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Motivation

Noncommutativity of coordinates was originally introduced to regularize
divergences in QFT. One can think intuitively that noncommutativity
introduces natural cutoffs in divergent momentum integrals, or that it
introduces discretization of space adjusted to symmetries.

However in practice not many noncommutative renormalizable models are
found.
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Motivation

In part this is because in principle we wish to recover the complete
structure of commutative description:

space

geometry symmetries
(differential, integral) (gauge fields,
eqs. of motion gravity)

fields

In addition, to quantize,
and have correct commutative limit!
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Motivation

To obtain a model and work out all details one needs not only NC space
(algebra [xµ, xν ] = iJµν) and fields (functions f (xµ)) but also a concrete
representation

Commutative limit to Minkowski space somehow singles out the Moyal
plane, though of course other models are known

Renormalizable φ4 models on the Moyal plane are obtained effectively by a
change of propagator:

1
p2+m2 → 1

p2+m2+x2 Grosse, Wulkenhaar

1
p2+m2 → 1

p2+m2+1/p2 Gurau, Magnen, Rivasseau, Tanasa
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Motivation

On the other hand, commutative limit is anyway always singular.

Idea here: use matrices to regularize.

Further: use geometric structure of matrix spaces along with
field-theoretic notions as a guide.
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Truncated Heisenberg algebra

We start with the algebra

[µx , µy ] = iε(1− µ′z),

[µx , µ′z ] = iε(µy µ′z + µ′z µy),

[µy , µ′z ] = −iε(µx µ′z + µ′z µx).

for ε = 0 it is commutative

for µ′ = 0 it reduces to the Heisenberg algebra; or alternatively,
z = 0 is a two-dimensional ‘subspace’

for ε = 1, µ′ = µ it has finite-dimensional representations for any
n × n matrices: truncated Heisenberg algebra
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Truncated Heisenberg algebra

Finite-dimensional representations
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Truncated Heisenberg algebra

The limit z → 0 is weak limit from finite matrices to infinite-matrix
representation of the Heisenberg algebra. Therefore in field theory, instead
of the Moyal plane, we could use matrix truncations and impose the limit
at the end

Idea:

analyze three-dimensional finite-matrix space: it is curved; find
connection, curvature; build field models

induce models on the subspace z = 0:
- scalar model has a coupling to the curvature (GW action)
- gauge fields undergo a Kaluza-Klein decomposition: they are
coupled to a scalar

check renormalizability
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Differential geometry

Differential geometry is not uniquely defined, not even the differential d .

We choose to work with noncommutative frames, in particular because the
formalism is adjusted to matrix geometries.

Cotangent space: basis of frame 1-forms θα, [f , θα] = 0

Locally flat inverse metric: gαβ = g(θα ⊗ θβ) = const

Dual derivations eα: θα(eβ) = δα
β

Derivations given by momenta pα: eαf = [pα, f ]

Differential d : df = (eαf ) θα
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Differential geometry

We obtain different differentials by choosing different sets of momenta pα.
The choice of momenta is not completely arbitrary. Imposing the Leibniz
rule and d2 = 0 we get

[pα, pβ] =
1

iε
Kαβ + F γ

αβpγ − 2iεQγδ
αβpγpδ.

Momenta satisfy a quadratic algebra.

Exterior algebra has to be consistent with d . If we define exterior
multiplication by

θγθδ = Pγδ
αβθα ⊗ θβ,

where Pγδ
αβ is a projector, then

Pγδ
αβ =

1

2
(δγ

αδδ
β − δγ

βδδ
α) + iεQγδ

αβ .
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Momenta

For the truncated Heisenberg algebra we introduce momenta as

εp1 = iµ2y , εp2 = −iµ2x , εp3 = iµ(µz − 1

2
).

p1 and p2 are the same as for the Heisenberg algebra. We have

[p1, p2] =
µ2

2iε
+ µp3

[p2, p3] = µp1 − iε(p1p3 + p3p1)

[p3, p1] = µp2 − iε(p2p3 + p3p2)

The nonvanishing structure coefficients are

K12 =
µ2

2
, F 1

23 = µ, Q13
23 =

1

2
, Q23

31 =
1

2
.
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2-forms

As a basis in the space of 2-forms we can take anticommutators if 1-forms.
The basic relations in the exterior algebra are

(θ1)2 = 0, (θ2)2 = 0, (θ3)2 = 0,

{θ1, θ2} = 0,

{θ1, θ3} = iε(θ2θ3 − θ3θ2),

{θ2, θ3} = iε(θ3θ1 − θ1θ3),

space of 2-forms is three-dimensional.
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3-forms

To define integration we need volume form Θ. Then by definition the
integral of a 3-form α = f Θ is

∫
α = Tr f .

Algebra of 3-forms is obtained from algebra of 2-forms and associativity:

θ1θ3θ1 = θ2θ3θ2,

θ1θ2θ3 = −θ2θ1θ3 = θ3θ1θ2 = −θ3θ2θ1 = i
ε2 − 1

2ε
θ2θ3θ2,

θ1θ3θ2 = −θ2θ3θ1 = i
ε2 + 1

2ε
θ2θ3θ2.

θ3θ1θ3 = 0, θ3θ2θ3 = 0.

The volume form is unique; we define it as Θ = − i
2ε θ2θ3θ2 .
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Connection and curvature

A metric compatible connection ωα
β = ωα

γβθγ can be defined as

ωαβγ =
1

2
(Cαβγ − Cβγα + Cγαβ),

Cα
βγ are the Ricci rotation coefficients, Cγ

αβ = F γ
αβ − 4iεQγδ

αβpδ.

