Anatomy of a deformed symmetry: field quantization curved momentum space

Michele Arzano

Spinoza Institute and Institute for Theoretical Physics Utrecht University

September 11, 2010

Free quantum fields are boring...

for inertial observers

• Inertial observers same notion of energy \longrightarrow same vacuum state

Free quantum fields are boring...

for inertial observers

- Inertial observers same notion of energy \longrightarrow same vacuum state
- Observers who measure different energies —> different vacuum states...

Free quantum fields are boring...

for inertial observers

- Inertial observers same notion of energy \longrightarrow same vacuum state
- Observers who measure different energies —> different vacuum states...
 Inertial vs. accelerated observers: Unruh effect
 Free falling vs. fiducial observer in Schwarzschild background: Hawking effect
 Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Free quantum fields are boring...

for inertial observers

- Inertial observers same notion of energy \longrightarrow same vacuum state
- Observers who measure different energies —> different vacuum states...
 Inertial vs. accelerated observers: Unruh effect
 Free falling vs. fiducial observer in Schwarzschild background: Hawking effect
 Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Less known context in which free QFT manifests non-trivial features field quantization on curved momentum space

Outline

- Relativistic particles, fields and quantization: a (pedantic) review
- Bending phase space and a new quantization ambiguity
- κ -quantum fields, the "fine structure" of κ -Fock space and hidden entanglement

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

• General formulation of phase space of G-symmetric mechanical systems

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

- General formulation of phase space of G-symmetric mechanical systems
 - Phase space manifold = orbits of G on g*

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

- General formulation of phase space of G-symmetric mechanical systems
 - Phase space manifold = orbits of G on g*
 - ► Symplectic structure obtained from the natural Poisson brackets on C[∞](g^{*})

 $\{f,g\}(Y) \equiv \langle Y, [(df)_Y, (dg)_Y] \rangle, \qquad (df)_Y \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}$

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

- General formulation of phase space of G-symmetric mechanical systems
 - Phase space manifold = orbits of G on g*
 - Symplectic structure obtained from the natural Poisson brackets on $C^{\infty}(\mathfrak{g}^*)$

 $\{f,g\}(Y) \equiv \langle Y, [(df)_Y, (dg)_Y] \rangle, \qquad (df)_Y \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}$

• Spinning relativistic particle $\Gamma \equiv \mathcal{O}_{m,s}$; m, s labels of Casimir ops. $\mathcal{C}_1(p), \mathcal{C}_2(w)$

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

- General formulation of phase space of G-symmetric mechanical systems
 - Phase space manifold = orbits of G on g*
 - ► Symplectic structure obtained from the natural Poisson brackets on C[∞](g^{*})

$$\{f,g\}(Y) \equiv \langle Y, [(df)_Y, (dg)_Y] \rangle, \qquad (df)_Y \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}$$

- Spinning relativistic particle $\Gamma \equiv O_{m,s}$; m, s labels of Casimir ops. $C_1(p)$, $C_2(w)$
- Momentum sector of $\mathcal{O}_{m,0}$ = restriction to the *abelian* sub-algebra $\mathfrak{t}^* \subset \mathfrak{iso}^*(3,1)$ dual to the algebra of translation generators \mathfrak{t} : "mass shell" $M_m \subset \mathfrak{t}^* \equiv \mathbb{R}^{3,1}$

$$C_1(p) = (p^0)^2 - \mathbf{p}^2 = m^2$$

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

- General formulation of phase space of G-symmetric mechanical systems
 - Phase space manifold = orbits of G on g*
 - Symplectic structure obtained from the natural Poisson brackets on $C^{\infty}(\mathfrak{g}^*)$

$$\{f,g\}(Y) \equiv \langle Y, [(df)_Y, (dg)_Y] \rangle, \qquad (df)_Y \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}$$

