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The theory

Topologically massive gravity

S() =2 [ a7 (<20 + R+ 4T, (075, + 375 TT)

_ 1
Z= 167G

Dimensionless combinations of couplings

v=uG; T =NG?; ¢ = p/VIN|

T T(Z)Z
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The theory

Background field expansion

Yo = Quv + h;w

Gauge fixing
See = _Z d3x /=g x.9"
GF 20 gXug Xv

B+1

Xv = auh,uz/ 8 h.

Sgh = — /d3x\ﬁC”<5”D+ zﬁ

Later will set 3 = 2oL

V.V +R, >C




Calculations
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Wilsonian beta functions

Modified generating functional
e~ Wbl - / Dasexp{—sw]—Ask[d»]— / dxw}

IR Cutoff

Al = 5 [ dpH-P)RK(p) 9(p) = 5 3 FRe(Mn).

Effective average action

Meld] = Wi [9] - /de<z>— ASK[4],
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Wilsonian beta functions

One loop evaluation

For the EA .
(1) — - (2)
r S + 2Trlog (S )
Similarly
1

r—s+ 5Trlog (S(Z) + Rk)
therefore )

dar 1 -1 dR

dk 2" <S + ") dk
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Wilsonian beta functions

«(¢,91) ZZQ.”’ K)o (¢)

n=0 i

drk ¢,9| Zzﬁn) O(”

n=0 i
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RG flow of TMG

One loop flow egn for TMG

1
kdrl(() _ 1 <52 (S + SgF)

dk 2 h,,0N 5
52Sgh ~odRe

~Tr | — vl k—~
(50#5@ Ry ) dk

Beta functions of G, p, A can be read off calculating k
53

dR pop
dk

-1
T R) K

ar®
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RG flow of TMG

Second variations

Take g metric on S°

8(2) + Sgg =
2R 2(1 -
4z/d3ng M <D ~ S 2/\) hev 4 (ao‘)hwvahpv
2
< - ﬂ*) hvAV”h,, (1 - (5; L >hDh+éh(R —6A)h
o

1 R
+;5’\’“’hAU <vu <D - 3> h, — vuvav%py)
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RG flow of TMG

Decomposition

1 1
huw =N, + V& + Vi + Vi Vo — 39w + 2g,uh

VihL, =0; g"h], =0;V,E" =0

likewise for ghosts

Cu=V,+0,S; VAV, =0

Field redefinitions

R S R 2
D+§€M:'§u; D<D+)J:6; VvOsS =S
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RG flow of TMG

S(z) + SGF =
z .
T / [hE ABPTRTT 4 €, AIE, + Coo 0,6 + chhAhh}

o 2R ( o 1 Ap <0) R
AZ;LV’D = <D — ? + 2/\> 6(25'/) ) + ;6(,‘1 (p(sy) V)\ <D _ 3)

]__
Ay = D+TO‘R+2Q/\

2—« 6a\
Ao = U R
+4—a +4—a
R 6/
An = D4
" +4—a+4—oz
2 _2(4—04) 4 — o

c1=—— c, =Y ch o= —
' a’ 7 9a h 18
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RG flow of TMG

Eigenvalues and multiplicities

R 1 3/2
ANE = 6(n2+2n+2)—2/\i(6> nn+1)(n+2),n>2,
1
e _ Ryo
A = —(n +2n—3+2a)—2a/\, n>2,
6
R/, 6(2 — «) 6a
o _ _ — >
AR G(n +2n R g n>2,
R 6 6A
h 2
- = on — - >
An 6(” Ten 4—a> i—o N=0
mit=ml- = n?24+2n-3,
mi=mY = 2(n>+2n),

mi=ml=mS = n?2+2n+1
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RG flow of TMG

A,
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RG flow of TMG

Collecting

Tr(Zei(A; + Rk(Ai)))—lg (ZciRk(A)) = Tr(W)

dt
6tRk(x)
W(x) = ——="7~
) X 4+ Rg(x)
dry 1
kgic = 3 [TeW(A2) + TraW(Aq) +TroW (As) + TroW (An)]

—[TriW(Ay) + TroW (As)]

o
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RG flow of TMG

Choice of Ry
Re(x) = (k? = x)8(k? —=x);  W(x) =260(k? —x)
5= Y miEe - S + Y mie - 5
+ n n
+> mEo — A7) + > mpo(— )
n n

=23 my 01— A) 2> myo(1—X3)
n n

(here X = \/k?)
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RG flow of TMG

Euler-Maclaurin formula

> F(n)= /: dx F(x) + %F(no) - %F’(no) - %F”’(no)+R

n=ng

(e’e] Nmax
/ dx m(x)8(1 — \(x)) :/ dx m(x)
No

No

where A, =k2or A, =1

A\
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RG flow of TMG

What is Nma?

X X
2 2
= : ‘ . : e - n
5 10 ---.15 20 25 20 40 60 .80 100
-1 -1
_oL _ot \

Figure: 5\;+ (solid curve) and \! ~ (dashed curve) as functions of n,

for R = A = 0.01. Right: large ji regime (here ji = 3). Left: small &

regime (here i = 0.3).



