Gravitino Dark Matter and LHC searches in R-violating SUSY

Magda Lola University of Patras

Based on:

- N. E. Bomark, SL, P. Osland, A. Raklev, PLB 2009 & PLB 2010
- N.E.Bomark, D.Choudhuri, SL, P. Osland in preparation
- SL, P. Osland, A. Raklev, PLB 2007

<u>Content</u>

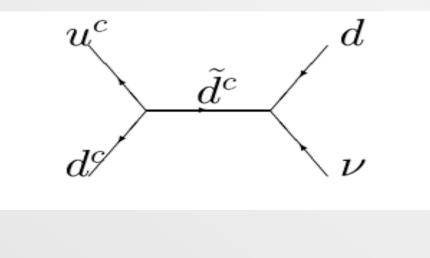
- R-violation: Motivation, Generic Signals, Bounds
- Dark Matter:

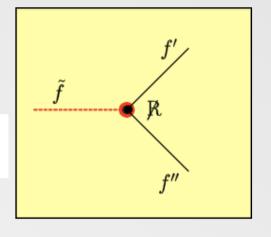
Is observable R-violation compatible with SUSY DM?

- Experimental signals: (Collider, low energy LFV)

Flavour structure of R-violating neutralino decays

- Conclusions


Motivation for R-violating supersymmetry


In addition to couplings generating fermion masses,

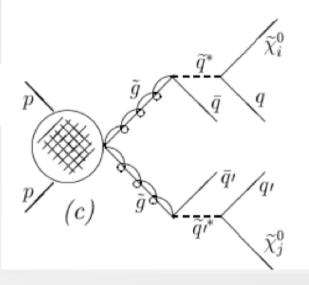
- $h_{ij}L_iH_1\bar{E}_j \qquad h'_{ij}Q_iH_1\bar{D}_j \qquad h''_{ij}Q_iH_2\bar{U}_j$
- also $\lambda_{ijk}L_iL_j\bar{E}_k$ $\lambda'_{ijk}L_iQ_j\bar{D}_k$ $\lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k$

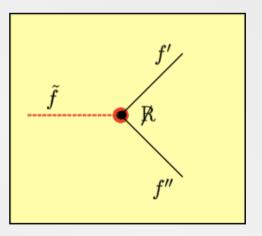
- If simultaneously present, unacceptable p decay

Ways out:

X Either kill all couplings via R-parity (Fayet) (SM: +1, SUSY: -1)

forbids all terms with $\Delta L \neq 0$ and $\Delta B \neq 0$

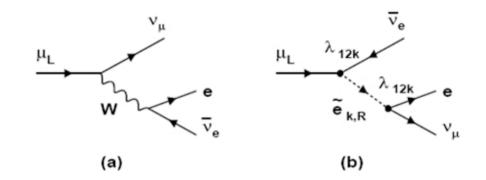

<u>**LSP: stable**</u>, dark matter candidate Colliders: Missing energy

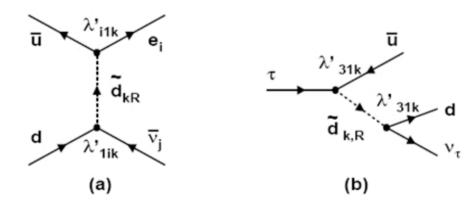

Or allow subsets by baryon / lepton parities Only $\Delta B \neq 0$ or $\Delta L \neq 0$

(*p*-decay needs both types of terms)

<u>**LSP: unstable**</u> – lose (?) a dark matter candidate Colliders: Multi-lepton/jet events

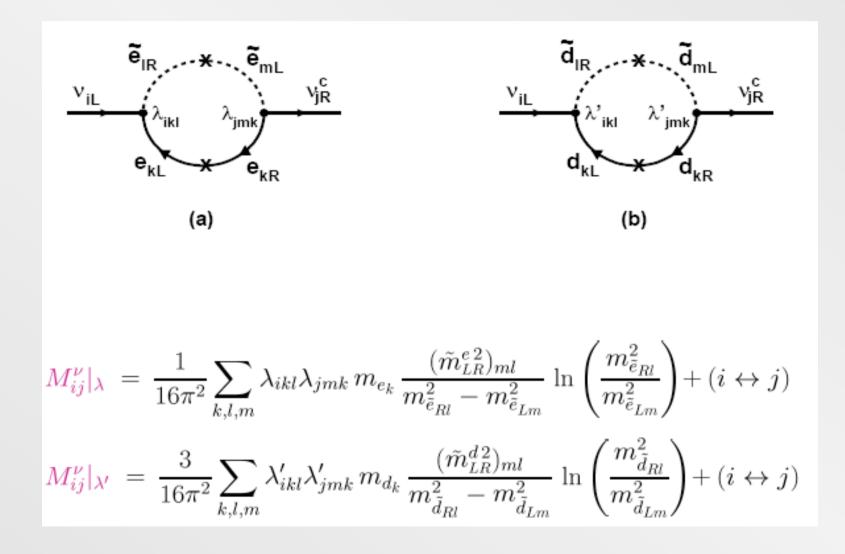
Both possibilities open from theoretical point of view (several viable models have been constructed)