From ωα
β one obtains curvature Ωα

β

Ωα
β = dωα

β + ωα
γωγ

β = Rα
βρσθρθσ.

In our case,

R =
11

4
µ2 − 2µ2(µz − 1

2
)− 4µ4(x2 + y2).
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Gauge fields

U1 gauge fields are defined as usual. Vector potential is a 1-form, field
strength is a 2-form:

A = Aαθα, F = dA + A2 = 1
2 Fαβθαθβ.

Components of the field strength satisfy Fζη = FαβPαβ
ζη, which means

that in our case they are antisymmetric. We find

Fζη = e[ζAη] − AαCα
ζη + [Aζ ,Aη] + 2iε(eβAγ)Qβγ

ζη + 2iεAβAγQβγ
ζη

or, when connection is torsion-free, ωα
[βγ] = Cα

βγ ,

Fζη = ∇[ζAη] + [Aζ ,Aη] + 2iε(eβAγ)Qβγ
ζη + 2iεAβAγQβγ

ζη,

∇ζAη = eζAη − Aαωα
ζη is gravity-covariant derivative.
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Covariant coordinates

When calculus is based on inner derivations there is a special 1-form θ,

θ = −pαθα,

a connection which is invariant under the gauge group. Differential can be
expressed as df = −[θ, f ]. Difference between connections A and θ,
Xα = pα + Aα, transforms in the adjoint representation: Xα are covariant

coordinates.

The field strength in covariant coordinates is

Fαβ = 2Pγδ
αβXγXδ − F γ

αβXγ −
1

iε
Kαβ .
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Projection

On subspace z = 0 we have p3 = − iµ
2ε , e3 = 0 and component A3

transforms as a scalar field in the adjoint representation. We denote

A3 = φ, A1 = A1, A2 = A2

and

F12 = F12 − µφ = [X1,X2] +
iµ2

ε
− µφ,

F13 = D1φ− iε{p2 + A2, φ} = [X1, φ]− iε{X2, φ},

F23 = D2φ + iε{p1 + A1, φ} = [X2, φ] + iε{X1, φ}.

Aα, Fαβ are gauge fields which would be intrinsically defined in 2d.
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Yang-Mills

To write the Yang-Mills action we need the symmetrized product of forms,

SYM =
1

16

∫
(F∗F +∗ FF),

where the Hodge-dual is defined with respect to the volume form Θ. For
ε = 0 this reduces to the standard expression, while in our case due to
normalization we have

SYM =
1

2
Tr

(
(1− ε2) F12F

12 + F13F
13 + F23F

23
)
.
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Yang-Mills

In components, Yang-Mills action is

SYM =
1

2
Tr ((1− ε2)(F12)

2 − 2(1− ε2)µF12φ + (5− ε2)µ2φ2 + 4iεF12φ
2

+ (D1φ)2 + (D2φ)2 − ε2{p1 + A1, φ}2 − ε2{p2 + A2, φ}2)

or in covariant coordinates

SYM =
1

2
Tr ((1− ε2)([X1,X2]

2 + µ2φ2 − 2iµ3

ε
φ− 2µ [X1,X2] φ)

+ 4iε [X1,X2] φ
2 + [X1, φ]2 + [X2, φ]2 − ε2{X1, φ}2 − ε2{X2, φ}2).
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Equations of motion

Classical YM equations of motion:

DαDαφ+ε2{pα−Aα, {pα+Aα, φ}}+(1−ε2) µF12−(5−ε2)µ2φ−2iε{F12, φ} = 0,

(1− ε2) εαβDβ(F12−µφ)+2iεεαβ{Dβφ, φ}− [Dαφ, φ]− ε2{{pα +Aα, φ}, φ} = 0.

They are difficult to solve. Confining to constant solutions we get

A1 = 0, A2 = 0, φ = 0,

X1 = 0, X2 = 0, φ =
iµ

ε
.

First solution is the usual vacuum.
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Chern-Simons

Because of the properties of exterior multiplication the only viable
Chern-Simons action is

SCS = α

∫
X3 = α

∫
XαXβXγ ∆αβγ

ζηξ θζθηθξ

In components,

SCS =
αµ

3
Tr

(
(3− ε2) [X1,X2] X3 + 2iε (X2

1 + X2
2) X3

)
.

CS action can be included, but it does not simplify equations of motion
significantly.
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Gauge fixing

The simplest gauge-fixing term is

G = eαAα = ∂1A
1 + ∂2A

2

According to the usual procedure the quantum action is given by

S = SYM + Sgf

with
Sgf = Tr

(
BG +

α

2
BB − c̄eαDαc

)
= Tr s (c̄G +

α

2
c̄B)
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BRS

where we introduced the auxilliary field B, ghosts c , c̄ and the BRST
transformation s which is nilpotent:

sAα = Dαc = eαc + i [Aα, c],

sFαβ = [Fαβ , c],

sφ = [φ, c],

s(Xα) = [Xα, c] = eαc + i [Aα, c] = sAα,

and
sc = −c2, sc̄ = B, sB = 0.
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Conclusions

On truncated Heisenberg space we obtained the gauge action

SYM =
1

2

∫
(D1φ)2 + (D2φ)2 + 4µ2φ2

+ 4iF12φ
2 − {p1 + A1, φ}2 − {p2 + A2, φ}2

It has the vacuum A1 = 0, A2 = 0, φ = 0

One can define a nilpotent BRST transformation s and show that the
quantum action is BRST invariant

Explicit quantization? Propagators have the form of the Mehler kernel
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