

Nonequilibrium functional RG for the Anderson impurity model

Severin G. Jakobs, Mikhail Pletyukhov, Herbert Schoeller

Institut für Theoretische Physik, RWTH Aachen

ERG Conference Sep 2010, Corfu

Jakobs, Pletyukhov, Schoeller – PRB **81**, 195109 (2010) Jakobs, Pletyukhov, Schoeller – J Phys A: Math Theor **43**, 103001 (2010) Eckel, Heidrich-Meisner, Jakobs et al – NJP **12**, 043042 (2010)

Outline

- 1. Model: Anderson impurity in nonequilibrium
- 2. Method: fRG within Keldysh formalism
- 3. Discussion of results
- 4. Conclusion

A model for transport through quantum dots

- Noneq. transport through QDot has been studied experimentally
- Challenge for theory: strong correlations, current-carrying state
- Model: Anderson impurity with contacts

 Describes charge and spin fluctuations.

(Reson. level model \rightarrow charge fluct.

Kondo model \rightarrow spin fluct.)

Anderson impurity in nonequilibrium

Properties of the Anderson model

- Perturbation theory in U is regular.
- Large U, low energies $\rightarrow T_{\mathsf{K}} \sim \exp\left(-\frac{\pi}{4}\frac{U}{\Gamma}\right) \rightarrow \mathsf{RG-treatment}$
- Equilibrium: good description by NRG, Bethe Ansatz.

High interest in noneq. properties of Anderson model

Recent investigations of nonequilibrium Anderson model

- Perturbation theory ($V_g = 0, B = 0$) [Hershfield et al '91, '92; Fujii, Ueda '03]
- Real time RG (mixed valence, empty orbital) [Schoeller, König '00]
- Imag. voltage QMC (difficult analyt. cont.) [Han, Heary '07, Dirks et al '10]
- Nonequilibrium fRG (lowest order truncation) [Gezzi et al '07]
- Scattering states NRG (data still noisy) [Anders '08]
- ISPI (moderate U, no small T) [Weiss et al '08]
- Real time QMC ($V_g = 0, B = 0$) [Werner et al '09, '10]
- GW approach (Coulomb blockade regime) [Spataru et al '09]
- tDMRG (from the transient regime) [Heidrich-Meisner et al '09]
- Scattering Bethe Ansatz (phenomenological distr. funct.) [Chao, Palacios '10]

Role of noneq. fRG

- flexible tool for $U \lesssim 3\Gamma$ allowing for finite B, T, V_g, V
- based on single-particle-states \rightarrow good scaling with system size \rightarrow applicable to larger systems (eg q-wires)

Outline

1. Model: Anderson impurity in nonequilibrium

2. Method: fRG within Keldysh formalism

- 3. Discussion of results
- 4. Conclusion

Keldysh formalism describes time evolved density matrix

• formulated for real times/frequencies \rightarrow no analytic continuation

• can describe nonequilibrium

$$\left\langle A(t)\right\rangle = \operatorname{Tr} \rho_0 \frac{U_1(-\infty, t)}{P_0} \frac{1}{P_0} \frac{1$$

$$\begin{aligned} G^{\mathsf{Ret}} &= \frac{1}{\omega - \epsilon - \Sigma^{\mathsf{Ret}}} &\to \text{ quasi-part. energies, lifetimes} \\ G^{\mathsf{K}} &= G^{\mathsf{Ret}} \Sigma^{\mathsf{K}} G^{\mathsf{Av}} &\to \text{ particle distribution: } g^{\mathsf{K}} &= [1 - 2f_{\mathsf{eff}}(\omega)][g^{\mathsf{Ret}} - g^{\mathsf{Av}}] \end{aligned}$$

Flow parameters for the Keldysh fRG

Exact relations that approximation should satisfy:

- Causality, eg $G^{\text{Ret}}(t) \sim \Theta(t)$
- KMS conditions in equilibrium, eg $G^{K} = [1 2f(\omega)][G^{Ret} G^{Av}]$

If g_{Λ} respects relations, then result of truncated flow respects them. [Jakobs et al '10]

fRG with hybridization as flow parameter

Flow equation couples three channels

Approximation for frequency-dependence

 $\gamma(\Pi, X, \Delta) = \overline{v} + \varphi_{p}(\Pi) + \varphi_{x}(X) + \varphi_{d}(\Delta)$

- Each channel feeds back into own flow exactly
- Each channel feeds into flow of other channels as constant (renormalizing the interaction)
- Only static part of self-energy fed back into flow [cf Karrasch et al, J Phys: Cond Mat **20**, 345205 (2008)]

Range of applicability

- Approximations valid only for moderate U/Γ
- Some aspects of Kondo for large U/Γ captured
- For $U/\Gamma \rightarrow 0$: second order PT is asymptot. approached

Outline

- 1. Model: Anderson impurity in nonequilibrium
- 2. Method: fRG within Keldysh formalism
- 3. Discussion of results
- 4. Conclusion

Full Σ -feedback vs. static Σ -feedback Spectral function for $U = 3\Gamma$, V = 0, $V_g = 0$, B = 0, T = 0

Good description of $G_{\text{lin}}(V_{\text{gate}}; B, T)$

Nonequilibrium – good agreement with ISPI and tDMRG

Kondo scale in Fermi liquid coefficient

Conclusion

Topic:	Steady state transport through Anderson impurity
Method:	Functional RG — in Keldysh formalism — with hybridization as flow parameter — with frequency dependent 2-particle vertex
Findings:	 for U ≤ 3Γ(= 6Δ): flexible tool → good agreement with other nonequilibrium methods → finite V, T, B, V_g accessible larger U: Kondo scale in Fermi liquid coefficient (but not in effective mass)
Jakobs, Pletyukhov, Schoeller – PRB 81 , 195109 (2010)	

Jakobs, Pletyukhov, Schoeller – J Phys A: Math Theor **43**, 103001 (2010)

Eckel, Heidrich-Meisner, Jakobs et al – NJP 12, 043042 (2010)

Thanks to:

Mikhail Pletyukhov. Herbert Schoeller,

Theo Costi, Christoph Karrasch, Volker Meden, Fabian Heidrich-Meisner, Jens Eckel

Extra 1: Comparison of fRG-methods

Zlatić, Horvatić, PRB **28**, 6904 (1983) Karrasch et al, J Phys: Cond Mat **20**, 345205 (2008) Bartosch et al, J Phys: Cond Mat **21**, 305602 (2009)