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Planck Length and Lorentz-Fitzgerald (LF) contraction

Commutation relations among coordinates are imposed to define a
noncommutative replacement of the classical localisation algebra
C∞(Rd+1)=complex continuous functions of Rd , vanishing at infinity.

Commutations relations typically involve one parameter, assumed to
be of order of Planck length λP ∼ 10−33cm (reason: with a(m)=Compton
wavelength and b(m)=Schwarzschild radius, a(m) ∼ b(m) has solution
m=Planck mass, in which case a ∼ b ∼Planck length.) But

“The existence of a universal length implies the breakdown
of usual Lorentz covariance, because of Lorentz-Fitzgerald
(LF) contraction” (vague statement, possibly incorrect).

I true for lattice models
I for non commuting coordinates, it depends on the model; there

are counterexamples (e.g. the seminal DFR model, cf Doplicher’s
talk).
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LF, UR and covariance on quantum spacetime
In DFR model (1994), coordinates qµ (s.a. ops) are covariant under a
unitary representation of the Poincaré group, which means

U(Λ,a)−1qµU(Λ,a) = Λµνqν + aµ.

This is not in contrast with the CR being driven by a dimensionful
parameter. Hence, Singly Special Relativity may well be already
Doubly Special! It depends on the model. DSR does not force us
into the realm of modified/broken/violated covariance.

In general, the uncertainty

A 7→ ∆(A) :=

√
〈A2〉 − 〈A〉2

is not a linear functional (A a generic operator). Hence, despite the
notations, ∆(qµ) is not a covariant 4-vector: ∆(Λµνqν) 6= Λµν∆(qν).
No necessary contradiction between Uncertainty Relations (UR)
driven by dimensionful parameters and LF.

Existence of a minimal length too, is not in contradiction with LF in
covariant models (cf Doplicher’s talk).
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Canonical Quantum Spacetime (reminder)
Canonical Quantum spacetime: CR of the form

[xµ,xν ] = iθµν ,

θµν = λ2
Pσ

µν .

Weyl quantisation (from ordinary functions to ops):

f (x) :=

∫
dk f̌ (k)eikµqµ

, where f̌ (k) :=

∫
dx

(2π)4 f (x)e−ikµxµ

.

Classical functions equipped with non local, noncommutative
Star-product defined by:

f (q)g(q) = (f ?σ g)(q),

viz.

(f ?σ g)(x) =

∫
dk eikµxµ

∫
dh f̌ (h)ǧ(k − h)e−

i
2 hµθ

µνkν ,

which equals the usual Moyal expansion on analytic symbols. This
gives a noncommutative algebra Aσ.
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“Older” Approaches to Covariance
?σ is not covariant. Three approaches in the older literature:

1. covariance is broken; geometric symmetries = stabiliser of σ.

2. we fix a choice of σ0 in a given reference frame (“privileged”),
and in any other frame we take the corresponding tensor
transform σ of σ0.
We thus get a collection of algebras {Aσ} labeled by the
matrices σ in the orbit Σ of the initial σ0.
The action of the Lorentz transformations can be seen as a
groupoid, connecting pairs of algebras: if Λ sends σ1 to σ2, we
have a corresponding isomorphism from Aσ1 → Aσ2 . Two
different such arrows can be combined if the tip of the first is the
same as the tail of the second. Observers are not equivalent.

3. We consider {Aσ} as a bundle of algebras; the star product is
defined fibrewise on sections:

(F ?G)(σ; ·) = F (σ; ·) ?σ G(σ; ·)

For appropriate choice of the orbit Σ, this is DFR. Action of
Poincaré group by automorphism of the algebra of sections is
NOT fibrewise. Observers are equivalent.
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Twisted Covariance (reminder)
An apparently different approach is provided by twisted covariance.
Pick the privileged frame corresponding to σ0; the star product can be
written as

f ?σ0 g = mσ0 (f ⊗ g) = (m ◦ Fσ0 )(f ⊗ g)

for suitable linear operator Fσ0 on Aσ0 ⊗Aσ0 .

Define usual action on functions

(α(Λ,a)f )(x) = f (Λ−1(x − a)), α(2)(Λ,a) = α(Λ,a) ⊗ α(Λ,a)

and twist the action α(2) as:

α(2)
σ0

(Λ,a) = F−1
σ0
◦ α(2)(Λ,a) ◦ Fσ0

Then by direct check we have twisted covariance of the product

α(Λ,a) ◦mσ0 = mσ0 ◦ α(2)
σ0

(Λ,a),

which may be regarded as deformation of usual covariance
α(Λ,a) ◦m = m ◦ α(2)(Λ,a).



Twisted Covariance (reminder)
An apparently different approach is provided by twisted covariance.
Pick the privileged frame corresponding to σ0; the star product can be
written as

f ?σ0 g = mσ0 (f ⊗ g) = (m ◦ Fσ0 )(f ⊗ g)

for suitable linear operator Fσ0 on Aσ0 ⊗Aσ0 .