Very rich flavour structure! Flavour-dependent constraints from unacceptable SM modifications

ijk	λ_{ijk}	Sources	ijk	λ_{ijk}''	Sources
121	0.05	CC univ.	112	10^{-6}	Double nucleon dec.
122	0.05	CC univ.	113	10^{-4}	$n-\bar{n}$ osc.
123	0.05	CC univ.	123	1.25	Perturb. unitar.
131	0.06	$\Gamma(\tau \to e \nu \bar{\nu}) / \Gamma(\tau \to \mu \nu \bar{\nu})$	212	1.25	Perturb. unitar.
132	0.06	$\Gamma(\tau \to e \nu \bar{\nu}) / \Gamma(\tau \to \mu \nu \bar{\nu})$	213	1.25	Perturb. unitar.
133	0.003	ν_e - mass	223	1.25	Perturb. unitar.
231	0.06	$\Gamma(\tau \to e \nu \bar{\nu}) / \Gamma(\tau \to \mu \nu \bar{\nu})$	312	0.50	R_l (LEP1)
232	0.06	$\Gamma(\tau \to e \nu \bar{\nu}) / \Gamma(\tau \to \mu \nu \bar{\nu})$	313	0.50	R_l (LEP1)
233	0.06	$\Gamma(\tau \to e \nu \bar{\nu}) / \Gamma(\tau \to \mu \nu \bar{\nu})$	323	0.50	R_l (LEP1)

Upper limits on λ - and λ'' -couplings for $\tilde{m} = 100$ GeV.

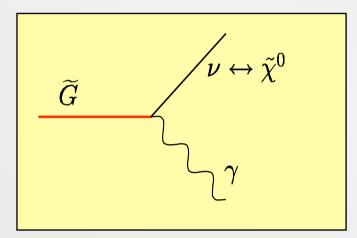

i.e. Charged Current Universality

Neutrinos in R-violating SUSY

1-loop neutrino mass contributions:

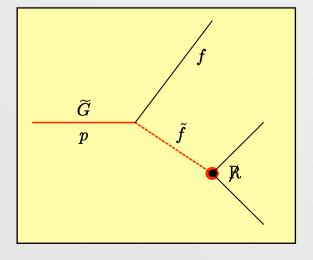
Gravitino DM in R-violating supersymmetry?

-If LSP a gravitino, its decays very suppressed by Mp -The lighter the gravitino, the longer the lifetime


Questions: *can gravitinos be DM even with broken R-parity? Can we hope for BOTH DM AND R-violation in colliders?*

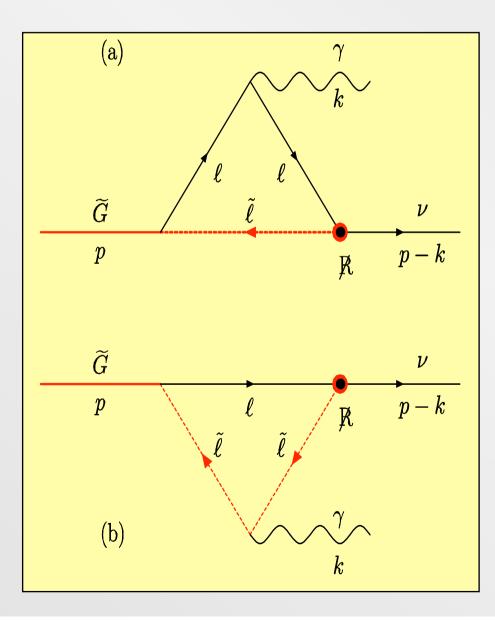
Answer: depends on how gravitinos decay under R-violation