- Spinning relativistic particle $\Gamma \equiv O_{m,s}$; m, s labels of Casimir ops. $C_1(p)$, $C_2(w)$
- Momentum sector of $\mathcal{O}_{m,0}$ = restriction to the *abelian* sub-algebra $\mathfrak{t}^* \subset \mathfrak{iso}^*(3,1)$ dual to the algebra of translation generators \mathfrak{t} : "mass shell" $M_m \subset \mathfrak{t}^* \equiv \mathbb{R}^{3,1}$

$$C_1(p) = (p^0)^2 - \mathbf{p}^2 = m^2$$

• Take $\phi \in C^{\infty}(M_m)$, under Fourier transform

$$(\mathcal{C}_1(p)-m^2) ilde{\phi}(p)=0 \iff (\Box+m^2)\phi(x)=0$$

 $\phi(x) \in \mathcal{S}$ equipped with $\omega(\phi_1, \phi_2) = \int_{\Sigma} (\phi_2 \nabla_{\mu} \phi_1 - \phi_1 \nabla_{\mu} \phi_2) d\Sigma^{\mu}$

Phase space of a classical relativistic particle $\Gamma \equiv co$ -adjoint orbit of the Lorentz group

- General formulation of phase space of G-symmetric mechanical systems
 - Phase space manifold = orbits of G on g*
 - Symplectic structure obtained from the natural Poisson brackets on $C^{\infty}(\mathfrak{g}^*)$

$$\{f,g\}(Y) \equiv \langle Y, [(df)_Y, (dg)_Y] \rangle, \qquad (df)_Y \in (\mathfrak{g}^*)^* \simeq \mathfrak{g}$$

- Spinning relativistic particle $\Gamma \equiv O_{m,s}$; m, s labels of Casimir ops. $C_1(p)$, $C_2(w)$
- Momentum sector of $\mathcal{O}_{m,0}$ = restriction to the *abelian* sub-algebra $\mathfrak{t}^* \subset \mathfrak{iso}^*(3,1)$ dual to the algebra of translation generators \mathfrak{t} : "mass shell" $M_m \subset \mathfrak{t}^* \equiv \mathbb{R}^{3,1}$

$$C_1(p) = (p^0)^2 - \mathbf{p}^2 = m^2$$

• Take $\phi \in C^{\infty}(M_m)$, under Fourier transform

$$(\mathcal{C}_1(p)-m^2) ilde{\phi}(p)=0 \iff (\Box+m^2)\phi(x)=0\,,$$

 $\phi(x)\in \mathcal{S}$ equipped with $\omega(\phi_1,\phi_2)=\int_{\Sigma}(\phi_2
abla_\mu\phi_1-\phi_1
abla_\mu\phi_2)d\Sigma^\mu$

Phase space of a classical Klein-Gordon field $\{\mathcal{S}, \omega\}$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	$state = ray$ in complex Hilbert space \mathcal{H}
observable = function on S	${f observable}={\it self-adjoint\ operator\ on\ }{\cal H}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

• complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = <i>function</i> on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$

Classical fields	Quantum fields
$state = point \ in \ phase \ space \ \phi \in \mathcal{S}$	$state = ray$ in complex Hilbert space \mathcal{H}
observable = <i>function</i> on S	${f observable}={\it self-adjoint\ operator\ on\ }{\cal H}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an *inner product* $(\phi_1, \phi_2) \equiv -i\omega(\bar{\phi_1}, \phi_2)$
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is positive definite

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = <i>function</i> on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an *inner product* $(\phi_1, \phi_2) \equiv -i\omega(ar{\phi_1}, \phi_2)$
- restrict to "positive" energy subspace $\mathcal{S}^{\mathbb{C}^+}$ on which (\cdot, \cdot) is positive definite
- introduce a "complex structure" on S (J : S → S with J²=-1); S^{C+} spanned by φ[±]: J(φ[±]) = ±i(φ[±])

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = <i>function</i> on S	${f observable}={\it self}{\it -adjoint} {\it operator} {\it on} {\it {\cal H}}$
joint system $= \mathcal{S}^{\mathcal{A}} \oplus \mathcal{S}^{\mathcal{B}}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an *inner product* $(\phi_1, \phi_2) \equiv -i\omega(ar{\phi_1}, \phi_2)$
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is positive definite
- introduce a "complex structure" on S (J : S → S with J²=-1); S^{C+} spanned by φ[±]: J(φ[±]) = ±i(φ[±])
- "One-particle" Hilbert space $\mathcal{H} \equiv (\mathcal{S}^{\mathbb{C}+}, (\cdot, \cdot))$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self-adjoint\ operator\ on\ }{\cal H}$
joint system $= \mathcal{S}^{A} \oplus \mathcal{S}^{B}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an inner product $(\phi_1,\phi_2)\equiv -i\omega(ar{\phi_1},\phi_2)$
- restrict to "positive" energy subspace $S^{\mathbb{C}+}$ on which (\cdot, \cdot) is *positive definite*
- introduce a "complex structure" on S (J : S → S with J²=-1); S^{C+} spanned by φ[±]: J(φ[±]) = ±i(φ[±])
- "One-particle" Hilbert space $\mathcal{H} \equiv (\mathcal{S}^{\mathbb{C}+}, (\cdot, \cdot))$
- "n-particle" Hilbert space $\mathcal{H}^{\otimes n} = \underbrace{\mathcal{H} \otimes \mathcal{H} ... \otimes \mathcal{H}}_{::};$

