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Fun with linear quantum fields

Free quantum fields are boring...

for inertial observers

• Inertial observers same notion of energy −→ same vacuum state

• Observers who measure different energies −→ different vacuum states...

Inertial vs. accelerated observers: Unruh effect

Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Less known context in which free QFT manifests non-trivial features
field quantization on curved momentum space
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Outline

• Relativistic particles, fields and quantization: a (pedantic) review

• Bending phase space and a new quantization ambiguity

• κ-quantum fields, the “fine structure” of κ-Fock space and hidden
entanglement
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From particles to fields

Phase space of a classical relativistic particle Γ ≡ co-adjoint orbit of the Lorentz group

• General formulation of phase space of G -symmetric mechanical systems
I Phase space manifold = orbits of G on g∗

I Symplectic structure obtained from the natural Poisson brackets on C∞(g∗)

{f , g}(Y ) ≡ 〈Y , [(df )Y , (dg)Y ]〉 , (df )Y ∈ (g∗)∗ ' g

• Spinning relativistic particle Γ ≡ Om,s ; m, s labels of Casimir ops. C1(p), C2(w)

• Momentum sector of Om,0 = restriction to the abelian sub-algebra t∗ ⊂ iso∗(3, 1)
dual to the algebra of translation generators t: “mass shell” Mm ⊂ t∗ ≡ R3,1

C1(p) = (p0)2 − p 2 = m2

• Take φ ∈ C∞(Mm), under Fourier transform

(C1(p)−m2)φ̃(p) = 0 ⇐⇒ (�+ m2)φ(x) = 0 ,

φ(x) ∈ S equipped with ω(φ1, φ2) =
∫

Σ
(φ2∇µφ1 − φ1∇µφ2)dΣµ

Phase space of a classical Klein-Gordon field {S, ω}
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Field quantization

Classical fields Quantum fields

state = point in phase space φ ∈ S state = ray in complex Hilbert space H
observable = function on S observable = self-adjoint operator on H
joint system = SA ⊕ SB joint system = HA ⊗HB

Quantization: “Recipe for going from the left to the right”

• complexify the space of real solutions SC ' S ⊗ C
• define an inner product (φ1, φ2) ≡ −iω(φ̄1, φ2)

• restrict to “positive” energy subspace SC+ on which (·, ·) is positive definite

• introduce a “complex structure” on S (J : S → S with J2=-1); SC+ spanned
by φ±: J(φ±) = ±i(φ±)

• “One-particle” Hilbert space H ≡ (SC+, (·, ·))

• “n-particle” Hilbert space H⊗n = H⊗H...⊗H︸ ︷︷ ︸
n−times

;

for n-identical particles SnH⊗n with Sn = 1
n!

∑
σ∈Pn

σ

• Fock space Fs(H) =
⊕∞

n=0 SnH⊗n
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Observables and symmetries

classical observables = functions on phase space

Quantization:

• to each classical observable ψ associate an operator Oψ on H
• “2nd quantization” of a 1-particle operator O (Cook 1953)

dΓ(O) ≡ 1 +O + (O ⊗ 1 + 1⊗O) + (O ⊗ 1⊗ 1 + 1⊗O ⊗ 1 + 1⊗ 1⊗O) + ...

such construction naturally leads to the notion of coproduct ∆O = O ⊗ 1 + 1⊗O

dΓ(O) ≡ 1 +O + ∆O + ∆2O + ...+ ∆nO + ...

with ∆nO = (∆⊗ 1) ◦∆n−1, ∆1 ≡ ∆ and n ≥ 2

Space-time symmetry generators are special observables

• H constructed from S (solutions of K-G equation) −→ H is a unitary irreps of the
Poincaré algebra P

• We have a natural action of the generators of P as one-particle operators

• A commuting set of such operators used to label one-particle states (e.g. P→ |p〉)
• The coproduct ∆ extends the action of elements of P to multiparticle states
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“Bending” phase space

What about “curved momentum space” and symmetry deformation?

• Momenta of a classical relativistic particle given by “coordinates” (p0, pi ) on t∗

• (On-shell) momenta label |p〉 basis of H, irreps of ISO(3, 1). Such basis can be
built from orbit of characters (plane waves) ep ∈ T ∗

“Curving” momentum space = introduce a non-trivial Lie bracket on t∗

Two main consequences:

• “non-commuting coordinates” −→ [·, ·]t∗ 6= 0

• group-like plane waves: −→ epeq ≡ ep⊕q 6= eq⊕p ≡ eqep , (ep)−1 ≡ e	p

consequence for translation generator observables: ∆Pµ 6= Pµ ⊗ 1 + 1⊗ Pµ, and

π12∆Pµ 6= ∆Pµ , π12(a⊗ b) ≡ (b ⊗ a)

i.e. “non-Leibniz” and “non-symmetric” action on multi-particle states
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Curved momenta from QG

Why group valued momenta? −→ motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space pa, ja

{ja, jb} = −εabc jc , {ja, pb} = −εabc pc , {pa, pb} = 0

• upon quantization ja → Ja, pa → Pa, observables which belong to U(p3)

• Chern-Simons formulation of 2 + 1 gravity + point particles (Schroers 0710.5844)

I quantization of Poisson brackets for pa and ja

D(U(su(1, 1)) ≡ U(su(1, 1)) n C(SU(1, 1))

I momenta become co-ordinate functions on SU(1, 1)

∆Pa = Pa ⊗ 1 + 1⊗ Pa + M−1
p εabcPb ⊗ Pc + ...

