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Outline

Work in progress...
Goal Classify supergravity models for cosmology by their

observational implications
In this talk Effects of non-decoupled mass hierarchies on cosmology

Context: inflation

Motivation: supergravity and its multiple fields

Results: signatures of curved trajectories in field space
Speed of sound
Numerical results for trajectories and power spectra

Conclusions
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History of our universe?

Figure: History of our universe (image courtesy of LAMBDA)
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History of our universe?

Figure: History of our universe (image courtesy of LAMBDA)

Figure: Launch of the
Planck satellite, May 14th,
2009

3 / 21



What is inflation?

Cosmic inflation
is a period of exponential
expansion,
is generated by a non-zero
potential V (φ),
leads to a homogeneous,
isotropic and flat universe,
generates density perturbations
from quantum field
perturbations.

Definition
Big bang cosmology starts when
inflation ends.

Figure: Typical inflationary potential
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leads to a homogeneous,
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generates density perturbations
from quantum field
perturbations.

Definition
Big bang cosmology starts when
inflation ends.

Figure: Typical inflationary potential with
stabilised fields
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Inflation?

Figure: CMB image from 5-year WMAP data, 〈T 〉 ∼ 2.7 K (image courtesy of LAMBDA.)

Inflation explains isotropy, homogeneity and flatness of the universe.
Inflation explains the O(10−5) perturbations.
CMB opens a window to study the physics during inflation.
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Inflation?

Figure: CMB power spectrum as a function of
spherical harmonics Pl (image courtesy of
LAMBDA)

Inflation should give
& e55 ∼ 1024 orders of
expansion,
scale invariant fluctuations,
which can be studied from the
CMB.

This can be achieved by slow roll
inflation:

nearly flat inflationary potential,
deviations in the inflationary
potential show up as deviations
in the power spectrum.
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Inflation?
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Figure: Scale invariant power spectrum kns−1,
with spectral index ns = 0.96.

Inflation should give
& e55 ∼ 1024 orders of
expansion,
scale invariant fluctuations,
which can be studied from the
CMB.
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Non-Gaussianities and the speed of sound

For Gaussian perturbations, the three-point function vanishes.
Non-Gaussianity is the non-vanishing of the three-point function.

f(k1k2k3) = 〈ϕ(k1)ϕ(k2)ϕ(k3)〉

Non-Gaussian perturbations ⇒ interactions
Different relations between k1, k2, k3 represent different types of
interactions1

1 Maldacena, 2002; Criminelli, 2003 and many thereafter
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Non-Gaussianities and the speed of sound

Generation of cs < 1

A speed of sound for the inflaton perturbations cs < 1 results from higher
order derivatives.

Examples
K-inflation2

Lkin ∼ K(ϕ)(∇ϕ) + L(φ)(∇ϕ)2 + . . .

DBI-inflation3

Leff ∼ f(ϕ)−1
√

1 + f(ϕ)gµν∂µϕ∂νϕ

Non-Gaussianities from cs < 1

Non-local interactions give largest contributions when k1 ≈ k2 ≈ k3,
creating equilateral non-Gaussianities1

1Criminelli, 2003
2Garriga, Mukhanov, 1999 and many thereafter
3Alishahiha, Silverstein, Tong, 2008 and many thereafter
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Supergravity and cosmology

Inflation is a good probe for the physics at the highest energy scales
of O(1013)× LHC.
For theoretical reasons supergravity/superstring theory is expected
to play a role.

Global challenge
There is (worldwide) a large body of work trying to

make inflation work within the supergravity/superstring framework,
make testable predictions for cosmological observables.

Our approach
Try to classify/identify general features of supergravity models of
inflation, such as

multifield inflation,
curved inflaton trajectories,
decoupling - why did inflation only inflate 3 + 1d spacetime?4

4eg. work by Choi, Falkowski, Nilles, Olechowski, Pokorski, 2004; De Alwis, 2005; (Covi,)
Gomez-Reino, Scrucca, (Palma) 2006-2008; Achúcarro, SH, Sousa 2007-2008 10 / 21
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N =1 supergravity

The N =1 supergravity action for uncharged scalar fields

S = M2
Pl

∫
d4x
√
g

(
1

2
R+Kij̄(φ, φ̄)∇µφi∇µφ̄j̄ − V (φ, φ̄)

)
Kij̄ = ∂i∂j̄K ⇒ Kähler metric determined by real K(φ, φ̄).

Usually i > 1⇒ more than one field.

V = eK/M
2
Pl

(
Kij̄DiWDjW − 3|W |2

M2
Pl

)
⇒

potential determined by K(φ, φ̄) and holomorphic W (φ)

If W 6= 0, K,W can (unlike SUSY) be combined into one function

G(φ, φ̄) = M−2
Pl K(φ, φ̄) + log

∣∣∣∣W (φ)

M3
Pl

∣∣∣∣2

What the equations tell
Supergravity is determined by only one function (plus one function
for charged fields)
Supergravity action generally has many fields
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Multiple fields from N =1 supergravity

The N =1 supergravity action for uncharged scalar fields

S = M2
Pl

∫
d4x
√
g

(
1

2
R+Kij̄(φ, φ̄)∇µφi∇µφ̄j̄ − V (φ, φ̄)

)

Figure: An example of a curved
trajectory.

