

Functional RG for few-body physics

Michael C Birse The University of Manchester

Review of results from:

Schmidt and Moroz, arXiv:0910.4586 Krippa, Walet and Birse, arXiv:0911.4608 Krippa, Walet and Birse, in preparation

Outline

- Background: effective field theories in nuclear and cold-atom physics
- Functional RG
- Three-body systems (unitary limit scaling)

2/16

- Four-body systems
- Summary

Background

Effective field theory: now mainstream tool for nuclear forces

- symmetries of underlying dynamics (QCD)
- systematic expansions in powers of low-energy scales (momenta, pion mass ...)
- RG methods used to derive power countings
- → classify terms as perturbations around fixed points (Wilsonian approach, sharp cut-offs)

Background

Effective field theory: now mainstream tool for nuclear forces

- symmetries of underlying dynamics (QCD)
- systematic expansions in powers of low-energy scales (momenta, pion mass ...)
- RG methods used to derive power countings
- → classify terms as perturbations around fixed points (Wilsonian approach, sharp cut-offs)
- 2-nucleon scattering very strong at low-energies (inverse scattering lengths $1/a \sim 10 40$ MeV)
 - expand around nontrivial fixed point "unitary limit" (zero-energy bound state: scale free)
 - corresponds to effective-range expansion [Bethe (1949)]
 - also describes atomic systems with Feshbach resonance tuned to threshold

3-body physics in unitary limit

Momentum space: one-variable integral equation

[Skornyakov and Ter-Martirosian (1956)]

Faddeev equation in hyperspherical coordinates

$$(R^2 = |\mathbf{r}_1 - \mathbf{r}_2|^2 + |\mathbf{r}_2 - \mathbf{r}_3|^2 + |\mathbf{r}_3 - \mathbf{r}_1|^2)$$

• Schrödinger equation with $1/R^2$ potential [Efimov, 1971]

$$-\frac{1}{M}\left[\frac{\mathrm{d}^2}{\mathrm{d}R^2}+\frac{1}{R}\frac{\mathrm{d}}{\mathrm{d}R}-\frac{\mathrm{v}^2}{R^2}\right]u(r)=p^2u(R)$$

 hyperangular eigenvalue ν² fixed by boundary condition (*S*-waves)

$$1 = \sigma \frac{4}{\sqrt{3\pi}\nu} \frac{\Gamma\left(\frac{1-\nu}{2}\right)\Gamma\left(\frac{1+\nu}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \sin\left(\frac{\pi\nu}{6}\right)$$

• spatially symmetric: $\sigma = +1$; mixed-symmetry $\sigma = -\frac{1}{2}$ ("particle-exchange interaction" between pair and third particle) Three bosons or more than two "species" of fermion (spatially symmetric state, eg triton)

- attractive $1/R^2$ potential ($v^2 < 0$)
- RG flow tends to limit cycle (discrete remnant of scale invariance) [Moroz, talk at this meeting]
- → Efimov effect: tower of bound states with constant ratio between energies
 - momentum scale factor $e^{\pi/s_0} \simeq 23$ where $s_0 = 1.00624$
 - leading 3-body force is marginal
 - fixes starting point on cycle or energy of one bound state (Phillips line relating ³H binding to *nd* scattering length)
 - Efimov states now observed for various alkali atoms

Other fermionic 3-body systems less interesting

- 3-body forces irrelevant (no role in very-low-energy physics)
- but noninteger anomalous dimensions
- mixed symmetry state of two or more species of fermion: leading 3-body force scales as Q^{4.33244} (Q: momentum)
- determine energy eigenvalues in harmonic traps [Werner and Castin (2005)]

4-body systems: no exact results

- 4-body forces irrelevant, even in Efimov systems [Platter, Hammer and Meissner (2004)]
- low-energy 4-body physics determined by 2- and 3-body forces (Tjon line relating ⁴He and ³H; atomic Efimov systems)

Wilsonian RG methods used to obtain these

exact results only for problems with 2-body-like forms
 2-body systems; 3-body with contact interactions
 not 3-body with long-range forces; 4-body

