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@ Reminder
9 RG & fixed points
@ RG flow & B-functions

@ Critical behaviour: Chiral fermion models in d=3
@ Motivation: Quantitative control for correlated fermion systems
@ Four-fermion interactions and truncation
@ Fixed-point mechanisms and results

a Asymptotic safety: Chiral Yukawa systems in d=4
@ Motivation: Triviality and Hierarchy in the standard model
@ Standard model and asymptotic safety
@ Truncation for chiral Yukawa systems
9 Fixed-points, critical exponents & predictivity
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@ Critical point of second order phase transition (ferromagnet, liquid-vapor, superfluid He)
— System is scale invariant — Universality
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— System is scale invariant — Universality

@ Set of scaling relations and critical exponents describe system at/near the critical point

- (T3

o Naturally, scale invariance is found at/near a RG fixed point
— Extract critical exponents from fixed point properties

UV physics - Asymptotic safety

@ As fixed point is approached in UV — Can define theory on arbitrarily high scales/energy
@ Promote effective theory to a candidate for a fundamental theory

@ Non-perturbative renormalizability if FP is non-GauBian
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@ Flowing action Iy is “effectively” valid at momentum scale k

Mx] =D gik0i,  O; € {02, 0% (90)%,...}

i

@ Scale-dependence by definition expressed in terms of 3-functions for dimensionless couplings

koK Tk[X] = Bi kO,

o Choose anstatz for [ [®] = > gj kO; — Wetterich equation — obtain 3-functions:

0tgik = Bik(&1,k, &2,k )

(9

A fixed point g* = {g*} is defined by

Bikler g5,)=0 Vi.

<

A fixed point is called non-GauBian, if at least one fixed-point coupling is nonzero gj* # 0.
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RG behaviour near a fixed point

g
9@ At a FP we linearize the (-functions
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Tk

I o< RG step B . e . H
k-ak 92 @ We diagonalize the stability matrix By
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@ General solution of the linearized fixed-point equation

1 (ko)
gx=g +> GV (7)

]
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RG behaviour near a fixed point

g;
critical surface S

9@ At a FP we linearize the (-functions

oegik = Bl(gk— &)

9. o We diagonalize the stability matrix B/

Bij \/j/ _ _el\/il

9

"Theory Space”

@ General solution of the linearized fixed-point equation

1 ko\®
gik=8 + Z Qv (7)

]

¢ Re ©; > 0: Relevant coupling
— Drives system away from FP as evolved to IR — Determines macroscopic physics
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@ General solution of the linearized fixed-point equation

1 ko\®
gik=8 + Z Qv (7)

]

¢ Re ©; > 0: Relevant coupling
— Drives system away from FP as evolved to IR — Determines macroscopic physics

@ Re ©; < 0: Irrelevant coupling
— Infrared stable - flow into FP (in linearized regime)

@ Impact of relevant/irrelevant couplings depends on physical context (IR or UV)
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Phase transition and critical behaviour:

CHIRAL YUKAWA SYSTEMS IN d=3
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Chiral fermion models in d=3, Motivation
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functional RGs  0.034(5) 0.630(5) 0.82(4) this work

2. Example: Gross-Neveu-model with N fermions in d=3 (e.g. N = 12):

@ MC simluation (Hands, Kocic & Kogut, Annals Phys. 224, 20 (1993)): v =1.022, n, = 0.913
@ FRG (Rosa, Vitale & Wetterich, PRL 86, 958 (2001)): v = 1.023, n, = 0.936

@ Also paradigm example for AS models — Renormalizing the nonrenormalizable
(Gawedzki & Kupiainen, PRL 55, 363 (1985), Braun, D. Scherer, Gies arXiv:1009.xxxx)
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Classification of 3d fermionic models

@ Fermion models with chiral U(NL)L, ® U(Ng)r symmetry (left/right asymmetry)

s— / Bx{DH 0,07 + (°Ox ) (PP Oy b))}
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Classification of 3d fermionic models

@ Fermion models with chiral U(NL)L, ® U(Ng)r symmetry (left/right asymmetry)
5= [ Ex(@r0,0° + (32 0xu?) Oy ?)

Chiral symmetry employed in 4 X 4 reducible representation

Define chiral projectors and Weyl spinors: 91, /g = P /R, QJ_JL/R = QJ_)PR/L
Define charge conjugation C, parity transformation P and time reversal 7

12 invariant 4-Fermi interaction terms under U(NL)L @ UINR)R RCQP R 7
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Classification of 3d fermionic models

@ Fermion models with chiral U(NL)L, ® U(Ng)r symmetry (left/right asymmetry)
5= [ Ex(@r0,0° + (32 0xu?) Oy ?)