Metric Kij̄(φ, φ̄)⇒ geometry
Potential V (φ, φ̄) trajectory
Usually trajectory 6= geodesic5, inflaton
field mixes with other fields6, even in the
case of a large hierarchy of scales7

Gives a (time-dependent) perpendicular
acceleration η⊥ =

√
2Ekin/κ

I For slow roll ε, η‖ � 1
I η⊥ not necessarily small!

5In case of “decoupling” the trajectory is a geodesic
6Known for multiple light fields, eg. Groot-Nibbelink, van Tent, 2000-2001 and many

results thereafter
7Achúcarro, Gong, SH, Palma, Patil, 2010. Similar but incomplete observation made by

Tolley and Wyman, 2009
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Figure: Curvature couples
perpendicular direction

Metric Kij̄(φ, φ̄)⇒ geometry
Potential V (φ, φ̄) trajectory
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Effective field theory with non-decoupled mass hierarchies

Figure: An example of a curved
trajectory.

To summarize
In supergravity many fields are expected
In general QFTs no a priori reason to have
just one light non-interacting field during
inflation
Effects of many light fields during inflation
widely studied
We need to

I verify if and when one can safely
truncate massive fields,

I correctly integrate out heavy fields and
find the corrections to the effective field
theory.
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Results: speed of sound

Action for an effective field theory for inflation is found to be8

S =

∫
dτd3x

[
ϕ̇2 − e−β(∇ϕ)2 −M2

Lϕ
2
]

where

eβ = 1 + 4

(
φ̇

κM

)2

Here, φ̇ is the turn rate, M the mass of the heavy direction.

Non-geodesic trajectories causes reduced speed of sound
From this we can learn that

turns (deviations from geodesics) cause a reduced speed of sound,9

non-Gaussianities can be expected.10

8Achúcarro, Gong, SH, Palma, Patil, 2010 and in prep.
9A similar, but incomplete statement was made by Tolley and Wyman, 2009

10Chen, Wang, 2009
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Effective field theory approach for speed of sound

Starting from a general effective single-field theory for inflation

S =

∫
dτd3x

[(
dϕT

dτ

)2

−
(
∇ϕT

)2 − ΩT (τ)ϕTϕT

]

+
1

2

∫
dτdτ ′d3xd3x′O(x, τ)ϕT (x, τ)G(x, x′, τ, τ ′)O(x′, τ ′)ϕT (x′, τ ′)

where O(x, τ) := 2a2H2η⊥

(
1− 1

aH

d

dt

)
G(x, x′, τ, τ ′) := [�+ ΩN (τ)]−1

and ΩT,N the effective mass matrix entries in the direction {T,N}. One
can see from this equation that the only way for having cs < 1 is having a
nonzero ΩN and operator O, which requires a non-geodesic trajectory.11

With proper approximations reduces to effective field theory with cs < 1

11Achúcarro, Gong, SH, Palma, Patil, in prep.
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Numerical calculation of trajectories and powerspectra

The background trajectory is given by the differential equation

Dφ̇I

DN
+ (ε− 3)φ̇I +

1

H2
V I = 0

Using this equation, one can solve the equation for the perturbations

D2ϕI

DN

2

− (1− ε)Dϕ
I

DN
+
[
e2(1−ε)(N−Nk) − (2− ε)

]
ϕI + CIJϕ

J = 0

where CIJ = eIae
b
JC

a
b, and

Cab = ∇bV a −Racdbφ̇cφ̇d −
√

2ε(φ̇aVb + φ̇bV
a) + 2ε(3− ε)H2φ̇aφ̇b

with H the Hubble acceleration.
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Generating curved trajectories - numerical example

Example - double quadratic potential12
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2
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Figure: Trajectories for different initial
conditions
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12Agrees with results of approximate calculations by Peterson and Tegmark, 2010
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Power spectrum of a curved inflaton trajectory

N=60 N=56 N=54 N=52

N=60 N=56

N=54

N=52

(a) Without bend (b) With bend, κ−1 = κ(N)−1, with
κ−1

max = 0.76

Figure: Power spectra of the same (real) scalar field model (ε = 0.00875, η = 0.0075,
corresponding to ns = 0.963, r = 0.14)13

13Achúcarro, Gong, SH, Palma, Patil, in prep.
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Power spectra of a curved inflaton trajectories
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Figure: The primordial power spectrum P(k) obtained for four dierent choices of the
parameters ∆N , η⊥,max and M2. The scale k appears in units of Mpc−1. A: ∆N = 0 : 25,
η⊥,max = 1, M2/H2 = 80. B: ∆N = 0.5, η⊥,max = 1, M2/H2 = 50. C: ∆N = 0.1,
η⊥,max = 1, M2/H2 = 50. D: ∆N = 0.01, η⊥,max = 1, M2/H2 = 30.14

14Achúcarro, Gong, SH, Palma, Patil, in prep.
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Concluding remarks

Conclusions
On general grounds a curved field space is expected

Might leave observable imprints in the CMB, even in the power
spectrum.
Curved trajectories cause a reduced speed of sound

I non-Gaussianities
I bumps in the power spectrum

Future CMB observations will thus allow us to study supergravity
from the CMB!

Work in progress...
Understand if there is a degeneracy between the effects of a turn
and other sources of CMB modifications
Study other observable effects of curved trajectories, such as
non-Gaussianities
Understand multifield inflation in the context of supergravity
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Goal...

=⇒ =⇒
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