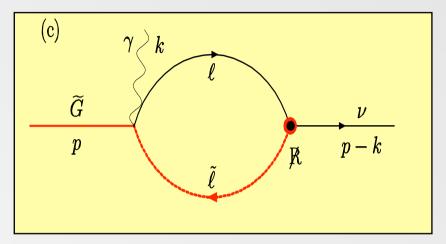
2-body bi-linear R-violating decays


Takayama, Yamaguchi, Buchmuler, Covi,Hamaguchi, Ibarra, Yanagida µvSSM<u>:</u> Choi, Lopez-Fogliani,Munoz, de Austri

Suppressed by:

Gravitino vertex (~1/Mp)
Neutralino-neutrino mixing (model dependent)


3-body trilinear R-violating decays (Chemtob, Moreau)

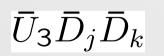


Suppressed by:

- Gravitino vertex (~1/Mp)
- -Phase space / fermion masses
- (for light gravitino and heavy fermions)

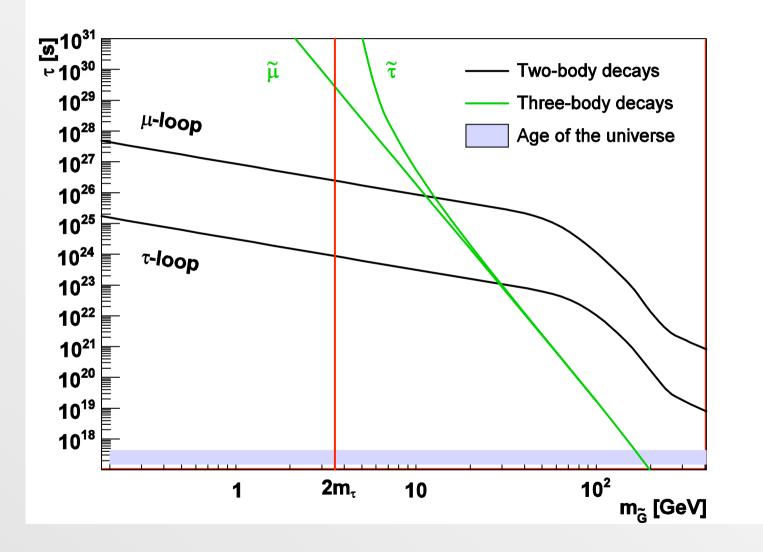
Radiative 2-body trilinear R-violating decays SL, P. Osland, A. Raklev

Suppressed by:


- Gravitino vertex (~1/Mp)
- Loop factors (~ fermion mass)

Radiative decays dominate for:

- Smaller gravitino masses
- R and L violation via operators of the 3rd generation
- Small neutrino-neutralino mixing


Large gravitino lifetime (can be DM), due to:

Gravitational suppression of its couplings
 Smallness of R-violating vertices
 Loop, phase space, or mixing effects

Maximum stability (neither radiative nor tree-level decays -modulo mixing effects)!

Radiative versus 3-body decays

	NLSP	$LL\overline{E}$	$LQ\bar{D}$	$\bar{U}\bar{D}\bar{D}$
SD deepyo	χ^0	$\ell_i^{\pm}\ell_j^{\mp} u$	$q_j ar q_k \ell^\pm (q_j ar q_k u)$	$q_i q_j q_k (ar q_i ar q_j ar q_k)$
<u>.SP decays</u>	$\tilde{ u}$	$\ell_i^{\pm} \ell_j^{\mp}$	$q_j ar q_k$	
		$\ell_i^{\pm} \ell_j^{\mp} \nu \nu$	$q_j ar q_k \ell^\pm u(q_j ar q_k u u)$	$\left u q_i q_j q_k (u ar q_i ar q_j ar q_k) ight $
	$ ilde{ au_R}$	$\ell_i \nu$	$q_j \overline{q}_k$	
		$\ell_i^{\pm}\ell_j^{\mp} u au$	$q_j ar q_k \ell^\pm au(q_j ar q_k u au)$	$ au q_i q_j q_k (au ar q_i ar q_j ar q_k)$

No source of suppression other than R-violating couplings
 Decay well before BBN compatible with gravitino DM
 (without fine-tuning of the SUSY parameter space)

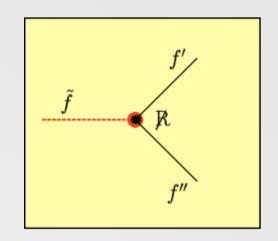
Alternative way to avoid BBN bounds: (No Rules!)