EFTs based on contact interactions

- not well suited for standard many-body techniques
- difficult to apply to larger systems, dense matter
- \rightarrow new approaches needed

Functional ("exact") RG

RG for the Legendre-transformed effective action Γ [Wetterich (1993)] (1-particle-irreducible generating function)

Exact evolution equation has 1-loop structure

$$\partial_k \Gamma = + \frac{i}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}_F) \left((\mathbf{\Gamma}^{(2)} - \mathbf{R})^{-1} \right)_{FF} \right] - \frac{i}{2} \operatorname{Tr} \left[(\partial_k \mathbf{R}_B) \left((\mathbf{\Gamma}^{(2)} - \mathbf{R})^{-1} \right)_{BB} \right]$$

 $\Gamma^{(2)}$: matrix of second derivatives of the action $\mathbf{R}_F(q;k)$: regulator for fermion fields; $\mathbf{R}_B(q;k)$: for bosons (suppress modes with momenta q < k)

 $\Gamma \rightarrow$ full effective action as $k \rightarrow 0$

Example: 2 species of fermion Fermion field: $\psi(x)$ (neutrons or spin- $\frac{1}{2}$ atoms) Boson "dimer" field: $\phi(x)$ (strongly interacting pairs) Truncated ansatz for action in vacuum: 2-body, local

$$\begin{split} & \mathsf{\Gamma}[\psi,\psi^{\dagger},\phi,\phi^{\dagger};k] \\ &= \int \mathrm{d}^{4}x \, \left[\psi(x)^{\dagger} \left(\mathrm{i}\,\partial_{0} + \frac{\nabla^{2}}{2M}\right)\psi(x) \right. \\ & \left. + Z_{\phi}(k)\,\phi(x)^{\dagger} \left(\mathrm{i}\,\partial_{0} + \frac{\nabla^{2}}{4M}\right)\phi(x) - u_{1}(k)\,\phi(x)^{\dagger}\phi(x) \right. \\ & \left. - g\left(\frac{\mathrm{i}}{2}\,\phi(x)^{\dagger}\psi(x)^{\mathrm{T}}\sigma_{2}\psi(x) + \mathsf{H}\,\mathsf{c}\right)\right] \end{split}$$

g: AA \rightarrow D coupling $u_1(k)$: dimer self-energy (u_1/g^2) : only physical parameter) $Z_{\phi}(k)$: dimer wave-function renormalisation

Regulators

• fermions: sharp cutoff

$$R_F(\boldsymbol{q},k) = \frac{k^2 - q^2}{2M} \theta(k-q)$$

- nonrelativistic version of "optimised" cutoff [Litim (2001)]
- fastest convergence at this level of truncation
- bosons

$$R_B(\boldsymbol{q},k) = c_B \frac{k^2 - q^2}{4M} \theta(k-q)$$

• optimised choice $c_B = 1$ [cf Pawlowski (2007)] (no mismatch between fermion and boson cutoffs)

Unitary limit

•
$$u_1(k) \to 0$$
 as $k \to 0$ $(a = -Mg^2/(4\pi u_1(0)) \to \infty)$

• $Z_{\phi}(k) \rightarrow 0$ as $k \rightarrow \infty$ (dimer auxiliary field at starting scale)

3-body interaction (AD scattering)

$$\Gamma[\psi,\psi^{\dagger},\phi,\phi^{\dagger};k] = \cdots - \lambda(k) \int d^4x \,\psi^{\dagger}(x)\phi^{\dagger}(x)\phi(x)\psi(x)$$

Evolution driven by terms corresponding to "skeleton" diagrams

(loops with AD contact interaction and single-A exchange) Evolution equation

$$\partial_k \lambda = \frac{28 \, k}{125 \, g^2 \, M} \, \lambda^2 + \frac{156}{125 \, k} \, \lambda + \frac{128 \, g^2 \, M}{125 \, k^3}$$