Define usual action on functions

(α(Λ,a)f )(x) = f (Λ−1(x − a)), α(2)(Λ,a) = α(Λ,a) ⊗ α(Λ,a)

and twist the action α(2) as:

α(2)
σ0

(Λ,a) = F−1
σ0
◦ α(2)(Λ,a) ◦ Fσ0

Then by direct check we have twisted covariance of the product

α(Λ,a) ◦mσ0 = mσ0 ◦ α(2)
σ0

(Λ,a),

which may be regarded as deformation of usual covariance
α(Λ,a) ◦m = m ◦ α(2)(Λ,a).



Twisted Covariance (reminder)
An apparently different approach is provided by twisted covariance.
Pick the privileged frame corresponding to σ0; the star product can be
written as

f ?σ0 g = mσ0 (f ⊗ g) = (m ◦ Fσ0 )(f ⊗ g)

for suitable linear operator Fσ0 on Aσ0 ⊗Aσ0 .

Define usual action on functions

(α(Λ,a)f )(x) = f (Λ−1(x − a)), α(2)(Λ,a) = α(Λ,a) ⊗ α(Λ,a)

and twist the action α(2) as:

α(2)
σ0

(Λ,a) = F−1
σ0
◦ α(2)(Λ,a) ◦ Fσ0

Then by direct check we have twisted covariance of the product

α(Λ,a) ◦mσ0 = mσ0 ◦ α(2)
σ0

(Λ,a),

which may be regarded as deformation of usual covariance
α(Λ,a) ◦m = m ◦ α(2)(Λ,a).



Back to Groupoids

However, we have the simple relation

α(2)(Λ,a) ◦ Fσ0 = Fσ ◦ α(2)(Λ,a), σµν = Λµµ′Λνν′σµ
′ν′

0 .

It follows that l.h.s. of twisted covariance is the same as

mσ0 ◦ α(2)
σ0

(Λ,a) = mσ ◦ α(2)(Λ,a),

namely we get an isomorphism from Aσ to Aσ0 . We reproduced
precisely the situation of the collection of algebras labeled by the
manifold Σ, with groupoid action of Poincaré group.

Yet another equivalent description of the same situation (which I
regard as the most transparent) is: take the full DFR model, with an
additional rule for selecting the admissible localisation states: those
which, restricted to the σ dependence only, appear as delta measures
around σ0 to the privileged observer.

The natural question then is: why should we reject those states?
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Another (undeformed) Poincaré covariant model
Consider the relations

[Xµ,X ν ] = i(Vµ(X − A)ν − V ν(X − A)µ),

[Xµ,V ν ] = [Xµ,Aν ] = [Aµ,V ν ] = 0,

complemented with the constraint VµVµ = I .

Statement: there exist a universal representation of the above
relations by selfadjoint operators, which is covariant under a unitary
representation of the Poincaré group, namely

U(Λ,a)−1XµU(Λ,a) = ΛµνX ν + aµ,

U(Λ,a)−1AµU(Λ,a) = ΛµνAν + aµ,

U(Λ,a)−1VµU(Λ,a) = ΛµνX ν ,

We look for irreducible representations; by Schur’s lemma,
V = v I ,A = aI . In particular there is the solution
v0 = (1,0,0,0),a0 = 0, which gives the well known κ-Minkowski
relations

[X 0
(0),X

j
(0)] = iX j

(0).
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Fix an irrep X (0)of κ-Minkowski. For each L = (ΛL,aL),

X (L) = LX (0), V (L) = ΛLv(0)I , A(L) = La(0)I ,

is an irrep of our new model. This gives a covariant family of irreps,
labeled by the orbit

Ξ = {v ∈ R4 : vµvµ = 1} × R4

under the action

(Λ,b) : (v ,a) 7→ (Λv , Λa + b).

Irreps of κ-Minkowski are labeled by Sd−1 × R.
By direct integral techniques one may now easily construct the
universal representation, covariant under a unitary representation of
the Poincaré group.

This construction goes along the same idea underlying crossed
products (also known as covariance algebras).
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universal representation, covariant under a unitary representation of
the Poincaré group.

This construction goes along the same idea underlying crossed
products (also known as covariance algebras).
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A general situation

Like for θ, we have for κ:
I An initial model with broken covariance: the κ-Minkowski;

I a fully covariant model which contains the initial model as a
component;

I the latter is a bundle of algebras over the manifold Ξ, so a
“groupoid approach” to covariance is clearly possible.

I A (weak) analogue of twisted covariance is also possible (let us
called it deformed covariance), which is equivalent to the
groupoid approach (no time left for details).

This is a general situation.
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Some final remarks
1. Dimensionful universal parameters ruling the noncommutative

geometry are not incompatible with Poincaré covariance; special
relativity is already multiply special.

2. The “groupoid” approach (equivalent to deformed covariance)
sums up to take a fully covariant model and dismiss a huge class
of otherwise admissible localisation states; it is this step which
breaks covariance. Question: why?

3. the “groupoid” approach and twisted covariance are equivalent if
linear transformations only are considered. The strength of
twisted covariance is that it allows for generalisations which
otherwise are not available. This is a good point, indeed, since
things are difficult. But it does not answer the above question:
general theories should be satisfactory when restricted to
important special cases.

4. These comments are not meant to defend “Wigner orthodoxy” on
symmetries in the noncommutative setting. New ideas may be
necessary to find out The Way. But there is much to understand
about motivations and interpretations.
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