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Two-point function

Basic objet: sum of 2PI (skeleton) diagrams:

Φ[G] ≡ + + · · ·

Self-energy:

Σ[G] ≡ 2
δΦ

δG
= + + · · ·

Gap equation:

G−1(p) = p2 + m2
b + Σ(p)
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Applications

Spectral properties:

ρ = 2 Im G Thermodynamics:
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Dynamical aspects:

thermalisation,

decoherence

(see talk by J. Serreau)
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Gap equation

Example: two-loop gap equation

G−1(p) = p2 + m2
b + +

= p2 + m2
b +

λ

2

Z

q

G(q) −
λ2

6

Z

q

Z

l

G(l)G(q)G(l + q + p)

Non-linear integral equation. Can be tedious to solve.
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Gap equation

Example: two-loop gap equation

G−1(p) = p2 + m2
b +

UV

+ UV

UV

UV

= p2 + m2
b +

λ

2

Z

q

G(q) −
λ2

6

Z

q

Z

l

G(l)G(q)G(l + q + p)

Non-linear integral equation. Can be tedious to solve.

In 3d, renormalization is simple to implement:

G−1(p) = p2 + m2 +
ˆ
Σ(p)−Σ(0)

˜
, G−1(0) = m2

In 4d, what is the correct four-point function?
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Four-point function

2PI kernel:

I[G] ≡ 4
δ2Φ

δGδG
= + + · · · =

Four-point function:

= −
1

2
2PR

Linear integral equation:

Γ(4)(q, p) = I(q, p) −
1

2

Z

l

I(q, l)G2(l) Γ(4)(l, p)



Basics of 2PI

2PI as a truncation of the flow

● 2PI truncations

● Exactness

● Initial condition

● Physical initial condition

Results

Urko Reinosa – ERG 2010 Exact Renormalization Group and Φ-derivable approximations – p. 8

2PI as a truncation
of the flow hierarchy



Basics of 2PI

2PI as a truncation of the flow

● 2PI truncations

● Exactness

● Initial condition

● Physical initial condition

Results

Urko Reinosa – ERG 2010 Exact Renormalization Group and Φ-derivable approximations – p. 9

2PI truncations of the flow

Flow hierarchy:

∂kΓ
(2)
k (p) = −

1

2

Z

q

∂kRk(q)G2
k(q) Γ

(4)
k (q, p)

∂kΓ
(4)
k (q, p) = F

(4)
k

h

Γ
(2)
k , Γ

(4)
k , Γ(6)

κ

i

· · ·
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2PI truncations of the flow

Flow hierarchy:

∂kΓ
(2)
k (p) = −

1

2

Z

q

∂kRk(q)G2
k(q) Γ

(4)
k (q, p)

Γ
(4)
k (q, p) = Ik(q, p) −

1

2

Z

l

Γ
(4)
k (q, l)G2

k(l)Ik(l, p)

I[G] =
4 δ2Φ

δGδG
= + + · · ·
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2PI truncations are exact
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Exactness

The 2PI truncated flow:

∂kΓ
(2)
k (p) = −

1

2

Z

q

∂kRk(q) G2
k(q) Γ

(4)
k (q, p)

Γ
(4)
k (q, p) = Ik(q, p) −

1

2

Z

l

Γ
(4)
k (q, l)G2

k(l)Ik(l, p)

is exact:

∂kΓ
(2)
k (p) = ∂kΣk(p)
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Exactness

The 2PI truncated flow:

∂kΓ
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is exact:

Γ
(2)
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Σk(p) − Σ(0)

˜
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Exactness

The 2PI truncated flow:

∂kΓ
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Γ
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Z
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Γ
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k (q, l)G2
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In the limit k → 0:

Γ
(2)
k=0(p) = p2 + m2 +

ˆ
Σ(p) − Σ(0)

˜
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Exactness

The 2PI truncated flow:

∂kΓ
(2)
k (p) = −

1

2

Z
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∂kRk(q) G2
k(q) Γ

(4)
k (q, p)

Γ
(4)
k (q, p) = Ik(q, p) −

1

2

Z

l

Γ
(4)
k (q, l)G2

k(l)Ik(l, p)

In the limit k → 0:

G−1(p) = p2 + m2 +
ˆ
Σ(p) − Σ(0)

˜
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Exactness

The 2PI truncated flow:

∂kΓ
(2)
k (p) = −

1

2

Z

q

∂kRk(q) G2
k(q) Γ

(4)
k (q, p)

Γ
(4)
k (q, p) = Ik(q, p) −

1

2

Z

l

Γ
(4)
k (q, l)G2

k(l)Ik(l, p)

X Gap equation reformulated as an initial value problem.

X The only integral equation to be solved is linear.

