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Renormalization Group = Universality
Only dimensionality and symmetry matter

Effective Field Theory
(long wavelengths)

Statistical Model Renormalization Group

HRT

Hierarchical Reference Theory

e Keeps track of higher order operators

e Provides information on non universal properties
(critical temperature, crossovers etc.)

A.P. & L.Reatto: PRL, 53, 2417 (1984); PRA 31, 3309 (1985):
Adv. Phys. 44, 211, (1995).



Outline

Wilson's momentum-shell integration RG for microscopic models

Sharp & Smooth cut-off formulations

Approximate non perturbative closures

Relation to the Local Potential Approximation

First order transition and the convexity requirement

Extension to Quantum Hamiltonians

Open problems



HRT vs. RG: A short story
(scalar order parameter)
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Formal Perturbation Theory

e Split the potential into a Hard Sphere part and an Attractive tail

v(r) =vgg(r) +w(r)

e Expand the free energy (InZ) in powers of w(r)

e Order the diagrams according to the number of loops



Zero loops

One loop

Two loops
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Correspondence Field Theory & Statistical Model

- 1 - [pSHs(@)]”
Propagator: a2 <— [—Bw(q)] LT BpSe()B(a)
Vertex: Un(r]_, N rn) “— Cn(I']_, . 7rn) — 0" In ZHS[p(I‘)]

6p(ry) -+ 6p(rn)

Momentum Shell Integration RG

Cut-off on the propagator «<— Cut-off on the interaction w(q)



Sharp cut-off implementation

Sequence of intermediate ()-systems

- | w(k) for k>@Q
wQ(k)_{O for k < Q

Q. o0 —0

lim @o(k) =0

Q—00

Jim @ (k) = (k)

The cut-off ) limits the range of density fluctuations included in the ()-system
Liquid-vapor transition inhibited at every ) =0



Evolution of the free energy with @

dAg d _ - -
w — —5 Qd Qd 1 IN _1 — FQ(Q) ﬁw(Q)]
d P ﬁu"J(Q)]
= ——Q In |1
ot I _ * Co(Q)

o —kT Ay = Free energy density of the Q-system

+ Mean field contribution [Mx]
e Cp(k) = Direct correlation function of the Q-system [I‘,(f)(q)]
52AQ

+ Mean field contribution == C(Cp(r1 —rp) =

6p(r1)dp(ra)

e (2; = volume of the unit sphere in d-dimension

Exact hierarchy of differential equations for Cy and en® (n=3, - 00)



Wy(k)

Smooth cut-off implementation
Sequence of intermediate t-systems
we(r) = w(r) — e_(d+2_’7)tw(r/et)

w1 (k) = (k) — e =M G (K et)

t: 0O — o0
Q~et

lim w: (k) = 0
t—>0wt()

Jim wi (k) = w(k)

Phase transitions are suppressed at all finite t's

A.P: J. Phys. C 26, 5071 (1986)
A.P., D.Pini and L.Reatto: PRL 100, 165704 (2008)



Evolution of the free energy with ¢
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o — kT A; = Free energy density of the ¢-system

+ Mean field contribution [Mz]
e C;(k) = Direct correlation function of the ¢-system [I‘,(f)(q)]
52 A

+ Mean field contribution == C(Ci(r; —rp) =
6p(r1)dp(ra)

Exact hierarchy of differential equations for C; and ¢,! (n =3, - -



The Dictionary

NPRG Smooth cut-off HRT
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Highlights of the exact HRT equations

For (QJ — O and in the critical region the HRT equations simplify
and, through a simple rescaling, reduce to the standard RG hier-
archy of equations for a scalar field theory.