Chiral symmetry employed in 4 X 4 reducible representation

Define chiral projectors and Weyl spinors: 91, /g = P /R, Q,Z_JL/R = Q,Z_JPR/L
Define charge conjugation C, parity transformation P and time reversal 7

12 invariant 4-Fermi interaction terms under U(NL)L @ UINR)R RCQP R 7

¢ ¢ ¢ ¢

(divk) (Phut).

(ii%%ﬁ) (J)ﬁ"/ﬂﬁi) ; (71_1%74%%) (15%74¢§) ;
(F2vvt) (Pevav),  (Froavh) (Phowvd),
(Primuvavt) (Phivunavi)
+6 terms with inverse flavour structure

@ terms with inverse flavour structure are not independent:
— Fierz transformations = 6 equations = 12 — 6 = 6 invariant terms
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Partial bosonization

— Classification includes NJL-type models, Thirring model, Gross-Neveu model and effective
models for various parts of the cuprate phase diagram
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Partial bosonization

— Classification includes NJL-type models, Thirring model, Gross-Neveu model and effective
models for various parts of the cuprate phase diagram

Hubbard-Stratonovich trafo introduces 6 boson-fermion i.a.
@ 1 scalar boson ~ iiw%
@ 2 pseudo-scalar bosons ~ zZi/R'Mwﬁ/R
@ 2 vector bosons ~ "ZE/R'VNQ/{/R
9 1 pseudo-vector boson ~ zjjii'yu'\m/)ﬁ
= in general: competing order parameters!

@ Focus on Lorentz-invariant and parity-conserving condensation channel: scalar i.a.
¢ Ng =1 and N, > 1: similar to SM with N, = 2

= Yukawa action

Svuk = / d%%aﬁ ¢° + DL + PRridYR + 67 PRV — TP YR }

M. M. Scherer (TPI Jena) 9/25



Truncation

NLO derivative expansion

MNe = /d3X{ZL,k"Z)iia¢i + Zr kYRIPYR + Zy & (ami’aT) (0% 9) + Uk(p)
+hilro™ VL — BBl e b, where p = g7 ¢

o dimensionless quantities: § = k2~9p, h%?=kI7*h2, u(p)= k_dUk(p)\p:kd—zﬁ
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o dimensionless quantities: § = k2~9p, h%?=kI7*h2, u(p)= k_dUk(p)\p:kd—zﬁ

For SYM expand the effective potential around e
zero field,
A2k A3,k
_ 2~ k=2 k ~3
we = mipt SR SR
m2, Anypae > 0. | ¢

For SSB regime minimum is xy := ppin > 0, "

A2k, A3,k .
ug = 7(/)_ ri)’ + T(P— kK)o

Ky Aimaxs A2 > 0.
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@ For the complete set of couplings find fixed-points in SYM for Ny, = {1, 2}

@ Compute EV of stability matrix = critical exponents of phase transition, e.g. ©1 =1/v
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Fixed points & critical exponents in SYM and SSB

We find a NGFP for any Ny,
SYM: 3-function for Yukawa coupling
Och® = (ng + i+ nr — 1A
@ Sum rule as a condition for an interacting FP (similar to QEG)

@ For the complete set of couplings find fixed-points in SYM for Ny, = {1, 2}

@ Compute EV of stability matrix = critical exponents of phase transition, e.g. ©1 =1/v

Ny h2 m3 A3 % L, R v e
1 4496 0326 5.099 0.716 0.142 0.142 1.132 0.786
2 3.364 0.104 3.643 0512 0.162 0.325 1.100 0.809

SSB: fixed-point needs balancing of fermion and boson fluctuations.

N, h? Ko A3 m, ny Nk v w
3 2.718 0.009 2967 0.371 0.154 0.487 0.883 0.675
4 2.713 0.042 2954 0.279 0.125 0.637 1.043 0.678
5 2,519 0.079 2.717 0.204 0.100 0.746 1.124 0.715
10 1.452 0.256 1.506 0.075 0.046 0.913 1.092 0.872

100 0.148 3.301 0.149 0.006 0.004 0.993 1.008 0.989
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Critical exponents in SYM and SSB

@ Universal FP values and critical exponents as a function of Ni,:

v w
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@ Blue circles show values for Wilson-Fisher-FP of scalar O(N = 2N, )-model
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@ Blue circles show values for Wilson-Fisher-FP of scalar O(N = 2N, )-model

