Soft walls Corfu Summer Institute 5 September, 2010

Mariano Quirós

Institució Catalana de Recerca i Estudis Avançats (ICREA), and IFAE Barcelona (Spain)

Based on collaboration with: Joan A. Cabrer, Gero v. Gersdorff and M.Q., New J. Phys. 12 (2010) 075012+ work in progress

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - つへで

OUTLINE

The outline of this talk is

Outline

- Introduction
- The soft-wall model
- Graviton fluctuations
- Radion fluctuations
- The Higgs background
- EWSB
- Conclusion

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton Iuctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

INTRODUCTION

- Warped extra dimensions are useful to solve long-standing problems: hierarchy, flavor,...
- Also the AdS/CFT correspondence might deal with non-perturbative theories: technicolor, QCD,...
- We will concentrate on general 5D theories with a metric

Proper coodinates

$$ds^2 = e^{-2A(y)}\eta_{\mu
u}dx^{\mu}dx^{
u} + dy^2$$

 $\eta_{\mu
u} = (-, +, +, +, +)$

or in

Conformally flat coordinates

$$ds^2=e^{-2A(z)}\left(\eta_{\mu
u}dx^\mu dx^
u+dz^2
ight), \quad rac{dz}{dy}=e^A$$

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton Iuctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

・ロット 4回ット 4回ット 4回ット 4回ット

- The AdS metric $A_{AdS} = ky$ has conformal invariance
- The theory requires UV completion which translates into a UV brane at y = 0
- Conformal invariance has to be broken to generate a mass gap

IR brane

Conformal invariance is normally broken by an IR brane (RS1 ^a) at $y = y_c$. It can be stabilized by the GW mechanism ^b: it requires a stabilizing scalar in the gravitational background

^aL. Randall and R. Sundrum, hep-ph/9905221 ^bW. Goldberger and M. Wise, hep-ph/9907447

There is another way of breaking the conformal invariance if the scalar field has a singularity at y = y_s which replaces the IR brane

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton Iuctuations

Radion fluctuations

The Higgs background

EWSB

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

We call this a soft wall

Soft-walls

There is no IR brane and the extra dimension is non-compact but of finite length

$$\int e^{-A(z)} dz \equiv y_s = \int_0^{y_s} dy < \infty$$

This implies that the IR brane is replaced by a

Naked curvature singularity at $y = y_s$ where $A(y_s) \to \infty$

Stabilizing the distance y_s is similar to stabilizing the brane-to-brane distance y_c by the GW mechanism

- The stabilizing field has a divergence at $y = y_s$
- The metric backreacts and vanishes at the singularity
- No IR brane is required

THE MODEL

- We will introduce a scalar field φ with some boundary condition (BC) at the UV brane @ y = 0: φ₀
- We want naturalness to be fulfilled with an exponential relation between ky_s and φ₀ as

$$ky_s \sim e^{
u \phi_0}$$

In this way a hierarchy can be naturally generated with values $\nu,\phi_0\simeq \mathcal{O}(1)$

- ► The presence of φ(y) will backreact on the AdS metric A_{AdS} = ky providing a modification far from the UV brane. Solving the exact EOM is required
- We will solve the Einstein EOM in the bulk by ¹

"Superpotential" method (non supersymmetric models)

$$A'(y) = W(\phi), \quad \phi'(y) = \partial W / \partial \phi$$

 $V(\phi) = 3(\partial W / \partial \phi)^2 - 12W^2$

¹O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, hep-th/9909134 < □> বট> বট> বট> ট প্ও্ে

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion Iuctuations

The Higgs background

EWSB

Mariano Quirós

Outline

Introduction to SW

The model

Graviton Iuctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

• The length y_s is related to the boundary field ϕ_0

Singularity location

$$ky_s = \frac{1}{\nu^2} e^{-\nu \phi_0}$$

²J. A. Cabrer, G. von Gersdorff and M. Quiros, arXiv:0907.5361 ∽۹۹€

Mariano Quirós

Outline

Introduction to SW

The model

Graviton Iuctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

► The metric A(y) separates from the AdS metric only near the singularity. E.g. for v = 2, ky_s = 40

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

The low scale ρ can be related to φ₀ as a double exponential

$$\rho = k \exp\left\{-\frac{1}{\nu^2} \left(e^{-\nu \phi_0} - \nu \phi_0 - \log \nu^2\right)\right\}$$

• A big hierarchy can be naturally obtained with $|\phi_0| \simeq \mathcal{O}(1)$

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

GRAVITON FLUCTUATIONS

- We have solved numerically the EOM
- For $ky_s = 30$ the first levels mass spectra :

► Level spacing shrinks in the conformal limit $\nu \to 1$ (RS is $\nu \to \infty$)