for *n*-identical particles $S_n \mathcal{H}^{\otimes n}$ with $S_n = \frac{1}{n!} \sum_{\sigma \in P_n} \sigma$

Classical fields	Quantum fields
$state = point \; in \; phase \; space \; \phi \in \mathcal{S}$	state = ray in complex Hilbert space H
observable = function on S	${f observable}={\it self-adjoint\ operator\ on\ }{\cal H}$
joint system $= \mathcal{S}^{A} \oplus \mathcal{S}^{B}$	joint system $= \mathcal{H}^{A} \otimes \mathcal{H}^{B}$

Quantization: "Recipe for going from the left to the right"

- complexify the space of real solutions $\mathcal{S}^{\mathbb{C}} \simeq \mathcal{S} \otimes \mathbb{C}$
- define an *inner product* $(\phi_1, \phi_2) \equiv -i\omega(ar{\phi_1}, \phi_2)$
- restrict to "positive" energy subspace $\mathcal{S}^{\mathbb{C}^+}$ on which (\cdot, \cdot) is positive definite
- introduce a "complex structure" on S (J : S → S with J²=-1); S^{C+} spanned by φ[±]: J(φ[±]) = ±i(φ[±])
- "One-particle" Hilbert space $\mathcal{H}\equiv(\mathcal{S}^{\mathbb{C}+},(\cdot,\cdot))$
- "n-particle" Hilbert space $\mathcal{H}^{\otimes n} = \underbrace{\mathcal{H} \otimes \mathcal{H} ... \otimes \mathcal{H}}_{::};$

for *n*-identical particles $S_n \mathcal{H}^{\otimes n}$ with $S_n = \frac{1}{n!} \sum_{\sigma \in P_n} \sigma$

• Fock space
$$\mathcal{F}_s(\mathcal{H}) = igoplus_{n=0}^\infty S_n \mathcal{H}^{\otimes n}$$

classical observables = functions on phase space

classical observables = functions on phase space

Quantization:

• to each classical observable ψ associate an operator \mathcal{O}_ψ on \mathcal{H}

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator \mathcal{O} (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator \mathcal{O} (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + \dots$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \ldots + \Delta_n \mathcal{O} + \ldots$

with $\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$, $\Delta_1 \equiv \Delta$ and $n \geq 2$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator $\mathcal O$ (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \ldots + \Delta_n \mathcal{O} + \ldots$

with $\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$, $\Delta_1 \equiv \Delta$ and $n \geq 2$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator $\mathcal O$ (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \dots + \Delta_n \mathcal{O} + \dots$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

Space-time symmetry generators are special observables

• \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator \mathcal{O} (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + ... + \Delta_n \mathcal{O} + ...$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

- \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}
- We have a natural action of the generators of $\mathcal P$ as one-particle operators

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator \mathcal{O} (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \dots + \Delta_n \mathcal{O} + \dots$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

- \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}
- We have a natural action of the generators of $\mathcal P$ as one-particle operators
- A commuting set of such operators used to label one-particle states (e.g. ${f P} o |{f p}
 angle)$

classical observables = functions on phase space

Quantization:

- to each classical observable ψ associate an operator \mathcal{O}_ψ on $\mathcal H$
- "2nd quantization" of a 1-particle operator $\mathcal O$ (Cook 1953)

 $d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + (\mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}) + (\mathcal{O} \otimes 1 \otimes 1 + 1 \otimes \mathcal{O} \otimes 1 + 1 \otimes 1 \otimes \mathcal{O}) + ...$

such construction naturally leads to the notion of coproduct $\Delta \mathcal{O} = \mathcal{O} \otimes 1 + 1 \otimes \mathcal{O}$

$$d\Gamma(\mathcal{O}) \equiv 1 + \mathcal{O} + \Delta \mathcal{O} + \Delta_2 \mathcal{O} + \dots + \Delta_n \mathcal{O} + \dots$$

with
$$\Delta_n \mathcal{O} = (\Delta \otimes 1) \circ \Delta_{n-1}$$
, $\Delta_1 \equiv \Delta$ and $n \geq 2$