X The four-point function appears explicitely.
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Initial condition

3d initial condition:

k = Λ → ∞ : Γ
(2)
Λ (p) ≈ p2 + m2

Λ , Γ
(2)
k=0(0) = m2

On the other hand:

Γ
(2)
Λ (p) = p2 + m2 +

ˆ
ΣΛ(p) − Σ(0)

˜

It follows that, as Λ → ∞:

ˆ
ΣΛ(p) − Σ(0)

˜
becomes p-independent
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Initial condition

3d initial condition:

k = Λ → ∞ : Γ
(2)
Λ (p) ≈ p2 + m2

Λ , Γ
(2)
k=0(0) = m2

On the other hand:

Γ
(2)
Λ (p) = p2 + m2 +

ˆ
ΣΛ(p) − Σ(0)

˜

It follows that, as Λ → ∞:

ˆ
ΣΛ(p) − ΣΛ(0)

˜
goes to zero
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Initial condition

In 3d, the large Λ behavior is ordered perturbatively:

ˆ
ΣΛ(p) − ΣΛ(0)

˜
=

h

−

˛
˛
˛
p=0

i

+ . . .

= −
λ2

6

Z

q

Z

l

GΛ(q)GΛ(l)
ˆ
GΛ(l + q + p) − GΛ(l + q)

˜
+ . . .

Posing RΛ(q) = Λ2r(q/Λ) and rescaling the integration variables by Λ:

−
λ2

6

Z

q

Z

l

1

q2 + m2

Λ2 + r(q)

1

l2 + m2

Λ2 + r(l)
"

1

(l + q + p

Λ
)2 + m2

Λ2 + r(l + q + p

Λ
)
−

1

(l + q)2 + m2

Λ2 + r(l + q)

#

| {z }

→0
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Physical initial condition

Γ
(2)
k (p) = p2 + m2 +

ˆ
Σk(p) − Σ(0)

˜

⇓ (modified gap equation)

Γ̃
(2)
k (p) = p2 + m2 +

ˆ
Σ̃k(p) − Σ̃k(0)

˜

Physical value:

k → 0 : Γ̃
(2)
k=0(p)=Γ

(2)
k=0(p)

Initial condition:

k = Λ → ∞ : Γ̃
(2)
k (p) → p2 + m2
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Physical initial condition

Γ
(2)
k (p) = p2 + m2 +

ˆ
Σk(p) − Σ(0)

˜

⇓ (modified gap equation)

Γ̃
(2)
k (p) = p2 + m2 +

ˆ
Σ̃k(p) − Σ̃k(0)

˜

Modified flow:

∂kΓ̃
(2)
k (p) = −

1

2

Z

q

∂kRk(q) G̃2
k(q) Γ̃

(4)
k (q, p)

Γ̃
(4)
k (q, p) = Ĩk(q, p) −

1

2

Z

l

Γ̃
(4)
k (q, l) G̃2

k(l) Ĩk(l, p)

Ĩk(q, p) = Ik(q, p) − Ik(q, 0)
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Three-loop results

Φ[G] = +
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Fast Fourier Transform

At three loops, one can conveniently rewrite the flow equation using Fourier Transforms

∂kΓ̃
(2)
k (p) = Fk(p)

Fk(p) = Jk(p) +
λ2

2

Z

x

H̃k(x) G2
k(x) e−ipx

Jk(p) =
1

2

Z

x

Hk(x)G2
k(x) e−ipx

−
1

2

Z

x

Hk(x)G2
k(x) e−ipx

˛
˛
˛
˛
p=0

Hk(x) =

Z

q

Hk(q) eiqx , Hk(q) = ∂kRk(q) G̃2
k(q)

H̃k(x) =

Z

q

H̃k(q) eiqx , H̃k(q) = Fk(q) G̃2
k(q)

The only integrals are 1d Fourier (sine) transforms for which one can use FFT algorithms.



Basics of 2PI

2PI as a truncation of the flow

Results

● FFT

● Results

Urko Reinosa – ERG 2010 Exact Renormalization Group and Φ-derivable approximations – p. 19

Results (preliminary)
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Summary

X (In equilibrium) Φ-derivable (or 2PI) approximations are nothing

but particular truncations of the ERG flow equations.

X This point of view can simplify the resolution of 2PI approximations

for it replaces the underlying non-linear integral gap equation

by an initial value problem, coupled to a linear integral equation.

X This point of view treats the two- and four-point functions on a

same footing (this is relevant in particular in four dimensions).

X In the 3d case, it was possible to find a modified flow equation,

reproducing the 2PI result in the limit k → 0, and whose

initialisation involves renormalized parameters only.
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4d case

2PI truncation of the flow:

∂kΓ
(2)
k (p) = −

1

2

Z

q

∂kRk(q) G2
k(q) Γ

(4)
k (q, p)

Γ
(4)
k (q, p) = Ik(q, p)

−
1

2

Z

k

Γ
(4)
k (q, k)G2

k(k)Ik(k, p)
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4d case

2PI truncation of the flow:

∂kΓ
(2)
k (p) = −

1

2

Z

q

∂kRk(q) G2
k(q) Γ

(4)
k (q, p)

Γ
(4)
k (q, p) = Ik(q, p) − Ik(0, 0)

−
1

2

Z

k

Γ
(4)
k (q, k)G2

k(k)
h

Ik(k, p) − Ik(k, 0)
i

−
1

2

Z

k

h

Ik(q, k) − Ik(0, k)
i

G2
k(k) Γ

(4)
k (k, 0)
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