NL

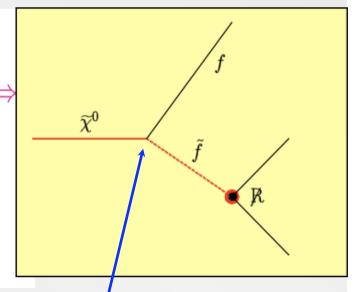
Collider Search Strategies:

For **ΔL** look for:

Modifications to SM Processes or Exotic Events

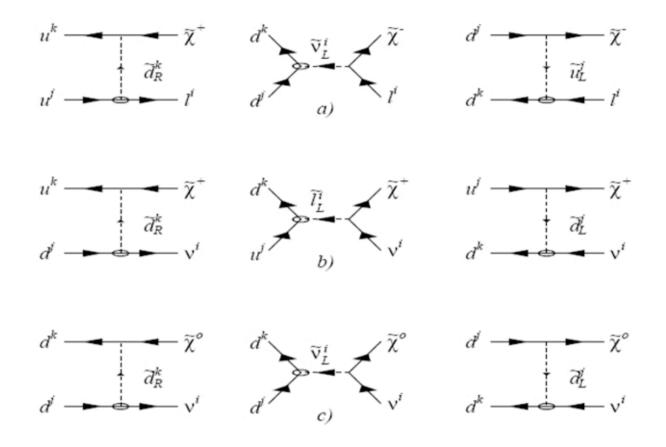

(like ΔLi , novel final state topologies,

Isolated leptons in jet backgrounds with limited missing energy)

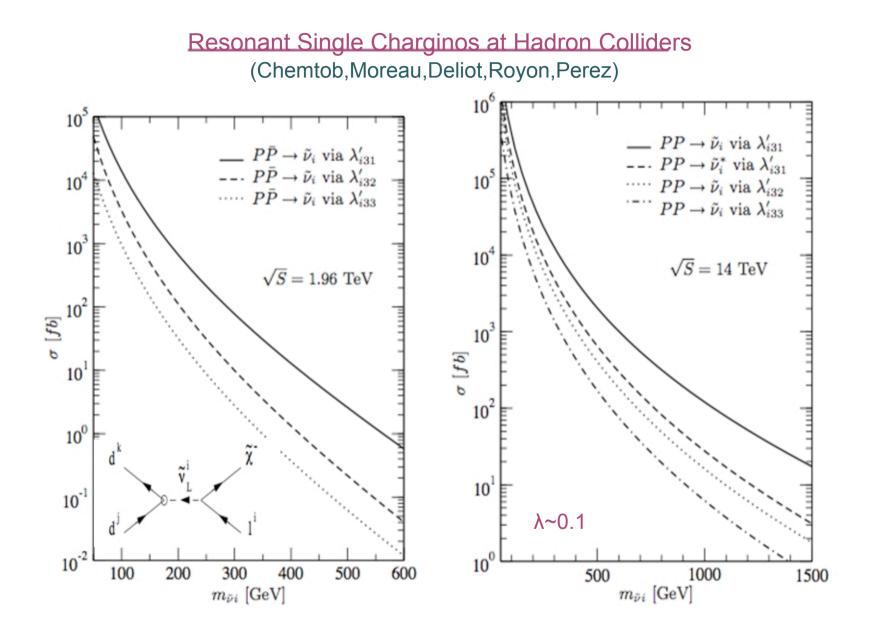

For ΔB need more detailed analysis sophisticated jet clustering algorithms

• Possible Signals

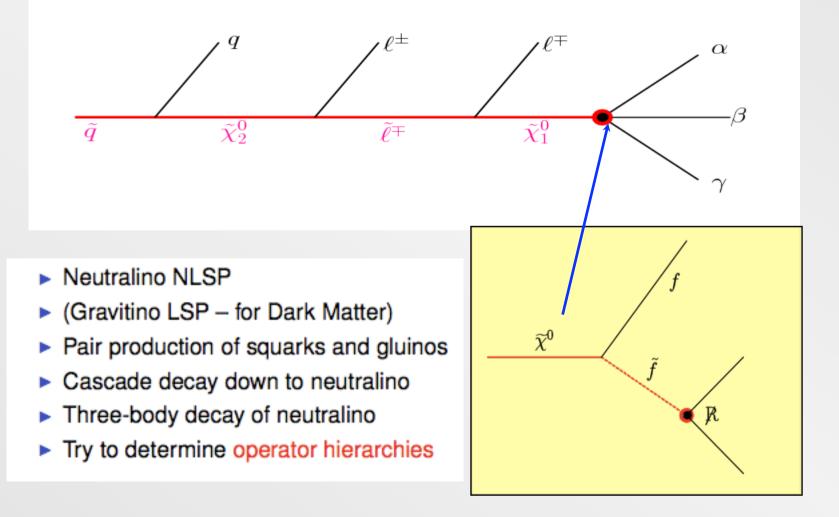
- Pair sparticle productions and R-violating decays
- Single superparticle productions
- Virtual processes