9 Differences can be fully attributed to fermionic fluctuations near the phase transition
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Asymptotic safety:

CHIRAL YUKAWA SYSTEMS IN d=4
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Motivation: Standard model Higgs sector

@ Higgs sector parametrizes masses of matter fields and weak gauge bosons
¢ will be directly tested at LHC

9 Higgs sector plagued by two problems:

triviality & hierarchy problem
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9 Parametrize Higgs field as
1 2, M oo A . .
L= 5(8u¢) + > o° + §¢ + i.a. with fermions

9 1-loop correction in PT yields relation between bare and the renormalized coupling A
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9 Parametrize Higgs field as
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9 Parametrize Higgs field as

1 2 A
L= 8u¢)2 + m7¢2 + §¢4 + i.a. with fermions

5

9 1-loop correction in PT yields relation between bare and the renormalized coupling A

A

! non-pertutbative Method?
|
|

AL
Landau-pole — breakdown of perturbative QFT — new d.o.f.?

Near A1, PT looses validity since A grows large

Need non-perturbative tool to study triviality & take into account fermions!

Hierarchy problem corresponds to existence of a large RG eigenvalues ©; > 0 at a fixed point
(e.g. in ¢*-theory at the GFP © = 2)
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Standard model and asymptotic safety

(9

If NGFP exists — Can render SM asymptotically safe!
= Triviality and hierarchy problem can be circumvented

@ AS scenario mainly discussed in the context of a quantum theory for gravity

@ Setting of the AS scenario is more general and might also be applied to other QFTs that
have problems with non-renormalizability

@ As a toy model for the SM we will investigate a class of chiral Yukawa systems

M. M. Scherer (TPI Jena) 16 / 25



Predictivity in the asymptotic safety scenario

g;
critical surface S

9

"Theory Space"

@ Dimension of the critical surface: A = dimS = Number of relevant directions
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Predictivity in the asymptotic safety scenario

g;
critical surface S

9

"Theory Space"

@ Dimension of the critical surface: A = dimS = Number of relevant directions
¢ If A < co = system predictive
@ Nonperturbative RG computation = Is there a NGFP? If yes, how large the ©,7
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Toy model - chiral Yukawa system

Derivative expansion, leading-order truncation
e = [ x{iaet + Grdve) + @.0°)(0" )
+Ui(p) + Putbre™ 0] — hetbio™ v |

@ N, left-handed fermions 7)f, 1 right-handed fermion g
@ Ni, complex bosons ¢?
@ invariant under chiral U(Ny,)1, ® U(1)g transformations
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Toy model - chiral Yukawa system

Derivative expansion, leading-order truncation

e = [ x{iaet + Grdve) + @.0°)(0" )
+Ui(p) + Putbre™ 0] — hetbio™ v |
@ N, left-handed fermions 7)f, 1 right-handed fermion g
@ Ni, complex bosons ¢?

@ invariant under chiral U(Ny,)1, ® U(1)g transformations

Expand effective potential about minimum u
K= Pmin > 0 (SSB)

I T VO
u = E(p—n) +§(p—n) + ..
Ky Anmaxs A2 > 0.
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Fixed-point mechanism

Loop contributions to the running of K

Otk = —2k + bosonic interactions — fermionic interactions
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Fixed-point mechanism

Loop contributions to the running of K

Otk = —2k + bosonic interactions — fermionic interactions

K

fermionic fluctuations \,  bosonic fluctuations
dominate \ dominate
3 \

9@ Dominating fluctuations of boson field allow for positive x*

@ Suitable k-dependence flattens the S-function near fixed-point (reduces the hierarchy
problem)

@ near FP the vev exhibits a conformal behaviour vev ~ k
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Fixed-point analysis

@ Whether or not the balancing possible crucially depends on d.o.f. of the model

@ LO truncation can be parametrized by three couplings: h?, \, &

8th2 ﬁh(h27)‘7 K/) =0,
oA = ﬁ)\(h2,A,I{) =0.

= obtain a conditional fixed-point

Ok = Br(h®,\*, k) = 0.

