2001 and many results thereafter

⁷Achúcarro, Gong, SH, Palma, Patil, 2010. Similar but incomplete observation made by Tolley and Wyman, 2009

Multiple fields from $\mathcal{N}\!=\!1$ supergravity

The $\mathcal{N} = 1$ supergravity action for uncharged scalar fields $S = M_{Pl}^2 \int d^4x \sqrt{g} \left(\frac{1}{2} R + K_{i\bar{j}}(\phi, \bar{\phi}) \nabla_{\mu} \phi^i \nabla^{\mu} \bar{\phi}^{\bar{j}} - V(\phi, \bar{\phi}) \right)$

Figure: Curvature couples perpendicular direction

- Metric $K_{i\bar{j}}(\phi, \bar{\phi}) \Rightarrow$ geometry
- Potential $V(\phi, \bar{\phi}) \rightsquigarrow$ trajectory
- Usually trajectory \neq geodesic⁵, inflaton field mixes with other fields⁶, even in the case of a large hierarchy of scales⁷
- Gives a (time-dependent) perpendicular acceleration $\eta_{\perp} = \sqrt{2E_{\rm kin}}/\kappa$
 - For slow roll $\epsilon, \eta_{\parallel} \ll 1$
 - η_{\perp} not necessarily small!

⁵In case of "decoupling" the trajectory is a geodesic

 $^{6}\mathrm{Known}$ for multiple light fields, eg. Groot-Nibbelink, van Tent, 2000-2001 and many results thereafter

⁷Achúcarro, Gong, SH, Palma, Patil, 2010. Similar but incomplete observation made by Tolley and Wyman, 2009

Effective field theory with non-decoupled mass hierarchies

Figure: An example of a curved trajectory.

To summarize

- In supergravity many fields are expected
- In general QFTs no a priori reason to have just one light non-interacting field during inflation
- Effects of many light fields during inflation widely studied
- We need to
 - verify if and when one can safely truncate massive fields,
 - correctly integrate out heavy fields and find the corrections to the effective field theory.

Results: speed of sound

Action for an effective field theory for inflation is found to be⁸

$$S = \int \mathrm{d}\tau \mathrm{d}^3 x \left[\dot{\varphi}^2 - e^{-\beta} (\nabla \varphi)^2 - M_L^2 \varphi^2 \right]$$

where

$$e^{\beta} = 1 + 4\left(\frac{\dot{\phi}}{\kappa M}\right)^2$$

Here, $\dot{\phi}$ is the turn rate, M the mass of the heavy direction.

Non-geodesic trajectories causes reduced speed of sound

From this we can learn that

- turns (deviations from geodesics) cause a reduced speed of sound,⁹
- non-Gaussianities can be expected.¹⁰

 $^{9}\mathrm{A}$ similar, but incomplete statement was made by Tolley and Wyman, 2009 $^{10}\mathrm{Chen}$. Wang, 2009

⁸Achúcarro, Gong, SH, Palma, Patil, 2010 and in prep.

Effective field theory approach for speed of sound

Starting from a general effective single-field theory for inflation

$$S = \int d\tau d^3x \left[\left(\frac{d\varphi^T}{d\tau} \right)^2 - \left(\nabla \varphi^T \right)^2 - \Omega_T(\tau) \varphi^T \varphi^T \right] + \frac{1}{2} \int d\tau d\tau' d^3x d^3x' \mathcal{O}(x,\tau) \varphi^T(x,\tau) G(x,x',\tau,\tau') \mathcal{O}(x',\tau') \varphi^T(x',\tau')$$

where
$$\mathcal{O}(x,\tau) := 2a^2 H^2 \eta_{\perp} \left(1 - \frac{1}{aH} \frac{d}{dt} \right)$$
$$G(x,x',\tau,\tau') := [\Box + \Omega_N(\tau)]^{-1}$$

and $\Omega_{T,N}$ the effective mass matrix entries in the direction $\{T, N\}$. One can see from this equation that the only way for having $c_s < 1$ is having a nonzero Ω_N and operator O, which requires a non-geodesic trajectory.¹¹ With proper approximations reduces to effective field theory with $c_s < 1$

¹¹Achúcarro, Gong, SH, Palma, Patil, in prep.

The background trajectory is given by the differential equation

$$\frac{D\dot{\phi}^I}{DN} + (\epsilon - 3)\dot{\phi}^I + \frac{1}{H^2}V^I = 0$$

Using this equation, one can solve the equation for the perturbations

$$\begin{split} &\frac{D^2 \varphi^I}{DN}^2 - (1-\epsilon) \frac{D \varphi^I}{DN} + \left[e^{2(1-\epsilon)(N-N_k)} - (2-\epsilon) \right] \varphi^I + C^I{}_J \varphi^J = 0 \\ &\text{where } C^I{}_J = e^I{}_a e^b{}_J C^a{}_b \text{, and} \\ &C^a{}_b = \nabla_b V^a - R^a{}_{cdb} \dot{\phi}^c \dot{\phi}^d - \sqrt{2\epsilon} (\dot{\phi}^a V_b + \dot{\phi}_b V^a) + 2\epsilon (3-\epsilon) H^2 \dot{\phi}^a \dot{\phi}_b \end{split}$$

with H the Hubble acceleration.

Generating curved trajectories - numerical example

$$V = \frac{1}{2}m_1^2\phi_1^2 + \frac{1}{2}m_2^2\phi_2^2, \quad m_2/m_1 = 5$$

¹²Agrees with results of approximate calculations by Peterson and Tegmark, 2010

Generating curved trajectories - numerical example

¹²Agrees with results of approximate calculations by Peterson and Tegmark, 2010

Generating curved trajectories - numerical example

¹²Agrees with results of approximate calculations by Peterson and Tegmark, 2010

Power spectrum of a curved inflaton trajectory

Figure: Power spectra of the same (real) scalar field model ($\epsilon=0.00875,\eta=0.0075,$ corresponding to $n_s=0.963,r=0.14)^{\rm 13}$

¹³Achúcarro, Gong, SH, Palma, Patil, in prep.

Power spectra of a curved inflaton trajectories

Figure: The primordial power spectrum P(k) obtained for four dierent choices of the parameters ΔN , $\eta_{\perp,\max}$ and M^2 . The scale k appears in units of Mpc^{-1} . A: $\Delta N = 0$: 25, $\eta_{\perp,\max} = 1$, $M^2/H^2 = 80$. B: $\Delta N = 0.5$, $\eta_{\perp,\max} = 1$, $M^2/H^2 = 50$. C: $\Delta N = 0.1$, $\eta_{\perp,\max} = 1$, $M^2/H^2 = 50$. D: $\Delta N = 0.01$, $\eta_{\perp,\max} = 1$, $M^2/H^2 = 30$.¹⁴

¹⁴Achúcarro, Gong, SH, Palma, Patil, in prep.

Concluding remarks

Conclusions

On general grounds a curved field space is expected

- Might leave observable imprints in the CMB, even in the power spectrum.
- Curved trajectories cause a reduced speed of sound
 - non-Gaussianities
 - bumps in the power spectrum
- Future CMB observations will thus allow us to study supergravity from the CMB!

Work in progress...

- Understand if there is a degeneracy between the effects of a turn and other sources of CMB modifications
- Study other observable effects of curved trajectories, such as non-Gaussianities
- Understand multifield inflation in the context of supergravity