RG flow of TMG

Calculations
000000000080

Figure: The real (left) and imaginary (right) parts of the roots of the
equation A+ =

1, for R = A = 0.01, as functions of ji. The solutions
of the equation )\l‘ =1 are obtained by the reflection i — —fi
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RG flow of TMG
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Figure: The real (left) and imaginary (right) parts of the roots of the

equation \! ~

—1, for R = A = 0.01, as functions of ji. The

solutions of the equation 5{* = —1 are obtained by the reflection

fi = —f.
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Beta functions of TMG

Euler-Maclaurin gives

dr _ _ 1 B
=3 [COR 32 1 CoRY2 4 Cypp + >F(no) - 2!2F’(n0)]

V(S?) = 272 (%)3/2 ; Jtr(wdw + 3w3) = 3272
2A 1 1
. = V(S® — R R3/2 4 ..
X (S )<167TG 167G T 12/67Gu -
_ 3Ver [ 2A Kk 1k . 1 N
4 \167GR%/2 167GRY2 ' 12\/6:Gu
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Beta functions of TMG

R-independent terms

No | Cz/2 | F(no) | F'(no)
hi,[ 2] 12 | 20 24
el 2| —24] 32 24
& | 2] -18| 18 12
h o] -2 2 4
crl1] -8 12 16
16
C|1]-%¥| 8 8
C 1 21 _
Z 3/2+§F(n0)—§': (No)| =0 — B, =0
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Beta functions of TMG

Measure couplings in units of cutoff

G =Gk,

Beta functions

1
12/67iG (

A = Ak?

p= fik

_8A
871G

1
167G

A

o 167

B

o 167

o

A\
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Beta functions of TMG

Beta functions of G and A

By = —2/"\+%é (A(ﬁ,A)JrZB(ﬁ)/"\)

Since v = uG = jiG is constant

can replace ji by v/G
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Ascending root cutoff

Ascending root cutoff

For i > /%
A
2,
20 40 60 8 100
1 L
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Ascending root cutoff

Beta function coefficients

16 N 9(2v/3cos 20 — v/3 cos 46 + 8(cos 6)3 sin )

AN i) = —5—
(A7) 3r m(cos 30)3

8(3 + 1la — 2a2)/~\ N 48(cosf — v/3sin 0) %
(4 — «) 7 sin 66 ’
" 4(1+ o)(11 — 2a)
B = =
_ 2(V/3sinf — cos f) + 22(v/3sin 56 + cos 50))
37 sin6d

1 4ji2
= = T 1
0 3 arctan 7




Results
[e]e] o]

Ascending root cutoff
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Figure: The flow in the A-G plane for « = 0, v = 5. Right:

enlargement of the region around the origin

showing the Gaussian

FP. The beta functions become singular at |G| = 1.9245.
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Ascending root cutoff
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Figure: Position of the FP (left) and eigenvalues of the stability matrix
(right) for the nontrivial FP with o = 0, 1 < v < 40. Note that for this
range of v the singularity is always above the FP. In the left panel, v
grows from right to left. Note that A, > 0 in this scheme. For large v,
G. tends to 0.2005 and the eigenvalues tend to —1 and —2.298.
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Descending root cutoff

Descending root cutoff

For ji < /2

A

2,

1 /

== ‘ ‘ - n
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Results

Descending root cutoff
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Figure: The flow in the A-G plane for « = 0, v = 0.1. Right:

enlargement of the region around the origin

showing that there is no

Gaussian FP. The beta functions diverge on the A axis.
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Descending root cutoff
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Figure: Position of the FP (panel) and eigenvalues of the stability
matrix (panel) for the nontrivial FP with & = 0, 107® < v < 0.5, in the
descending root cutoff scheme. In the left panel, v decreases from
right to left. A, changes sign for v = 0.18. The rightmost point

(v = 0.5) has ji ~ 3 > \/27/4.
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Spectrally balanced cutoff

Spectrally balanced cutoff

For any /i choose same Nmax for AT+ and ATT—,

A
2,
20 40 60 80 100
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Spectrally balanced cutoff

37

Results
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16 2V3
m(coshn)3
8(3 + 11a — 202) - 16v/3 #
(4 — a) m(cosh3n + 2 coshn)
411490 —20%) 8V3 [ 8+1lcosh2y
37(4 — «) 97 \ cosh3n+ 2coshn
1 472
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Spectrally balanced cutoff
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Figure: Left: The position of the FP in the A-G plane, varying v from
0.002 (upper left) to 1000 (lower right). The point with coordinates
(0,0.2005) is the limit v — oo. Right: The eigenvalues of M as
functions of v. For v = 0.002 they are —1 and —2.298 while for

v = 1000 they are —0.969 and —2.238.
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Conclusions

General features

@ Simple form of R implies spectrally unbalanced cutoff. No
choice of roots is good for all /i: ascending root good for
large i (small G), descending root for small ji (large G)

@ Spectrally balanced cutoff good for all /i
@ Qualitative picture consistent
@ Agreement with heat kernel calculation for 1 — oo
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Conclusions

Scheme independent features
@ (5, = 0 expected for topological reasons
@ GFP with critexp 1 and —2
@ NGFP with critexp ~ —1 and ~ —2
o G, is positive
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Conclusions

Scheme dependent features

@ position of NGFP
@ in particular, there is residual uncertainty on sign of
cosmological constant at NGFP for large ji

@ scaling exponents at NGFP (slightly)
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Conclusions

Gauge dependence

EOM gives R = 6A, but we did not use this. Off shell EA gauge
dependent, so off shell beta functions are gauge dependent.
On shell Hilbert action is proportional to

A 1 1
v(s® ~ o~
( )167rG VAG T

S0 expect 3, to be gauge independent. Indeed

(1 + 3A) + p-dependent terms

ﬁT~A+GB/~\:—;’6

™
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Conclusions

Asymptotic safety

@ large value of G
@ consistency of truncation

For large i, TMG is an example of asymptotically safe theory
which can be studied perturbatively

Since Riemann can be expressed in terms of Ricci, higher
derivative terms can be eliminated order by order in
perturbation theory
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