Rescale:
$$\widehat{\lambda} = \frac{k^2}{g^2 M} \lambda$$

dimensionless equation

$$k\partial_k\widehat{\lambda} = \frac{28}{125}\widehat{\lambda}^2 + \frac{406}{125}\widehat{\lambda} + \frac{128}{125}$$

- \rightarrow two fixed point solutions (roots of RHS)
 - expand around IR stable point: $\hat{\lambda} \hat{\lambda}_0 \propto k^{3.10355}$
 - compare exact solution: Q^{4.33244}
- \rightarrow strongly irrelevant but only agree at 30% level

Bosons

Very similar action and evolution equations

- different numerical coefficients $\partial_k \lambda$ term linear in λ gets factor of -2 (cf Faddeev equation)
- rescaled equation

$$k\partial_k\widehat{\lambda} = \frac{56}{125}\widehat{\lambda}^2 - \frac{62}{125}\widehat{\lambda} + \frac{256}{125}$$

Bosons

Very similar action and evolution equations

- different numerical coefficients $\partial_k \lambda$ term linear in λ gets factor of -2 (cf Faddeev equation)
- rescaled equation

$$k\partial_k\widehat{\lambda} = \frac{56}{125}\widehat{\lambda}^2 - \frac{62}{125}\widehat{\lambda} + \frac{256}{125}$$

- \rightarrow two complex roots fixed points
 - expand around either: $\widehat{\lambda} \widehat{\lambda}_0 \propto k^{\pm 2is_0}$
 - imaginary exponent → limit cycle [Moroz, talk at this meeting]
 - real solutions periodic under scaling k by factor e^{π/s₀} where s₀ = 0.92503
 - agrees with Efimov $s_0 = 1.00624$ to $\sim 5\%$

4-body interactions (2 species of fermion) Need DD→DD, DD→DAA, DAA→DAA terms (dimer "breakup" terms allow 3-body physics to feed in)

$$\begin{split} \Gamma[\Psi,\Psi^{\dagger},\phi,\phi^{\dagger};k] &= \cdots - \int d^4 x \left[\frac{1}{2} u_2(k) \left(\phi^{\dagger} \phi \right)^2 \right. \\ &+ \frac{1}{4} v(k) \left(\phi^{\dagger 2} \phi \Psi^{\rm T} \Psi + {\rm H} \, {\rm c} \right) \\ &+ \frac{1}{4} w(k) \phi^{\dagger} \phi \Psi^{\dagger} \Psi^{\dagger {\rm T}} \Psi^{\rm T} \Psi \right] \end{split}$$

 \rightarrow coupled evolution equations for u_2 , v, w (27 distinct skeletons)

Rescaled 4-body evolution equations

- 4 fixed-point solutions
- only one IR stable
- smallest eigenvalue $\rightarrow k^{4.19149}$ (irrelevant)

Bosons

- 4 complex fixed points (since λ complex)
- only one IR stable
- eigenvalue with smallest real part $\rightarrow k^{0.055165+3.50440i}$

イロト 不得 トイヨト イヨト 二日 二

- \rightarrow only weakly irrelevant ??
 - couplings flow to cycle driven by $\lambda(k)$

Summary

First full applications of functional RG to 3- and 4-body systems

- local truncation, "optimised" cutoffs
- unitary limit: scaling behaviours agree with exact 3-body qualitatively for 2 species of fermion much more accurately for bosons (Efimov effect)
- first estimates of anomalous dimensions for 4-body forces bosons: real part puzzlingly small

Summary

First full applications of functional RG to 3- and 4-body systems

- local truncation, "optimised" cutoffs
- unitary limit: scaling behaviours agree with exact 3-body qualitatively for 2 species of fermion much more accurately for bosons (Efimov effect)
- first estimates of anomalous dimensions for 4-body forces bosons: real part puzzlingly small

Future work

- away from unitary limit [Krippa, talk at this meeting]
- 4 species of fermion nucleons
 SU(4) symmetry: evolution same as either bosons or 2 species
- use these 3-, 4-body interactions as input into calculations of dense matter (nuclear and cold atomic) [Floerchinger, talk at this meeting]