(see also Noui et al. 0806.4121, Freidel & Livine hep-th/0512113)
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κ-Poincaré I

Looking for 4d analogues? Our model: κ-Poincaré

• κ-Poincaré shares an important feature with Lorentz double

I Non-trivial Lie bracket on t∗ ≡ b

[P∗µ,P
∗
ν ] = − 1

κ
(P∗µδ

0
ν − P∗ν δ

0
µ) .

I momenta: coordinates on (non-abelian) T ∗ = B sub-manifold of dS4

−η2
0 + η2

1 + η2
2 + η2

3 + η2
4 = κ2 ; η0 + η4 > 0

with κ ∼ EPlanck

• for plane waves in B consider a one-parameter splitting

ep ≡ e−i 1−β
2

p0P∗
0 e ipjP∗

j e−i 1+β
2

p0P∗
0 .

0 ≤ |β| ≤ 1, with momentum composition rules and “antipodes”

p ⊕β q = (p0 + q0; pj e
1−β

2κ
q0

+ qj e−
1+β
2κ

p0

) , 	βp = (−p0; −e
−β
κ

p0

pi ) .

each choice of β corresponds to a choice of coordinates on the manifold B.
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κ-Poincaré II

for β = 1 we have “flat slicing” coordinates

η0(p0, p) = κ sinh p0/κ+
p2

2κ
ep0/κ,

ηi (p0, p) = pi e
p0/κ,

η4(p0, p) = κ cosh p0/κ−
p2

2κ
ep0/κ.

corresponds to “bicrossproduct” basis of U(t) introduced in Majid-Ruegg (’94) to prove that

Pκ = U(so(3, 1)) BJ C(B)

• deformed boost action

[Nj ,Pl ] = iδlj

(
κ
2

(
1− e−

2P0
κ

)
+ 1

2κ
~P2
)

+ i
κ
PlPj
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for β = 1 we have “flat slicing” coordinates

η0(p0, p) = κ sinh p0/κ+
p2

2κ
ep0/κ,

ηi (p0, p) = pi e
p0/κ,

η4(p0, p) = κ cosh p0/κ−
p2

2κ
ep0/κ.

corresponds to “bicrossproduct” basis of U(t) introduced in Majid-Ruegg (’94) to prove that

Pκ = U(so(3, 1)) BJ C(B)

• deformed boost action

[Nj ,Pl ] = iδlj

(
κ
2

(
1− e−

2P0
κ

)
+ 1

2κ
~P2
)

+ i
κ
PlPj

• and co-products

∆(Nj ) = Nj ⊗ 1 + e−P0/κ ⊗ Nj +
εjkl

κ
Pk ⊗Ml

∆(P0) = P0 ⊗ 1 + 1⊗ P0 , ∆(Pi ) = Pi ⊗ 1 + exp(−P0/κ)⊗ Pi

∆(Mi ) = Mi ⊗ 1 + 1⊗Mi

in the limit κ −→∞ recover ordinary Poincaré algebra
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A new quantization ambiguity

Functions on the deformed mass-shell φ ∈ C∞(Mκ
m) defined by the “wave equation”

Cκ1 (P)φ = m2φ

Cκ1 (P) defined by the Lorentz invariant hyperboloid on B: η4 = m̃

• On φ ∈ C∞(Mκ
m) measure dµ(p) δ(Cκ1 (p)) which we can use to define an inner product

• to define κ-Hilbert space need to split Mκ
m in positive and negative energy subspaces!

• in ordinary QFT in Minkowski space define a complex structure J = −∂t
(−∂t∂t )1/2 from

killing vector ∂t . In terms of P0 = i∂t we have a positive energy projector

P+ = 1
2

(
1 + P0

|P0|

)
preferred choice of (local) “primitive” generators P0, Pi for which C1(P) = P2

0 − P2
i and

∆Pµ = Pµ ⊗ 1 + 1⊗ Pµ

• For U(b) there is no choice of primitive elements to decompose the Casimir! The action
of translation generators will be non-Leibniz and non-symmetric for ANY choice of basis!.