Br-function receives the contributions

/
ﬁrc:_25+ NLX[ \ — Ga_ _ _ _ . _ _ ¢

Ask not what a fixed point can do for you, ask what you can do for a fixed point! Increase Nf,!
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Fixed-points and critical exponents

We find NGFPs for 1 < N; <29
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Fixed-points and critical exponents

We find NGFPs for 1 < N; <29
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and the RG eigenvalues
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Red FPs: 1 relevant direction — 1 physical parameter to be fixed
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(Toy-)Higgs mass and (Toy-)Top mass from asymptotic safety

@ Flow is fixed by IR value of k

@ In SM this corresponds to the Higgs vev

v = lim V2kk
k—0
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(Toy-)Higgs mass and (Toy-)Top mass from asymptotic safety

@ Flow is fixed by IR value of k
@ In SM this corresponds to the Higgs vev

v = lim V2kk
k—0

9 IR values of other two parameters are predictions related to the Higgs and the top mass

Mijiggs = VA2V,  Miop = V h2v.

@ Choosing v = 246GeV and Ny, = 10 as an example, we find

Miggs = 0.97v = 239GeV, miop = 5.56v = 1422GeV.

¢ Revealed a possible AS mechanism for the standard model with high predictivity

@ Massless Goldstone and fermion fluctuations not present in the standard model
— Destabilization at NLO

@ Include SU(NL,) gauge bosons - work in progress
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Inclusion of gauge bosons

@ Promote global SU(Ny, )1, symmetry to be local: U(x) = e~ (T, (i=1,...,N2 —1)
@ g is gauge coupling constant (leave as a free parameter), T/ generators of gauge group

@ Gauge fields W"L = Buw" — Partial derivatives replaced by covariant derivatives

Oy — Dy = 0p — igW,, T’
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@ g is gauge coupling constant (leave as a free parameter), T' generators of gauge group

(9

Gauge fields W"L = Buw" — Partial derivatives replaced by covariant derivatives

Oy — Dy = 0p — igW,, T’

@ Combining all ingredients yields the truncation
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@ Promote global SU(NL,)1, symmetry to be local: U(x) = e—igw ()T (i=1,...,N2 —1)

@ g is gauge coupling constant (leave as a free parameter), T' generators of gauge group

(9

Gauge fields W"L = Buw" — Partial derivatives replaced by covariant derivatives

Oy — Dy = 0p — igW,, T’

@ Combining all ingredients yields the truncation
M= / d¥x[Uk(p) + Z k(D" )1 (Do) + i(Z0 k] PV + Zr kbR PvR)

- - - - Z . .
+ o™ O — PO R + S Fl FY] + Tan(@) + Tar(@)

(9

Landau gauge a — 0

@ Set of fixed-point equations is highly non-trivial — Numerical iteration
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Inclusion of gauge bosons - First results

NLO derivative expansion with effective potential up to 12th order in ¢

Second fixed point (blue circles), does not emerge from the GFP in the limit of vanishing g2
Anomalous dimensions at FP are <1

NGFP has real parts of RG eigenvalues that run towards 1.5 for 61 » for g2 — 0 (not towards
its canonical power counting values 2 and 0, see blue circles)

o Products k«h2, k«g2, K+«As represent masses of the top quark, gauge boson and Higgs
— Remain constant as g2 — 0
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Inclusion of gauge bosons - First results

NLO derivative expansion with effective potential up to 12th order in ¢

Second fixed point (blue circles), does not emerge from the GFP in the limit of vanishing g2
Anomalous dimensions at FP are <1

NGFP has real parts of RG eigenvalues that run towards 1.5 for 6y » for g2 — 0 (not towards
its canonical power counting values 2 and 0, see blue circles)

o Products k«h?, k«g?, K«A« represent masses of the top quark, gauge boson and Higgs
— Remain constant as g2 — 0
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Conclusions

CHIRAL YUKAWA SYSTEMS IN d=3:

@ Fixed point provides critical exponents for phase transition in strongly correlated chiral
fermion systems

@ Benchmark values for critical exponents in new universality classes

@ Take into account other condensation channels - competing order parameters

CHIRAL YUKAWA SYSTEMS IN d=4:

¢ Revealed a possible AS mechanism for the standard model
@ NGFP provides fundamental SM with high degree of predictivity
@ Include SU(NL,) gauge bosons - understand mechanisms - work in progress

@ Similar Yukawa system with gravitational corrections — Talk by G. P. Vacca
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@ Fixed point provides critical exponents for phase transition in strongly correlated chiral
fermion systems

@ Benchmark values for critical exponents in new universality classes

@ Take into account other condensation channels - competing order parameters

CHIRAL YUKAWA SYSTEMS IN d=4:

¢ Revealed a possible AS mechanism for the standard model
@ NGFP provides fundamental SM with high degree of predictivity
@ Include SU(NL,) gauge bosons - understand mechanisms - work in progress

@ Similar Yukawa system with gravitational corrections — Talk by G. P. Vacca

Thank you for your attention.
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