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

RADION FLUCTUATIONS

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

The radion/graviton ratio

$$m_{radion}/m_{grav}^{(1)}\ll 1$$

The Higgs background

- In soft-walls there is no IR brane and thus the Higgs has to propagate in the bulk
- The Higgs doublet in the Standard Model (SM) can be described by

$$H(x,y) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ h(y) + \xi(x,y) \end{bmatrix} e^{i\vec{\chi}(x,y)\vec{\sigma}}$$

- We will assume the Higgs does not perturb the previous mechanism for fixing the radion mass.
- We then impose the

Regularity condition

h(y) is regular at y_s

 In that case the Higgs does not backreact on the gravitational metrics

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

The Higgs background satisfies the equation of motion

Bulk EOM

$$h'' - 4A'h' = \frac{\partial V}{\partial h}, \quad V(h) =$$
bulk potential

and

Boundary conditions

$$h'(0) = \left. \frac{\partial \lambda_0}{\partial h} \right|_{y=0}, \quad \lambda_0(h) = \mathsf{UV} \text{ brane potential}$$

 I will present a model where EW symmetry is broken at the UV brane

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

EWSB

EWSB is triggered by the potentials

UV breaking

$$V(H) = a(a-4)|H|^2$$

and

$$\lambda_0(H) = M_0 |H|^2 + \gamma_0 |H|^4$$

 The bulk EOM is solved by a linear combination of Whittaker functions

$$h(y) = c_W e^{2A} W_{\frac{-4}{(a-2)\nu^2}, \frac{4-\nu^2}{2\nu^2}} [2(a-2)(y_s - y)]$$

+ $c_M e^{2A} M_{\frac{-4}{(a-2)\nu^2}, \frac{4-\nu^2}{2\nu^2}} [2(a-2)(y_s - y)]$

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

The gauge sector Electroweak constraints Numerical results

Conclusion

・ロト・日本・日本・日本・日本・日本

• Regularity and BC at UV imply (for $a \ge 2$)

BC at UV (for $a \ge 2$)

$$\mathsf{Regularity} \Rightarrow c_W = 0$$

and for
$$h_0 = c_M M_{\frac{-4}{(a-2)\nu^2}, \frac{4-\nu^2}{2\nu^2}} [2(a-2)y_s]$$

$$h_0^2 \simeq rac{4-a-M_0}{\gamma_0}$$

• $h_0(\gamma_0)$ is fixed by the EW condition

EWSB condition

$$v_{SM}^2 = \int_0^{y_s} h^2(y) e^{-2A(y)} dy$$

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

The gauge sector Electroweak constraints Numerical results

Conclusion

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

The Higgs background looks like:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Soft walls

Mariano Quirós

EWSB IN THE GAUGE SECTOR

We will illustrate the mechanism with an abelian example

The Higgs is defined as

$$H(x,y) = \frac{1}{\sqrt{2}} [h(y) + \xi(x,y)] e^{ig_5\chi(x,y)}$$

The action is invariant under 5D gauge transformations

5D gauge transformations

$$egin{aligned} &A_M(x,y) o A_M(x,y) + rac{1}{g_5} \partial_M lpha(x,y) \ &\chi(x,y) o \chi(x,y) + \chi(x,y) + rac{1}{g_5} lpha(x,y) \end{aligned}$$

We will take the 5D gauge condition

$$\partial^{\mu}A_{\mu} - m_{A}^{2}\chi + (e^{-2A}A_{5})' = 0, \quad m_{A}(y) = g_{5}h(y)e^{-A(y)}$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion Iuctuations

The Higgs background

EWSE

The gauge sector Electroweak constraints Numerical results

► The 4D theory is invariant under \(\alpha\)(x) = \(\alpha\)(x,y)/f(y) gauge transformations and contains:

$$A_{\mu}(x,y) = \frac{a_{\mu}(x) \cdot f(y)}{\sqrt{y_{s}}}$$

$$G(x,y) = m_A^2 \chi - \left(e^{-2A}A_5\right)' = \frac{m_f G(x) \cdot f(y)}{\sqrt{y_s}}$$

$$K(x,y) = \chi' - A_5 = \frac{K(x) \cdot \eta(y)}{\sqrt{y_s}}$$

With profiles

Profiles

$$m_f^2 f + (e^{-2A}f')' - m_A^2 f = 0$$
, Neumann BC
 $m_\eta^2 \eta + \left[m_A^{-2} \left(e^{-2A} m_A^2 \eta \right)' \right]' - m_A^2 \eta = 0$, Dirichlet BC

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

The gauge sector Electroweak constraints Numerical results

Conclusion

NURNER NER NER E 1994

We can find an approximation for the light gauge boson mode in the limit where the breaking is small and thus there is a light mode with almost constant profile

Analytical approximation

$$f_{A}^{0}(y) = 1 - \delta_{A} + \delta f_{A}(y)$$

$$\delta f_{A}(y) = \int_{0}^{y} dy' \, e^{2A(y')} \int_{0}^{y'} dy'' \left[m_{A}^{2}(y'') - m_{f_{A}^{0}}^{2} \right]$$

$$\delta_{A} = \frac{1}{y_{s}} \int_{0}^{y_{s}} dy \, \delta f_{A}(y)$$

The light mode mass

Mass of light mode

$$m_{f_A^0}^2 = rac{1}{y_s} \int_0^{y_s} m_A^2(y) dy$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSE

The gauge sector Electroweak constraints Numerical results

ELECTROWEAK CONSTRAINTS

- In our 5D model (for fixed values of the parameters ν, y_s,...) we have the free parameters (g₅, g'₅, h₀, a) which fix the physical spectrum of zero mode masses
- Once we have fixed the condition $m_{f_Z} = m_Z^{(ph)}$ the eigenvalue m_{f_W} is a prediction of the theory
- The parameter

$$\rho_0 = \frac{m_{f_W}^2}{c_W^2 m_{f_Z}^2} \equiv 1 - \Delta \rho = 1 - s_W^2 \tilde{\delta}_Z$$

can deviate from unity which amounts to a violation of the custodial symmetry (CS)

$$\tilde{\delta}_V = \frac{m_V^2}{k^2} y_s \int_0^{y_s} \left(\Omega - \frac{y}{y_s}\right)^2 e^{2A} dy$$
$$\Omega(y) = \frac{U(y)}{U(y_s)}, \quad U'(y) = h^2(y) e^{-2A(y)}$$

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSE

The gauge sector

Electroweak constraints Numerical results

 We will be assuming here (not necessarily an assumption) that fermions are localized on the UV brane in which case

$$g_V = g_V^{SM} f_V(0) \equiv g_V [1 - \delta_V]$$

The latter changes the definition of the Fermi constant measured in the µ-decay and the Z widths which constrain the

EWPT Parameters

$$\delta_{Z} = \frac{m_{Z}^{2}}{k^{2}} y_{s} \int_{0}^{y_{s}} dy \, e^{2A(y)} \left(1 - \frac{y}{y_{s}}\right) \left(\Omega - \frac{y}{y_{s}}\right)$$
$$\delta_{W} = c_{W}^{2} \, \delta_{Z}$$

through the observables $\overline{s}_{\ell}^2,\,\Gamma_{\ell^+\ell^-},\ldots$

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

The gauge sector

Electroweak constraints Numerical results

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

- We can also express the departure with respect to the SM predictions in the language of the usual parameters (S, T, U)
- It turns out that

(S, T, U) parameters

$$\alpha(m_Z)T = s_W^2 \tilde{\delta}_Z$$
$$\frac{\alpha(m_Z)}{4s_W^2 c_W^2} S = -2\delta_Z$$
$$\frac{\alpha(m_Z)}{4s_W^2} (S+U) = -2\delta_W$$

• Or using the relation $\delta_W = c_W^2 \delta_Z$

$$\alpha(m_Z)T = s_W^2 \tilde{\delta}_Z \ , \ \alpha(m_Z)S = -8s_W^2 c_W^2 \delta_Z \ , \ \alpha(m_Z)U \simeq 0$$

The strongest constraint is on T

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSE

The gauge sector

Electroweak constraints Numerical results

NUMERICAL RESULTS

We can obtain a lower bound on m_{KK} from the bounds on T and S

No explicit CS is required!

<u>Soft walls</u> Mariano Quirós

One of the reasons why the bounds go down when $\nu \to 1$ is

$$h(y) \sim e^{a_{eff}(\nu,a)y}$$

 a_{eff} Vs ν for a = 2

Soft walls

Mariano Quirós

and the Higgs profile is much less IR localized than in the RS case

CONCLUSION

- We have proposed a set of soft-wall models with AdS geometry near the UV brane
- The large hierarchy is generated without fine-tuning by a background scalar field
- The limit $\nu \to \infty$ is RS
- For ν = 1 the spectrum is continuum above a mass gap ρ and it can model unparticles
- We propose models of EWSB with a bulk Higgs
- Electroweak constraints can be satisfied in a way similar to the SM: no extra custodial symmetry has to be introduced
- Indirect and direct constraints can be satisfied for KK-masses of O(1) TeV
- The model is Higgsless and KK modes unitarize WW scattering (Pokorski's talk)
- One can also break EWS in the bulk with a light Higgs at the price of some fine tuning

Soft walls

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

BACKUP SLIDES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Mariano Quirós

Outline

Introduction to SW

The model

Graviton fluctuations

Radion fluctuations

The Higgs background

EWSB

Conclusion

• Expression for S, T simplify in the RS case as

(S, T, U) parameters

$$\alpha(m_Z)T^{RS} = s_W^2 \frac{m_Z^2}{\rho^2} (ky_s) \frac{(a-1)^2}{a(2a-1)} + \dots$$
$$\alpha(m_Z)S^{RS} = 2s_W^2 \frac{m_W^2}{\rho^2} \frac{a^2 - 1}{a^2} + \dots$$

- T is volume enhanced while S is not
- No analytical expression exists for soft-wall metric