The HRT smooth cut-off prescription depends on the interparticle
potential w(r) and corresponds to the smooth cut-off RG with a
suitable choice of smearing function

The full HRT equations retain information on non-universal prop-
erties and short range correlations (i.e. the full UV behavior of
the statistical model is preserved in the RG procedure)

The HRT strategy can be trivially generalized to O(n) spin models
on a lattice



An approximate closure

Ci(k) = cus(k) — Ai(p) Bw(k)

A(p) =1 = Mean Field

2
A(p) defined by the compressibility sum rule = Ci(k=0) = 38:2%

Local Potential Approximation at long wavelengths
02 Ay

Ci(k) — — bk
t( )kNO 8p2

e Closed (approximate) partial differential equation for the
thermodynamics of the ¢-system

e TO be solved with initial condition A; = —BAp/V for t =0

e In the t — oo limit A; — Physical free energy density of the fully
interacting model



Critical Properties
Formal structure of the HR'T evolution equation at large ¢

A _ g (20 PA
dt 0p2

where ®(x) is a non-linear function
depending on the choice of sharp/smooth cut-off

. d—2,
e Rescaling: z=(p—pc)e 2

Hi(2) = e [Ai(p) — Ai(pe)]

e Fixed point equation: the standard RG structure in LPA is recovered

2L HU(R) — dHL(2) = S(HI (=) — S(H!(0))




HRT flow of the inverse susceptibility
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e Approach to the fixed point value in the critical region

e Flow to the low temperature fixed point in the two-phase region
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Critical exponents and amplitudes
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d=3
HRT sharp | HRT smooth | Exact
vy 1.378 1.328 1.237
I] 0.345 0.332 0.326
n 0 0 0.036
U2 — C_|_/C_ — 4.16 4.76

PRL, 53, 2417 (1984); PRL 100, 165704 (2008)




Numerical integration of the full

Inverse susceptibility

y=1.328 Jee
[ ]

T,=1.214167

-4 -3
Log,, I1-T/T,|

Smooth cut-off

-0.6

-0.8

Ap
2p,

Log,e

HRT equation

Coexistence curve

£=0.332

— T,=1.214167

Log,, (1-T/T.)



Phase diagram of a fluid
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HRT-smooth MC
Te 1.2142 1.212(2)
Pe 0.3157 0.312(2)




First order transition

e Fluctuations restore the convexity of the free energy

e For t — oc:
In one-phase regions the susceptibility is always positive

At coexistence the susceptibility identically vanishes

Phys. Rev. E 48, 3321 (1993); Phys. Rev. E 76, 031113 (2007)



First order transition
Sharp vs Smooth cut-off
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Quantum HRT

e General interacting quantum system of

S 1 A A
H=HR—I—V=HR-I-§/dXdy,O(X)’w(X—Y)P(Y)

e Order parameter < p(x) > = Perturbative expansion in w(x)
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A.P & P.Gianinetti PRB 63, 104414 (2001)



Formal analogy with a classical model in d + 1 dimension

Sharp cut-off on the Fourier components of w(x)

Exact evolution equation for the Helmholtz free energy density

d.AQ .
de)

Connected two point function in imaginary time:

52 In=[J]

F(x1,T1;X0,T2) =

= Q"1 20, Y In[L — Fp(Q,wn)i(Q)

6J(x1,71)0J(%2,72)| 70

Matsubara frequencies at finite temperature: w, =

25



T he antiferromagnetic Heisenberg model

~~

H = J Z SR . SR’ — h Z 67;7?'R§f{
<R,R/> R

e Order parameter: staggered magnetization < S§ >= me™ R

Parametrization of the two point functions
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Physical response functions

Single mode approximation

TW O(w—e€r) + o(w+ €r)
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e Spin wave dispersion: €, = m\/OzLQ — w(k)?
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Numerical results in two dimensions

Spin-1 model 1

Spin—j model

log(€)
log(€)

2Tps

E(T) ~&pe T

The Heisenberg model always falls in the renormalized classical regime



Non Linear o-Model

_Ps [ d [P 2, 1 (09)° _
S[Q]—Q/drfo d7{|v9| +02(8T>} Q=1

S

One loop RG equations QHRT evolution of the

spontaneous magnetization

dg K g5
Q@ = (d=1)g - 7d92 coth(g/2T) —dggz = K, (%) coth(BQmg)
a4 (g> _9
dQ T T 20 ‘ ‘

0@ | T2

Effective coupling constant ol o T=06

[ Q\" Va4

()




Outlook

Closures

Beyond LPA: the second equation of the hierarchy
o n at two loop order

Better representation of short range physics
o Repulsive interactions
o Classical and Quantum Heisenberg models

Order parameters
Beyond the O(n) model: inhomogeneous systems
Competing interactions: more complex order parameters
The Fermi surface in QHRT

The Coulomb gas (primitive model)
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c(r) =exp{—Blvg(r) +w(r 1} for the Ornstein-
Zernike direct correlation function. From the free
energy Eq. (2) one then finds the correct first virial
coefficient. If in the hierarchy we approximate ¢ 2
with its ideal-gas value starting from n = m then the
truncated system gives the correct low-density ex-
pansion for ¢(r) up to order m —2.