- \mathcal{H} constructed from S (solutions of K-G equation) $\longrightarrow \mathcal{H}$ is a unitary irreps of the Poincaré algebra \mathcal{P}
- We have a natural action of the generators of $\mathcal P$ as one-particle operators
- A commuting set of such operators used to label one-particle states (e.g. ${f P} o |{f p}
 angle)$
- The coproduct Δ extends the action of elements of $\mathcal P$ to multiparticle states

"Bending" phase space

"Bending" phase space

What about "curved momentum space" and symmetry deformation?
What about "curved momentum space" and symmetry deformation?

• Momenta of a classical relativistic particle given by "coordinates" (p^0, p^i) on \mathfrak{t}^*

What about "curved momentum space" and symmetry deformation?

- Momenta of a classical relativistic particle given by "coordinates" (p⁰, pⁱ) on t^{*}
- (On-shell) momenta label |p⟩ basis of H, irreps of ISO(3,1). Such basis can be built from orbit of characters (plane waves) e_p ∈ T*

What about "curved momentum space" and symmetry deformation?

- Momenta of a classical relativistic particle given by "coordinates" (p^0, p^i) on \mathfrak{t}^*
- (On-shell) momenta label |p⟩ basis of H, irreps of ISO(3,1). Such basis can be built from orbit of characters (plane waves) e_p ∈ T*

"Curving" momentum space = introduce a non-trivial Lie bracket on \mathfrak{t}^*

Two main consequences:

- "non-commuting coordinates" $\longrightarrow [\cdot, \cdot]_{\mathfrak{t}^*} \neq 0$
- group-like plane waves: $\longrightarrow e_p e_q \equiv e_{p \oplus q} \neq e_{q \oplus p} \equiv e_q e_p$, $(e_p)^{-1} \equiv e_{\ominus p}$

What about "curved momentum space" and symmetry deformation?

- Momenta of a classical relativistic particle given by "coordinates" (p^0, p^i) on \mathfrak{t}^*
- (On-shell) momenta label |p⟩ basis of H, irreps of ISO(3,1). Such basis can be built from orbit of characters (plane waves) e_p ∈ T*

"Curving" momentum space = introduce a non-trivial Lie bracket on \mathfrak{t}^* Two main consequences:

- "non-commuting coordinates" $\longrightarrow [\cdot, \cdot]_{\mathfrak{t}^*} \neq 0$
- group-like plane waves: $\longrightarrow e_{\rho}e_q \equiv e_{p\oplus q} \neq e_{q\oplus p} \equiv e_q e_p$, $(e_p)^{-1} \equiv e_{\ominus p}$

consequence for translation generator observables: $\Delta P_{\mu} \neq P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$, and

$$\pi_{12}\Delta P_{\mu} \neq \Delta P_{\mu} , \quad \pi_{12}(a \otimes b) \equiv (b \otimes a)$$

i.e. "non-Leibniz" and "non-symmetric" action on multi-particle states

Why group valued momenta? \longrightarrow motivation from 3d (quantum) gravity

Why group valued momenta? ---- motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c, \ \{j_a, p_b\} = -\epsilon_{abc} p^c, \ \{p_a, p_b\} = 0$$

Why group valued momenta? —> motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c, \ \{j_a, p_b\} = -\epsilon_{abc} p^c, \ \{p_a, p_b\} = 0$$

• upon quantization $j_a \to J_a$, $p_a \to P_a$, observables which belong to $U(\mathfrak{p}_3)$

Why group valued momenta? — motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c$$
, $\{j_a, p_b\} = -\epsilon_{abc} p^c$, $\{p_a, p_b\} = 0$

- upon quantization $j_a \to J_a$, $p_a \to P_a$, observables which belong to $U(\mathfrak{p}_3)$
- Chern-Simons formulation of 2 + 1 gravity + point particles (Schroers 0710.5844)

Why group valued momenta? —> motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c$$
, $\{j_a, p_b\} = -\epsilon_{abc} p^c$, $\{p_a, p_b\} = 0$

