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Background

Effective field theory: now mainstream tool for nuclear forces

• symmetries of underlying dynamics (QCD)
• systematic expansions in powers of low-energy scales

(momenta, pion mass ...)
• RG methods used to derive power countings
→ classify terms as perturbations around fixed points

(Wilsonian approach, sharp cut-offs)

2-nucleon scattering very strong at low-energies
(inverse scattering lengths 1/a∼ 10−40 MeV)

• expand around nontrivial fixed point
“unitary limit” (zero-energy bound state: scale free)
• corresponds to effective-range expansion [Bethe (1949)]
• also describes atomic systems with Feshbach resonance tuned

to threshold
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3-body physics in unitary limit
Momentum space: one-variable integral equation

[Skornyakov and Ter-Martirosian (1956)]
Faddeev equation in hyperspherical coordinates
(R2 = |r1− r2|2 + |r2− r3|2 + |r3− r1|2)

• Schrödinger equation with 1/R2 potential [Efimov, 1971]
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• spatially symmetric: σ = +1; mixed-symmetry σ =−1

2
(“particle-exchange interaction” between pair and third particle)
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Three bosons or more than two “species” of fermion
(spatially symmetric state, eg triton)

• attractive 1/R2 potential (ν2 < 0)
• RG flow tends to limit cycle (discrete remnant of scale invariance)

[Moroz, talk at this meeting]
→ Efimov effect: tower of bound states with constant ratio between

energies
• momentum scale factor eπ/s0 ' 23 where s0 = 1.00624
• leading 3-body force is marginal
• fixes starting point on cycle or energy of one bound state

(Phillips line relating 3H binding to nd scattering length)
• Efimov states now observed for various alkali atoms
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Other fermionic 3-body systems less interesting

• 3-body forces irrelevant
(no role in very-low-energy physics)
• but noninteger anomalous dimensions
• mixed symmetry state of two or more species of fermion:

leading 3-body force scales as Q4.33244 (Q: momentum)
• determine energy eigenvalues in harmonic traps

[Werner and Castin (2005)]

4-body systems: no exact results

• 4-body forces irrelevant, even in Efimov systems
[Platter, Hammer and Meissner (2004)]
• low-energy 4-body physics determined by 2- and 3-body forces

(Tjon line relating 4He and 3H; atomic Efimov systems)
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Wilsonian RG methods used to obtain these

• exact results only for problems with 2-body-like forms
2-body systems; 3-body with contact interactions
not 3-body with long-range forces; 4-body

EFTs based on contact interactions

• not well suited for standard many-body techniques
• difficult to apply to larger systems, dense matter
→ new approaches needed
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Functional (“exact”) RG

RG for the Legendre-transformed effective action Γ [Wetterich (1993)]
(1-particle-irreducible generating function)

Exact evolution equation has 1-loop structure

∂k Γ = +
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]
Γ(2): matrix of second derivatives of the action
RF (q;k): regulator for fermion fields; RB(q;k): for bosons
(suppress modes with momenta q < k )

Γ→ full effective action as k → 0
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Example: 2 species of fermion
Fermion field: ψ(x) (neutrons or spin- 1

2 atoms)
Boson “dimer” field: φ(x) (strongly interacting pairs)
Truncated ansatz for action in vacuum: 2-body, local

Γ[ψ,ψ†,φ,φ†;k ]

=
∫

d4x
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φ(x)−u1(k)φ(x)†
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−g
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2

φ(x)†
ψ(x)T

σ2ψ(x) + H c

)]
g: AA→D coupling
u1(k): dimer self-energy (u1/g2: only physical parameter)
Zφ(k): dimer wave-function renormalisation
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Regulators

• fermions: sharp cutoff

RF (q,k) =
k2−q2

2M
θ(k−q)

• nonrelativistic version of “optimised” cutoff [Litim (2001)]
• fastest convergence at this level of truncation
• bosons

RB(q,k) = cB
k2−q2

4M
θ(k−q)

• optimised choice cB = 1 [cf Pawlowski (2007)]
(no mismatch between fermion and boson cutoffs)

Unitary limit

• u1(k)→ 0 as k → 0 (a =−Mg2/(4πu1(0))→ ∞)
• Zφ(k)→ 0 as k → ∞ (dimer auxiliary field at starting scale)
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3-body interaction (AD scattering)

Γ[ψ,ψ†,φ,φ†;k ] = · · ·−λ(k)
∫

d4x ψ
†(x)φ

†(x)φ(x)ψ(x)

Evolution driven by terms corresponding to “skeleton” diagrams

(loops with AD contact interaction and single-A exchange)
Evolution equation
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Rescale: λ̂ =
k2

g2 M
λ

• dimensionless equation

k∂k λ̂ =
28
125

λ̂
2 +

406
125

λ̂ +
128
125

→ two fixed point solutions (roots of RHS)
• expand around IR stable point: λ̂− λ̂0 ∝ k3.10355

• compare exact solution: Q4.33244

→ strongly irrelevant but only agree at 30% level
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Bosons
Very similar action and evolution equations

• different numerical coefficients
∂k λ term linear in λ gets factor of −2 (cf Faddeev equation)
• rescaled equation

k∂k λ̂ =
56
125

λ̂
2− 62

125
λ̂ +

256
125

→ two complex roots – fixed points
• expand around either: λ̂− λ̂0 ∝ k±2is0

• imaginary exponent→ limit cycle [Moroz, talk at this meeting]
• real solutions periodic under scaling k by factor eπ/s0

where s0 = 0.92503
• agrees with Efimov s0 = 1.00624 to ∼ 5%
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4-body interactions (2 species of fermion)
Need DD→DD, DD→DAA, DAA→DAA terms
(dimer “breakup” terms allow 3-body physics to feed in)

Γ[ψ,ψ†,φ,φ†;k ] = · · ·−
∫
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]
→ coupled evolution equations for u2, v , w (27 distinct skeletons)
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Rescaled 4-body evolution equations

• 4 fixed-point solutions
• only one IR stable
• smallest eigenvalue→ k4.19149 (irrelevant)

Bosons

• 4 complex fixed points (since λ complex)
• only one IR stable
• eigenvalue with smallest real part→ k0.055165+3.50440i

→ only weakly irrelevant ??
• couplings flow to cycle driven by λ(k)
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Summary

First full applications of functional RG to 3- and 4-body systems

• local truncation, “optimised” cutoffs
• unitary limit: scaling behaviours agree with exact 3-body

qualitatively for 2 species of fermion
much more accurately for bosons (Efimov effect)
• first estimates of anomalous dimensions for 4-body forces

bosons: real part puzzlingly small

Future work

• away from unitary limit [Krippa, talk at this meeting]
• 4 species of fermion – nucleons

SU(4) symmetry: evolution same as either bosons or 2 species
• use these 3-, 4-body interactions as input into calculations of

dense matter (nuclear and cold atomic)
[Floerchinger, talk at this meeting]
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