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Background

Effective field theory: now mainstream tool for nuclear forces

e symmetries of underlying dynamics (QCD)
e systematic expansions in powers of low-energy scales
(momenta, pion mass ...)
e RG methods used to derive power countings
— classify terms as perturbations around fixed points
(Wilsonian approach, sharp cut-offs)
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2-nucleon scattering very strong at low-energies
(inverse scattering lengths 1/a ~ 10 — 40 MeV)

e expand around nontrivial fixed point
“unitary limit” (zero-energy bound state: scale free)

e corresponds to effective-range expansion [Bethe (1949)]

e also describes atomic systems with Feshbach resonance tuned
to threshold



3-body physics in unitary limit

Momentum space: one-variable integral equation
[Skornyakov and Ter-Martirosian (1956)]

Faddeev equation in hyperspherical coordinates

(R?=ri—ra|P+[ra—rsP+[r3 — 11 [%)

e Schrédinger equation with 1/R? potential [Efimov, 1971]
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e hyperangular eigenvalue v? fixed by boundary condition
(S-waves)
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e spatially symmetric: 6 = 4-1; mixed-symmetry ¢ = —%
(“particle-exchange interaction” between pair and third particle)

/16



Three bosons or more than two “species” of fermion
(spatially symmetric state, eg triton)

e atiractive 1/R? potential (V2 < 0)
e RG flow tends to limit cycle (discrete remnant of scale invariance)
[Moroz, talk at this meeting]
— Efimov effect: tower of bound states with constant ratio between
energies
momentum scale factor ™/ ~ 23 where so = 1.00624
leading 3-body force is marginal
fixes starting point on cycle or energy of one bound state
(Phillips line relating 3H binding to nd scattering length)
Efimov states now observed for various alkali atoms
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Other fermionic 3-body systems less interesting

e 3-body forces irrelevant
(no role in very-low-energy physics)
e but noninteger anomalous dimensions
e mixed symmetry state of two or more species of fermion:
leading 3-body force scales as @*3%24 (Q: momentum)
e determine energy eigenvalues in harmonic traps
[Werner and Castin (2005)]

4-body systems: no exact results

e 4-body forces irrelevant, even in Efimov systems
[Platter, Hammer and Meissner (2004)]

e low-energy 4-body physics determined by 2- and 3-body forces
(Tjon line relating “He and 3H; atomic Efimov systems)



Wilsonian RG methods used to obtain these

e exact results only for problems with 2-body-like forms
2-body systems; 3-body with contact interactions
not 3-body with long-range forces; 4-body

EFTs based on contact interactions
e not well suited for standard many-body techniques
e difficult to apply to larger systems, dense matter
— new approaches needed



Functional (“exact”) RG

RG for the Legendre-transformed effective action I [Wetterich (1993)]
(1-particle-irreducible generating function)

Exact evolution equation has 1-loop structure

U= 4y [@eRe) (F-R)) ]

v (0@-n),

@) matrix of second derivatives of the action
Rr(g; k): regulator for fermion fields; Rg(q; k): for bosons
(suppress modes with momenta q < k)

[ — full effective action as k — 0
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Example: 2 species of fermion

Fermion field: y(x) (neutrons or spin-1 atoms)
Boson “dimer” field: ¢(x) (strongly interacting pairs)
Truncated ansatz for action in vacuum: 2-body, local

My, v', 0,07 K]
_ / dx [\y(x)T (i 9o+ ;;) w(x)

2

+2(000" (130 + 43, ) 000 - ()903) o()
~ (5000 weoToy(0) + o) |
g: AA—D coupling

uy (k): dimer self-energy (u1/g?: only physical parameter)
Zy(k): dimer wave-function renormalisation
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Regulators
e fermions: sharp cutoff

k?—q

2M

2
RF(q7 k) =

8(k—q)

e nonrelativistic version of “optimised” cutoff [Litim (2001)]
e fastest convergence at this level of truncation

e bosons )

2
q
Rs(q. k) = 0k —
5(q.k) = cB i (k—q)

e optimised choice ¢g = 1 [cf Pawlowski (2007)]
(no mismatch between fermion and boson cutoffs)

Unitary limit
o uj(k) —0ask —0(a=—Mg?/(4nu;(0)) — o)
o Zy(k) — 0 as k — oo (dimer auxiliary field at starting scale)
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3-body interaction (AD scattering)

v v’ .075k ==K [ aw ()0 (CO00W()

Evolution driven by terms corresponding to “skeleton” diagrams

2 / / \\_._4
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(loops with AD contact interaction and single-A exchange)
Evolution equation
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~ k2
Rescale: A = 2—7»
g-M

e dimensionless equation

Kok = 2o g4 2907 4 128
125 125 125
— two fixed point solutions (roots of RHS)
e expand around IR stable point: A — Ag o< k310355
e compare exact solution: Q*33244
— strongly irrelevant but only agree at 30% level
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Bosons
Very similar action and evolution equations

e different numerical coefficients
dxA term linear in A gets factor of —2 (cf Faddeev equation)
e rescaled equation

62 ~ 256
kakk——kz 2+
125 125 125
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Bosons
Very similar action and evolution equations

e different numerical coefficients
dxA term linear in A gets factor of —2 (cf Faddeev equation)
e rescaled equation

62 ~ 256
kakk——kz Bl Wi
125 125" ' 125

two complex roots — fixed points

expand around either: A — Ag o< k=20

imaginary exponent — limit cycle [Moroz, talk at this meeting]
real solutions periodic under scaling k by factor e™/so
where sy = 0.92503

e agrees with Efimov s = 1.00624 to ~ 5%

...l
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4-body interactions (2 species of fermion)
Need DD—DD, DD—DAA, DAA—DAA terms
(dimer “breakup” terms allow 3-body physics to feed in)

Myw' 0.7k = - [ a'x [ (k) (670)°

+ % v(k) (6o yTy+Hec)

1
+ w0 oy v Tyly

— coupled evolution equations for us, v, w (27 distinct skeletons)
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Rescaled 4-body evolution equations

e 4 fixed-point solutions
e only one IR stable

e smallest eigenvalue — k*19149

irrelevant)

Bosons

4 complex fixed points (since A complex)

only one IR stable

eigenvalue with smallest real part — k0-055165+3.50440i
only weakly irrelevant 77

couplings flow to cycle driven by A(k)

.l...

15/16



Summary

First full applications of functional RG to 3- and 4-body systems

e |ocal truncation, “optimised” cutoffs

e unitary limit: scaling behaviours agree with exact 3-body
qualitatively for 2 species of fermion
much more accurately for bosons (Efimov effect)

o first estimates of anomalous dimensions for 4-body forces
bosons: real part puzzlingly small
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Future work

e away from unitary limit [Krippa, talk at this meeting]
e 4 species of fermion — nucleons
SU(4) symmetry: evolution same as either bosons or 2 species
e use these 3-, 4-body interactions as input into calculations of
dense matter (nuclear and cold atomic)
[Floerchinger, talk at this meeting]
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