- upon quantization $j_a \to J_a$, $p_a \to P_a$, observables which belong to $U(\mathfrak{p}_3)$
- Chern-Simons formulation of 2+1 gravity + point particles (Schroers 0710.5844)

quantization of Poisson brackets for p_a and j_a

 $D(U(\mathfrak{su}(1,1))\equiv U(\mathfrak{su}(1,1))\ltimes \mathbb{C}(SU(1,1))$

Why group valued momenta? —> motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c$$
, $\{j_a, p_b\} = -\epsilon_{abc} p^c$, $\{p_a, p_b\} = 0$

- upon quantization $j_a \to J_a$, $p_a \to P_a$, observables which belong to $U(\mathfrak{p}_3)$
- Chern-Simons formulation of 2+1 gravity + point particles (Schroers 0710.5844)

quantization of Poisson brackets for p_a and j_a

 $D(U(\mathfrak{su}(1,1))\equiv U(\mathfrak{su}(1,1))\ltimes \mathbb{C}(SU(1,1))$

• momenta become co-ordinate functions on SU(1,1)

Why group valued momenta? —> motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c, \ \{j_a, p_b\} = -\epsilon_{abc} p^c, \ \{p_a, p_b\} = 0$$

- upon quantization $j_a \to J_a$, $p_a \to P_a$, observables which belong to $U(\mathfrak{p}_3)$
- Chern-Simons formulation of 2+1 gravity + point particles (Schroers 0710.5844)

quantization of Poisson brackets for p_a and j_a

 $D(U(\mathfrak{su}(1,1)) \equiv U(\mathfrak{su}(1,1)) \ltimes \mathbb{C}(SU(1,1))$

• momenta become co-ordinate functions on SU(1,1)

$$\Delta P_{a} = P_{a} \otimes \mathbf{1} + \mathbf{1} \otimes P_{a} + M_{p}^{-1} \epsilon_{abc} P_{b} \otimes P_{c} + \dots$$

Why group valued momenta? —> motivation from 3d (quantum) gravity

• Phase space of relativistic free particle in 3d Minkowski space p_a , j_a

$$\{j_a, j_b\} = -\epsilon_{abc} j^c, \ \{j_a, p_b\} = -\epsilon_{abc} p^c, \ \{p_a, p_b\} = 0$$

- upon quantization $j_a \to J_a$, $p_a \to P_a$, observables which belong to $U(\mathfrak{p}_3)$
- Chern-Simons formulation of 2+1 gravity + point particles (Schroers 0710.5844)

quantization of Poisson brackets for p_a and j_a

 $D(U(\mathfrak{su}(1,1)) \equiv U(\mathfrak{su}(1,1)) \ltimes \mathbb{C}(SU(1,1))$

• momenta become co-ordinate functions on SU(1,1)

$$\Delta P_{a} = P_{a} \otimes \mathbf{1} + \mathbf{1} \otimes P_{a} + M_{p}^{-1} \epsilon_{abc} P_{b} \otimes P_{c} + \dots$$

(see also Noui et al. 0806.4121, Freidel & Livine hep-th/0512113)

κ -Poincaré l

Looking for 4d analogues? Our model: κ -Poincaré

κ -Poincaré l

Looking for 4d analogues? Our model: κ -Poincaré

• κ-Poincaré shares an important feature with Lorentz double

κ -Poincaré I

Looking for 4d analogues? Our model: κ -Poincaré

• κ-Poincaré shares an important feature with Lorentz double

Non-trivial Lie bracket on t^{*} = b $[P^*_{\mu}, P^*_{\nu}] = -\frac{1}{\kappa} (P^*_{\mu} \delta^0_{\nu} - P^*_{\nu} \delta^0_{\mu}).$ momenta: coordinates on (non-abelian) T^{*} = B sub-manifold of dS₄ $-\eta^2_0 + \eta^2_1 + \eta^2_2 + \eta^2_3 + \eta^2_4 = \kappa^2; \quad \eta_0 + \eta_4 > 0$ with $\kappa \sim E_{Planck}$