No preferred choice of translation generators from which we can define an energy coordinate
on Mκ

m and thus no preferred choice of J and P+ to define one-particle Hilbert space.
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κ-one-particle Hilbert space

Hilbert space construction for β = 1 (bicrossproduct basis), massless case

Cκ1 (P) =

(
2κ sinh

(
P0

2κ

))2

− P2eP0/κ

• Hilbert space = Mκ functions on deformed mass shell ω±κ (k) = −κ log
(

1∓ |k|
κ

)
equipped with inner product

(φ1, φ2)κ =

∫
Mκ+

m

dµ(p)

2ωκ(p)
φ̄1(p)φ2(p)

with dµ(p) = e3p0/κ

(2π)4 dp0 d3p

• ..for “transplanckian” (|k| > κ) modes (·, ·)κ is no longer positive definite!

κ-one-particle Hilbert space: Hκ functions on Mκ+, positive energy, equipped with (·, ·)κ
and modes truncated at κ
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Deforming Fock space 1.κ: multi-particle states

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the κ-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/
√

2 (|k1〉 ⊗ |k2〉+ |k2〉 ⊗ |k1〉)
is NOT an eigenstate of Pµ due to the role of non-trivial coproduct

Multi-particle states of κ-Fock-space are built via a “momentum dependent” symmetrization

• “modulated flip” σκ = FκσF−1
κ , Fκ = exp

(
1
κ
P0 ⊗ Pj

∂
∂Pj

)
such that

σκ(|k1〉 ⊗ |k2〉) = |(1− ε1) k2〉 ⊗ |(1− ε2)−1 k1〉 , εi =
|ki |
κ

• E.g. there will be two 2-particle states

|k1k2〉κ = 1√
2

[
| k1〉 ⊗ | k2〉+ | (1− ε1)k2〉 ⊗ | (1− ε2)−1k1〉

]
|k2k1〉κ = 1√

2

[
| k2〉 ⊗ | k1〉+ | (1− ε2)k1〉 ⊗ | (1− ε1)−1k2〉

]
with same energy and different linear momentum

K12 = k1 ⊕ k2 = k1 + (1− ε1)k2

K21 = k2 ⊕ k1 = k2 + (1− ε2)k1

given n-different modes one has n! different n-particle states, one for each
permutation of the n modes k1 , k2 ... kn
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• E.g. there will be two 2-particle states

|k1k2〉κ = 1√
2

[
| k1〉 ⊗ | k2〉+ | (1− ε1)k2〉 ⊗ | (1− ε2)−1k1〉

]
|k2k1〉κ = 1√

2

[
| k2〉 ⊗ | k1〉+ | (1− ε2)k1〉 ⊗ | (1− ε1)−1k2〉

]
with same energy and different linear momentum

K12 = k1 ⊕ k2 = k1 + (1− ε1)k2

K21 = k2 ⊕ k1 = k2 + (1− ε2)k1

given n-different modes one has n! different n-particle states, one for each
permutation of the n modes k1 , k2 ... kn
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of κ-translations endows the Fock space with a
“fine structure”

• the different states can be distinguished measuring their momentum splitting e.g.

|∆K12| ≡ |K12 − K21| = 1
κ
|k1|k2| − k2|k1|| ≤ 2

κ
|k1||k2|

of order |ki|2/κ
• the 2-mode Hilbert space becomes H2

κ
∼= S2H2 ⊗ C2, where S2H2 is the ordinary

symmetrized 2-mode Hilbert space and our states can be written as

|ε〉 ⊗ | ↑〉 = |k1k2〉κ
|ε〉 ⊗ | ↓〉 = |k2k1〉κ

with ε = ε(k1) + ε(k2)

Planckian mode entanglement becomes possible!

• e.g. the state superposition of two total “classical” energies εA = ε(k1A) + ε(k2A) and
εB = ε(k1B) + ε(k2B) can be entangled with the additional hidden modes e.g.

|Ψ〉 = 1/
√

2(|εA〉 ⊗ | ↑〉+ |εB〉 ⊗ | ↓〉)
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Planckian degrees of freedom and decoherence

• consider a quantum system evolving unitarily

ρ(t) = U(t)ρ(0)U†(t)

• start with a pure state ρ(0) factorized with respect to the bipartition in Hn
κ
∼= SnHn ⊗ Cn

• If U(t) acts as an “entangling gate”, the state ρ(t) will be entangled

• A macroscopic observer who is not able to resolve the planckian degrees of freedom at the
beginning will see the reduced system in a pure state

ρobs(0) = TrPlρ(0)

• As the system evolves she will see the mixed state

ρobs(t) = TrPlρ(t) = TrPl

[
U(t)ρ(0)U†(t)

]
.

For the macroscopic observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

a new window to phenomenological effects??
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Conclusions

• Relativistic symmetries can be deformed to allow “curvature” for momentum
space

• Motivations to look at such deformations come form QG and NCFT scenarios

• Quantization of (free) field theories with group valued momenta leads to
ambiguities related to the different choices on coordinate functions on the
momentum manifold

• Physical interpretation of such ambiguities?

• At the multiparticle level the non-trivial behaviour of field modes leads to a
deformed Fock space: interesting entanglement phenomena can take place

• What role for “trans-planckian” issues in semiclassical gravity (BH evaporation,
Inflation)??
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