 ♦ (neutral/charged) LSP decay to SM particles for any λ, λ', λ" ≥ 10⁻⁶, decay inside apparatus ⇒
 ♦ Missing energy → multi-lepton/jet signals otherwise: Standard missing energy signature [h_{top} ≈ O(1), h_{up} ≈ O(10⁻⁵)]



Ordinary MSSM neutralino coupling Neutr. Decays to 3 SM particles


Single Superparticle Productions at Hadron Colliders

(Dimopoulos, Hall, Dreiner, Ross)

For smaller couplings, Cascade Decays -Neutralinos couple of ALL (s)fermions -Simultaneous study of ALL operators in neutralino decays

LLĒ: Final State Structure

- ► Lots of leptons → easy detection
- Some p_T^{miss} due to neutrinos
- Taus (depends on coupling)

Interesting questions:

- Which couplings dominate?
- What is the Neutralino mass?

Can we determine operator hierarchies?

model	$P_{e^-e^+}$	$P_{e\mu}$	$P_{\mu^{-}\mu^{+}}$
LLE231sps1a	0.153	0.827	0.01
LLE231sps1b	0.176	0.804	0.012
LLE231sps6	0.16	0.818	0.0209
LLE121sps1a	0.485	0.504	0.00987
LLE122sps1a	0.00959	0.488	0.503
LLE122sps1b	0.00813	0.494	0.499
LLE123sps1a	0.255	0.45	0.251
LLE123sps1b	0.248	0.512	0.246
LLE131sps1b	0.797	0.181	0.0087
LLE131sps1a	0.829	0.154	0
LLE132sps1a	0.0222	0.835	0.16
LLE133sps1a	0.474	0.419	0.105
LLE133sps1b	0.41	0.469	0.0775
LLE232sps1a	0	0.13	0.835
LLE232sps1b	0	0.165	0.805
LLE233sps1a	0.0959	0.437	0.458
LLE233sps1b	0.0657	0.485	0.421

Bomark, Choudhuri, SL, Osland

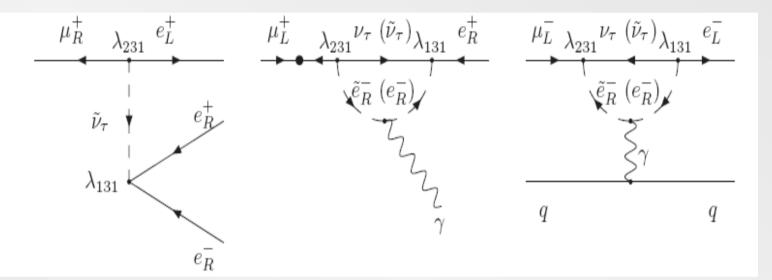
LQĎ: Final State Structure

Neutralino \rightarrow lepton + 2 jets, neutrino + 2 jets

Neutralino boosted \Rightarrow jets are close in the detector

- ► $L_{1,2}Q_{1,2}\overline{D}_3 \Rightarrow$ lepton + b-jet + light jet
- ▶ taus \Rightarrow loss of information (momentum) through neutrinos
- ▶ $Q_3 \Rightarrow$ only neutrino + 2 jets (at least one b-jet)