κ -Poincaré I

Looking for 4d analogues? Our model: κ -Poincaré

• κ-Poincaré shares an important feature with Lorentz double

• Non-trivial Lie bracket on $\mathfrak{t}^* \equiv \mathfrak{b}$ $[P^*_{\mu}, P^*_{\nu}] = -\frac{1}{\kappa} (P^*_{\mu} \delta^0_{\nu} - P^*_{\nu} \delta^0_{\mu}).$ • momenta: coordinates on (non-abelian) $T^* = B$ sub-manifold of dS_4 $-\eta^2_0 + \eta^2_1 + \eta^2_2 + \eta^2_3 + \eta^2_4 = \kappa^2; \quad \eta_0 + \eta_4 > 0$ with $\kappa \sim E_{Planck}$

for plane waves in B consider a one-parameter splitting

$$e_{p} \equiv e^{-irac{1-eta}{2}p^{0}P_{0}^{*}}e^{ip^{j}P_{j}^{*}}e^{-irac{1+eta}{2}p^{0}P_{0}^{*}}$$

 $0 \leq |\beta| \leq 1$, with momentum composition rules and "antipodes"

$$p \oplus_{\beta} q = (p^0 + q^0; p^j e^{\frac{1-\beta}{2\kappa}q^0} + q^j e^{-\frac{1+\beta}{2\kappa}p^0}), \qquad \ominus_{\beta} p = (-p^0; -e^{\frac{-\beta}{\kappa}p^0}p^j).$$

each choice of β corresponds to a *choice of coordinates* on the manifold *B*.

κ -Poincaré II

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{aligned} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{aligned}$$

corresponds to "bicrossproduct" basis of U(t) introduced in Majid-Ruegg ('94) to prove that

$$\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1))
ightarrow \mathbb{C}(B)$$

κ -Poincaré II

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{split} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{split}$$

corresponds to "bicrossproduct" basis of U(t) introduced in Majid-Ruegg ('94) to prove that

$$\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1))
ightarrow \mathbb{C}(B)$$

• deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}}\right) + \frac{1}{2\kappa}\vec{P}^2\right) + \frac{i}{\kappa}P_lP_j$$

$\kappa\text{-Poincaré II}$

for $\beta=1$ we have "flat slicing" coordinates

$$\begin{split} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{split}$$

corresponds to "bicrossproduct" basis of U(t) introduced in Majid-Ruegg ('94) to prove that

$$\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1))
ightarrow \mathbb{C}(B)$$

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}}\right) + \frac{1}{2\kappa}\vec{P}^2\right) + \frac{i}{\kappa}P_lP_j$$

and co-products

$$\begin{split} \Delta(N_j) &= N_j \otimes 1 + e^{-P_0/\kappa} \otimes N_j + \frac{\epsilon_{jkl}}{\kappa} P_k \otimes M_l \\ \Delta(P_0) &= P_0 \otimes 1 + 1 \otimes P_0, \quad \Delta(P_i) = P_i \otimes 1 + \exp(-P_0/\kappa) \otimes P_k \\ \Delta(M_i) &= M_i \otimes 1 + 1 \otimes M_i \end{split}$$

κ -Poincaré II

for $\beta = 1$ we have "flat slicing" coordinates

$$\begin{split} \eta_0(p_0,\mathbf{p}) &= \kappa \sinh p_0/\kappa + \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}, \\ \eta_i(p_0,\mathbf{p}) &= p_i e^{p_0/\kappa}, \\ \eta_4(p_0,\mathbf{p}) &= \kappa \cosh p_0/\kappa - \frac{\mathbf{p}^2}{2\kappa} e^{p_0/\kappa}. \end{split}$$

corresponds to "bicrossproduct" basis of U(t) introduced in Majid-Ruegg ('94) to prove that

$$\mathcal{P}_{\kappa} = U(\mathfrak{so}(3,1))
ho \blacksquare \mathbb{C}(B)$$

deformed boost action

$$[N_j, P_l] = i\delta_{lj} \left(\frac{\kappa}{2} \left(1 - e^{-\frac{2P_0}{\kappa}}\right) + \frac{1}{2\kappa}\vec{P}^2\right) + \frac{i}{\kappa}P_lP_j$$

and co-products

$$\begin{aligned} \Delta(N_j) &= N_j \otimes 1 + e^{-P_0/\kappa} \otimes N_j + \frac{\epsilon_{jkl}}{\kappa} P_k \otimes M_l \\ \Delta(P_0) &= P_0 \otimes 1 + 1 \otimes P_0, \quad \Delta(P_i) = P_i \otimes 1 + \exp(-P_0/\kappa) \otimes P_k \\ \Delta(M_i) &= M_i \otimes 1 + 1 \otimes M_i \end{aligned}$$

in the limit $\kappa \longrightarrow \infty$ recover ordinary Poincaré algebra

Michele Arzano — Anatomy of a deformed symmetry: field quantization curved momentum space