In the opposite limit of high density the effect of
the many-particle correlations becomes essentially
irrelevant. In fact the strong effect of screening of
w(r) by _the repulsive forces is manifest in (4)
because F(p) is very small in the region of small p
where ¢(p) is significant. Therefore to lowest or-
der M9 can be considered as a negligible quantity so |

that ¢ °(k) = ¢ * (k) but & * (k) corresponds to the
ORPA that is known as an excellent approximation
for a fluid in the triple-point region.

We discuss now the region of the critical point
where S(0)=p~1F2=°(0) >> 1. Then also p~!
x F @(k) will be large for small values of k and Q so
that the terms unity in the integrands of the hierar-
chy can be dropped in comparison to ¢ (k)F 2(k).
Similarly, terms proportional to F92(k) have to be
kept only for k =Q, where FQ([C)=FQ(k), be-
cause for k< Q  FQk)=FK/1+k)
x F2(k)] is a bounded quantity. Then in this low-
momenta regime the hierarchy simplifies and, for
instance, the evolution equation for ¢ € can be writ-
ten in the form

9 9 _ 0
aan”ax 2+7|uf (x)
=1mfa0,wd (X, -%,7, -V) — 20 X7~ X~V /uf T+3)}/uf (), )

where the momentum integration is over the surface |¥|=1 with the limitation |y +x| > 1. Here we have

introduced the scaled functions

u2(Xy, ..., Xy)=— Q-2+ 2-d 0(%,0, . ..
for n > 2 and u§ (x) is defined in the same way in
term of ¢ ¢. The exponent 7 is defined as the con-
stant for which limg — o0 ~2*"[¢ 2(xQ) — ¢ 2(0)]
is finite at the critical point. The evolution equa-
tion (7) for u and those for the u are equivalent
to the RG equations which can be deduced from
the theory of Nicoll and Chang.® This can be
shown by recasting our approximate hierarchy in
the form of a differential generator for the free en-
ergy A of an inhomogeneous system. In our case
this generator _involves the second functional
derivative of B4 with respect to the local density,
this being equal to ¢, in place of the local magneti-
zation as in the case of Nicoll and Chang. The
characteristic momentum Q corresponds to the
momentum shell of integration in the RG. Thus
the existence of a fixed point for our approximate
hierarchy implies a scaling form for the correlation
functions in the critical region.® The critical be-
havior given by our approximate hierarchy can be
analyzed in the framework of the e =4—d expan-
sion and in fact, because of the equivalence already
discussed, we recover the € expansion for the criti-
cal exponents as obtained by RG technique for a
one-component order parameter. It is known that
to first order in € the presence of vertices of odd or-
der does not modify the Ising universality class.”

So far we have not considered the effect of the
core condition. When we use (6) in place of (3) we
find that the extra term introduced by the core con-

J%,0) (3%,-0) ®)

T
dition vanishes in the Q— 0 limit faster than the
other terms provided that

¢9(d, —4,0,0) = 8% 2(q)/8p%
¢9(4,0, —§) =98¢ %q)/dp.

These relations are satisfied by the exact correlation
functions and we can construct simple decoupling
schemes for the full ¢ £ and ¢§ compatible with (9),
for instance

¢9(@G -3.k -%)

©9)

= 19% 2(G+K)/8p + 82T - K)/9p?]
and
¢9(@ K, ~q—K)=0¢ 2T +K)/dp.
When we use this closure in (4) we obtain a closed
equation for ¢ € from which we can deduce the crit-

ical exponents in the framework of the e expansion.
These turn out to be

'y=1+%e+0(€z);

u>%+1—126+0(€2); (10)
n=4€e+0(e),

and these are equal to the Ising values to leading or-

der. An open question is if the basin of attraction
of this fixed point also encompasses initial condi-

2419

PRL, 53, 2417 (1984)

<= Equation for F@ (k)

<~ BMW approximation