ŪĎĎ: Final State Structure

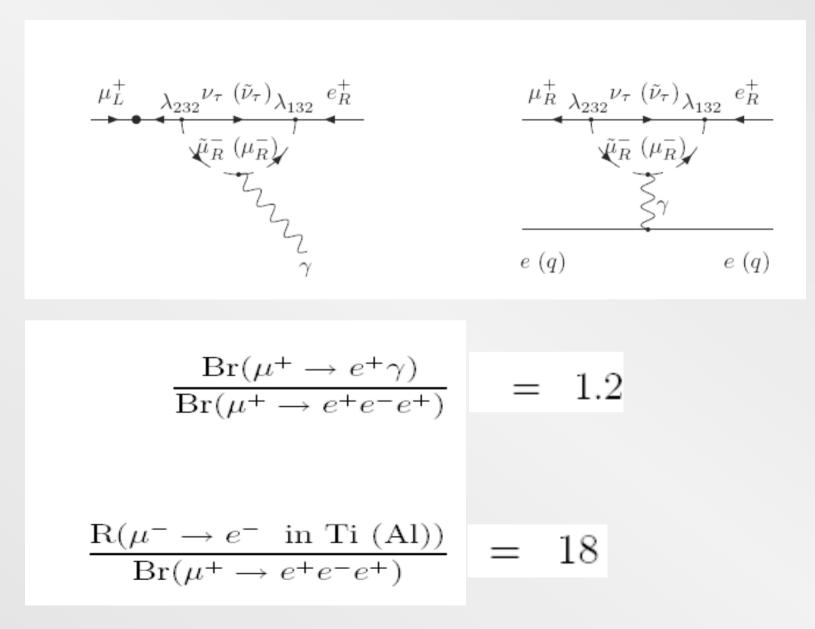

Difficult!

Butterworth, Ellis, Raklev and Salam [hep-ph:0906.0728]: Jet structure can do the job

b-tagging for studying flavour structure.

Exception:
$$\overline{U}_3 \Rightarrow \begin{cases} M_{\chi_1^0} < M_{top} \Rightarrow \chi_1^0 \ escapes \\ M_{\chi_1^0} > M_{top} \Rightarrow \chi_1^0 \rightarrow t(\overline{t}) + 2 \ (soft) \ jets \end{cases}$$

Low Emergy LFV: Correlated Rates depending on coupling combinations (A. de Gouvea, S.L, K. Tobe)


$$\frac{\operatorname{Br}(\mu^+ \to e^+ \gamma)}{\operatorname{Br}(\mu^+ \to e^+ e^- e^+)} = \frac{4 \times 10^{-4} \left(1 - \frac{m_{\tilde{\nu}_{\tau}}^2}{2m_{\tilde{e}_R}^2}\right)^2}{\beta} = 1 \times 10^{-4}$$
$$\frac{\operatorname{R}(\mu^- \to e^- \text{ in Ti (Al)})}{\operatorname{Br}(\mu^+ \to e^+ e^- e^+)} = 2(1) \times 10^{-3}$$

1

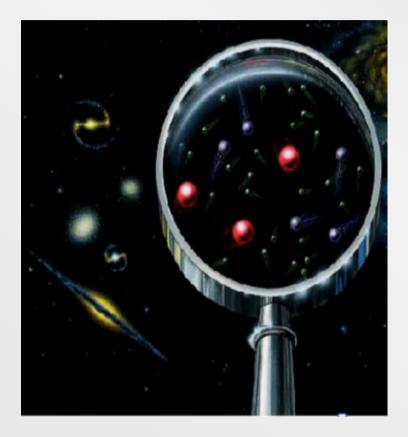
× 2

To be compared with **160** and **0.92** in MSSM (where on shell photon penguin dominates)

For all processes at loop level:

PAMELA and Fermi LAT Anomalies (Bomark, SL, Osland, Raklev)

 $\tau \ [10^{26} \ s]$ Coupling λ at best fit $m_{\tilde{G}}$ [TeV] $1.8^{+0.1}_{-0.2}$ 7.3×10^{-9} 2.0 λ_{123} $1.8^{+0.1}_{-0.1}$ 6.9×10^{-9} 2.3 λ_{132} $1.8^{+0.1}_{-0.3}$ 8.0×10^{-9} 1.7 λ_{133} $2.8^{+0.4}_{-0.2}$ 1.7×10^{-9} 1.5 λ_{232} $3.6^{+0.6}_{-0.3}$ 8.7×10^{-10} 0.9 λ_{233}


X If the gravitino mass is large enough to account for the anomalies, the couplings are too small for detecting R-violation at the LHC

? If the couplings are indeed tiny,

particle spectra may provide the only way to probe them

<u>Conclusions</u>

- Possible to reconcile gravitino Dark Matter & observable R-violation in colliders
- Interesting Possibilities but also Strong Bounds
- Very distinct signatures (at high AND low energies)
- Results very sensitive to <u>flavour structure</u> of R-violating operators 3-body neutralino decays enable simultaneous study of ALL 45 R-violating couplings
 - -LLĒ: precise measurements of flavour structure
 -LQĎ: well-measured for light leptons таиз more difficult
 -ŪĎĎ: Difficult / b-tagging? / Ūз an open question

In searching for SUSY and DM we have to keep an open mind, making sure we do not overlook any of their possible manifestations