Functions on the deformed mass-shell $\phi \in C^\infty(M^\kappa_m)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\,\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

Functions on the deformed mass-shell $\phi \in C^\infty(M_m^\kappa)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

• On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product

Functions on the deformed mass-shell $\phi \in C^\infty(M_m^\kappa)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

- On $\phi \in C^\infty(M^\kappa_m)$ measure $d\mu(p) \ \delta(\mathcal{C}^\kappa_1(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split M_m^{κ} in positive and negative energy subspaces!

Functions on the deformed mass-shell $\phi \in C^{\infty}(M_m^{\kappa})$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split M_m^{κ} in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = rac{1}{2} \left(1 + rac{P_0}{|P_0|}
ight)$$

Functions on the deformed mass-shell $\phi \in C^{\infty}(M_m^{\kappa})$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split M_m^{κ} in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = rac{1}{2} \left(1 + rac{P_0}{|P_0|}
ight)$$

preferred choice of (local) "primitive" generators P_0 , P_i for which $C_1(P) = P_0^2 - \mathbf{P}_i^2$ and

$$\Delta P_{\mu} = P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$$

Functions on the deformed mass-shell $\phi \in C^\infty(M_m^\kappa)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split M_m^{κ} in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = rac{1}{2} \left(1 + rac{P_0}{|P_0|}
ight)$$

preferred choice of (local) "primitive" generators P_0 , P_i for which $C_1(P) = P_0^2 - \mathbf{P}_i^2$ and

$$\Delta P_{\mu} = P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$$

For U(b) there is no choice of primitive elements to decompose the Casimir! The action
of translation generators will be non-Leibniz and non-symmetric for ANY choice of basis!.

Functions on the deformed mass-shell $\phi \in C^\infty(M^\kappa_m)$ defined by the "wave equation"

$$C_1^{\kappa}(P)\phi=m^2\phi$$

 $C_1^{\kappa}(P)$ defined by the Lorentz invariant hyperboloid on B: $\eta_4 = \tilde{m}$

- On $\phi \in C^{\infty}(M_m^{\kappa})$ measure $d\mu(p) \ \delta(\mathcal{C}_1^{\kappa}(p))$ which we can use to define an inner product
- to define κ -Hilbert space need to split M_m^{κ} in positive and negative energy subspaces!
- in ordinary QFT in Minkowski space define a *complex structure* $J = \frac{-\partial_t}{(-\partial_t \partial_t)^{1/2}}$ from killing vector ∂_t . In terms of $P_0 = i\partial_t$ we have a *positive energy projector*

$$P^+ = rac{1}{2} \left(1 + rac{P_0}{|P_0|}
ight)$$

preferred choice of (local) "primitive" generators P_0 , P_i for which $C_1(P) = P_0^2 - \mathbf{P}_i^2$ and

$$\Delta P_{\mu} = P_{\mu} \otimes 1 + 1 \otimes P_{\mu}$$

For U(b) there is no choice of primitive elements to decompose the Casimir! The action
of translation generators will be non-Leibniz and non-symmetric for ANY choice of basis!.

No preferred choice of translation generators from which we can define an energy coordinate on M_m^{κ} and thus no preferred choice of J and P^+ to define one-particle Hilbert space.

Hilbert space construction for $\beta = 1$ (bicrossproduct basis), massless case

$$C_1^{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_0}{2\kappa}\right)\right)^2 - \mathbf{P}^2 e^{P_0/\kappa}$$

Hilbert space construction for $\beta = 1$ (bicrossproduct basis), massless case

$$\mathcal{C}_{1}^{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_{0}}{2\kappa}\right)\right)^{2} - \mathbf{P}^{2} e^{P_{0}/\kappa}$$

