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Motivations

Motivations

@ membranes: 2D-extended objects embedded in a d
dimensional space and subject to fluctuations

o fluctuating membranes / surfaces occur in several domains: J




@ chemical physics - biology (of the cell):

(Helfrich, Nelson-Peliti, David-Guitter, Aronovitz-Lubensky (70's - 80's))

main compound: amphiphiles molecules (ex: phospholipid)

@ one hydrophilic head
@ one — or more — hydrophobic tails




bilayers:

@ plane membrane (L ~ 1 — 110 pum and 6r ~ 1 nm)

/—h pholipid Bilayer ———

@ closed membranes (red blood cell, liposomes)
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@ High energy physics: (sum over) surfaces occurs within, e.g.:

o strong coupling expansion of lattice gauge theory

o discretization of Euclidean quantum gravity




@ High energy physics: (sum over) surfaces occurs within, e.g.:

o strong coupling expansion of lattice gauge theory

o discretization of Euclidean quantum gravity

@ string theory (Polyakov, David, Foerster (70's - 80's)))

@ a string sweeps out a surface (worldsheet)

@ action: S:T/d%\/g X area

— deep relations with fluid membranes: 7 = tension

(see also branes ... (Polchinski (90s)))



@ condensed matter physics:

graphene: carbon atoms on a honeycomb lattice
o relativistic electrons E = v|p| with v ~ ¢/300

s extremely high mobility (propagation without scattering)




Motivations

@ mechanical properties:
o extremely strong material

@ "soft" material: unique exemple of genuine 2D

(metallic and polymerized) membrane
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Fluid membranes vs polymerized membranes

= free diffusion inside the membrane plane (107 exchange/s)

@ very weak interaction between molecules
—> no shear modulus

Properties of fluid membranes
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Fluid membranes vs polymerized membranes

@ very small compressibility: no stretching or contraction

—> dominant contribution to the energy: bending energy

@ coordinate transformation — reparametrization — invariance

— free energy F' written in terms of geometrical quantities

-

@ parametrization:

2D membranes: parametrized by the embedding:

o = (01,02) — r(0o1,092)

@ (01,09) = local coordinates on the membrane

o r: d dimensional vector of bulk - or "target " - space
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Fluid membranes vs polymerized membranes

@ Free energy:

F:r/d%\@—kg/d%\@Kﬁ.KZ—kg/d%\/gR

8 gy = 0ur.0,r = metric induced by the embedding r(o)
o K,, = D, D,r = extrinsic — mean — curvature tensor
» R=K/ K} — K} K} = intrinsic scalar — Gaussian —
curvature
@ with:
@ 7: surface tension  (string tension)

s k: bending rigidity modulus  (string curvature)

o R: Gaussian rigidity modulus
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Fluid membranes vs polymerized membranes

@ no fluctuation of area: tension term — 0

o for a surface without boundary Gaussian curvature term is
shape-independent due to Gauss-Bonnet theorem:

/dQJ\/ER = 41y = 87 (1 — h)

with

o x : Euler characteristic

o h is the genus = number of "handles

— for a fixed topology this term can be neglected

@ Finally: bending free energy

K
= §/d20\/§ Kh K}
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Fluid membranes vs polymerized membranes

Low-temperature fluctuations in fluid membranes

@ Let us define i by:

oy =K, 0"r
where J,r are tangent vectors

— 1 is a unit vector normal to the surface

K

2 ~N\2 K A @
F:§/da(8un) — F:——Z n;.n;
where 1i; is a unit normal vector on the plaquette ¢

@ very close to a O(d) nonlinear o-model / Heisenberg spin
system but with "spins” living on a surface b




Fluid membranes vs polymerized membranes

@ Monge parametrization: x = 01, y = 02 and z = h(x,y)

= r(z,y) = (z,y, h(z,y))
(—8h, —8yh, 1)

V14 |Vh|?

thus: i(x,y) =

o Free energy:

F~ /d2x (AR)? + O(h*)

K
2
o flat phase 7 = 0(x,y) = angle between normal and axis e,:

B(z,y)?) = k:BT/d2 L L, (é)

Kq K a

—> no long-range order in the normals
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Fluid membranes vs polymerized membranes

At higher order in h, k is renormalized and decreased by
fluctuations in the |.R.:

== () n(2)

= makes the divergence of (§(x,y)?) worse

rem

@ lattice spins vs surface spins: d — 2 = d/2

@ correlations: (fi(r).n(0)) ~ 6—7“/5

Ak /3kpTd)

@ correlation length — mass gap: € e ael
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Fluid membranes vs polymerized membranes

Polymerized membranes

@ 2D membranes made of linked molecules )

ex:
- red blood cell
- inorganic membranes: graphene
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Fluid membranes vs polymerized membranes

@ lattice free energy:

where r, is the position of the a-th vertex

@ no diffusion = 3 shear modulus

— free energy made of bending and elastic energy

@ J prefered metric = reparametrization invariance broken

— free energy: no longer " geometric "
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Fluid membranes vs polymerized membranes

Low-temperature fluctuations in polymerized membranes

@ reference configuration: ro(x,y) = (z,y,2z = 0)

o fluctuations: r(z,y) = ro + (ui(z,y),u2(x,y), h(z,y))
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Fluid membranes vs polymerized membranes

@ stress tensor:

1
Uy = 3 [Opuy + Opuy + Opu.0yu + 9,k O, A

@ u, describes the longitudinal — phonon-like — degrees of
freedom

o h describes height, capillary — Goldstone - like — fluctuations

o

o free energy

F ~ /d2x [g(Ah)Q o+ g %(UMM)Q

Kk = bending rigidity A, p = elastic constants

@ non-trivial coupling between longitudinal - in plane - and
height fluctuations
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Fluid membranes vs polymerized membranes

Gaussian approximation:
1
Wy B2 5 [Ouuy + Opuy + 0,h O, h)
integrate over u:

Fopp = g / d*x (Ah)* + % / d&’x (PLd,hd,h)*

° PZ; = 6 — 0,0,/V?

o K =du(\+p)/(2u+ ).
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Fluid membranes vs polymerized membranes

o Effective rigidity: ﬁe_flf(q) = ¢*(|h(q)?)

A ~ 12
[unﬁqy]
Kerf(a +k)|q + k[

with: feyrp(q) :m+kBTK/d2k

= Kerf(d) ~ VEBT K /q increased by fluctuations !

@ normal fluctuations:

1
0(z,y)?) =k T/d2q7<oc!
<( y)> B Heff(Q)q2

@ renormalization of K = kesr(q) ~ ¢ " with0 <n <1

@ — Long-range order between normals even in D = 2! J
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Fluid membranes vs polymerized membranes

@ no trouble with Mermin-Wagner Theorem

Gaussian curvature R:
R(x) = —A(0,h0uh) + 0,0, (0,h0,h)
and:

Fop="2 / dx (AR)? + K / dx / iy R(x)G(x — y)R(y)

where:
Gx—y)x|x—y[’In[x—y|

—> Long-range interaction between curvatures
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Fluid membranes vs polymerized membranes

physics of polymerized membranes:

@ spontaneous symmetry breaking in D = 2 and even in D < 2

— low-temperature - flat - phase with non-trivial
correlations in the |.R.

Grr(q) ~ g~ (4=

Guu(q) ~ q_(6_D_277)
with 7 #0

Dlowfcrit: th(Q) ~ Guu(q) I n(Dlowfcrit) =2- Dlowfcrit



Fluid membranes vs polymerized membranes

@ crumpling-to-flat phase transition when 7' is varied
(Aronovitz, David-Guitter, Leibler, Nelson, Peliti, Radzihovsky 80's, 90's)

f f

t< 0 t>0

crumpled phase
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Fluid membranes vs polymerized membranes

Crumpling-to-flat phase transition

@ Landau-Ginzburg free energy:

@ order parameter: tangents t, = O,r

o O(d) and translation invariance

F = /dDa g (8a0ar)* + %(&11')2 +A (Oar.8ﬁr)2 + 1t (Bar.0ur)?

+ g/dDa /dD"' §(r(o) —r(o”))

rem:
@ self-avoidance term: neglected

@ F describes O(d) — O(D) x O(d — D)
Goldstone modes expected: D(d — D) but only d — D!
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Fluid membranes vs polymerized membranes

Perturbatively

For D-dimensional membranes embedded in a d-dimensional space: |

@ pertubatively around D, orit. =4 3 d., such that:

@ d > d..: second order phase transition
@ d < d..: first order phase transition

however:

@ d. only known at first order in ¢ =4 — D with
der(D = 4) ~ 219 = what about D =2 and d =37

@ flat phase properties: also poorly determined (¢ =4 — D)

@ no lower-critical-dimension approach
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NPRG approach to polymerized membranes

Nonperturbative approach to polymerized membranes

(J.P. Kownacki and D.M., 08)

o Effective action: I';[0),r]
@ O(d) and translation invariant

o expanded around a flat state:

D
r= Ck E Lo €q
a=1

with: (j ~ flatness factor ~ magnetization

= Iy [Our] = /dDa % (6,18,11')2 + Xk (Oarﬁgr — C,f 5a@)2
+ fir, (Oar.Oar — D ¢2)*

: . —2
= crumpling-to-flat transition and flat phase ({; — o) b/



NPRG approach to polymerized membranes

@ physics everywhere between D =4 and D = D;.(d)
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@ FLFP: Flat Phase Fixed Point
@ CTFP: Crumpling Transition Fixed Point
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NPRG approach to polymerized membranes

® do (D = 2) ~ 2 = the crumpled-to-flat transition in d = 3
of 2" order with 1 = 0.627

MC data: 77 = 0.71(5) (Bowick et al. (96))
— higher orders needed to stabilize the results
(K. Essafi, J.P. Kownacki, D.M.)

o Flat phase: npp = 0.849

MC computation with a realistic interatomic potential for
graphene: 7 = 0.850 !
(Los, Katsnelson, Yazyev, Zakharchenko and Fasolino (09))

® NFp:
@ no correction beyond the order r
(K. Essafi, J.P. Kownacki and D.M.)
@ almost no correction beyond the order 9% !
(Braghin and Hasselmann (10))

4
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Prospects

Prospects

@ extension to systems with different kind of internal orders :

& in-plane anisotropy = tubular membranes

(Radzihovski - Toner (98), Essafi - Kownacki - D.M.)
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Prospects

Prospects

@ disorder

(Radzihovski - Toner (95), Essafi, Kownacki, D.M.)

challenging problems:

@ self-avoidance

@ graphene-like systems: interaction between electronic and
membranes degrees of freedom

— condensed matter realization of matter coupled to "curve
space”
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