• Hilbert space = M^{κ} functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{k}) = -\kappa \log \left(1 \mp \frac{|\mathbf{k}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_\kappa = \int_{M_m^{\kappa+}} \frac{d\mu(\mathbf{p})}{2\omega_\kappa(\mathbf{p})} \ ar{\phi}_1(\mathbf{p}) \phi_2(\mathbf{p})$$

with
$$d\mu(\mathbf{p}) = rac{e^{3p_0/\kappa}}{(2\pi)^4} \, dp_0 \, d^3\mathbf{p}$$

Hilbert space construction for $\beta = 1$ (bicrossproduct basis), massless case

$$\mathcal{C}_{1}^{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_{0}}{2\kappa}\right)\right)^{2} - \mathbf{P}^{2} e^{P_{0}/\kappa}$$

• Hilbert space = M^{κ} functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{k}) = -\kappa \log \left(1 \mp \frac{|\mathbf{k}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_\kappa = \int_{\mathcal{M}_m^{\kappa+}} rac{d\mu(\mathbf{p})}{2\omega_\kappa(\mathbf{p})} \ ar{\phi}_1(\mathbf{p}) \, \phi_2(\mathbf{p})$$

with
$$d\mu(\mathbf{p})=rac{e^{3p_0/\kappa}}{(2\pi)^4}\,dp_0\,d^3\mathbf{p}$$

• ... for "transplanckian" $(|\mathbf{k}| > \kappa)$ modes $(\cdot, \cdot)_{\kappa}$ is no longer positive definite!

Hilbert space construction for $\beta = 1$ (bicrossproduct basis), massless case

$$C_1^{\kappa}(P) = \left(2\kappa \sinh\left(\frac{P_0}{2\kappa}\right)\right)^2 - \mathbf{P}^2 e^{P_0/\kappa}$$

• Hilbert space = M^{κ} functions on deformed mass shell $\omega_{\kappa}^{\pm}(\mathbf{k}) = -\kappa \log \left(1 \mp \frac{|\mathbf{k}|}{\kappa}\right)$ equipped with inner product

$$(\phi_1,\phi_2)_{\kappa} = \int_{M_m^{\kappa+}} \frac{d\mu(\mathbf{p})}{2\omega_{\kappa}(\mathbf{p})} \ ar{\phi}_1(\mathbf{p}) \phi_2(\mathbf{p})$$

with
$$d\mu(\mathbf{p})=rac{e^{3p_0/\kappa}}{(2\pi)^4}\,dp_0\,d^3\mathbf{p}$$

...for "transplanckian" $(|\mathbf{k}| > \kappa)$ modes $(\cdot, \cdot)_{\kappa}$ is no longer positive definite!

 $\begin{array}{l} \kappa\text{-one-particle Hilbert space: } \mathcal{H}_{\kappa} \text{ functions on } M^{\kappa+}, \text{ positive energy, equipped with } (\cdot, \cdot)_{\kappa} \\ \quad \text{ and modes truncated at } \kappa \end{array}$

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of ${\cal H}$

In ordinary QFT the full (bosonic) **Fock space** is obtained from symmetrized tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of ${\cal H}$

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2}\left(\ket{\mathtt{k_1}}\otimes\ket{\mathtt{k_2}}+\ket{\mathtt{k_2}}\otimes\ket{\mathtt{k_1}}
ight)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

In ordinary QFT the full (bosonic) Fock space is obtained from $\underline{symmetrized}$ tensor prods of $\mathcal H$

In the κ -deformed case try to proceed in an analogous way BUT... the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

In ordinary QFT the full (bosonic) **Fock space** is obtained from symmetrized tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

• "modulated flip"
$$\sigma^{\kappa} = \mathcal{F}_{\kappa} \sigma \mathcal{F}_{\kappa}^{-1}$$
, $\mathcal{F}_{\kappa} = \exp\left(\frac{1}{\kappa} P_0 \otimes P_j \frac{\partial}{\partial P_j}\right)$ such that
 $\sigma^{\kappa}(|\mathbf{k}_1\rangle \otimes |\mathbf{k}_2\rangle) = |(1 - \epsilon_1) \mathbf{k}_2\rangle \otimes |(1 - \epsilon_2)^{-1} \mathbf{k}_1\rangle$, $\epsilon_i = \frac{|\mathbf{k}_i|}{\kappa}$
Deforming Fock space $1.\kappa$: multi-particle states

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

• "modulated flip"
$$\sigma^{\kappa} = \mathcal{F}_{\kappa} \sigma \mathcal{F}_{\kappa}^{-1}$$
, $\mathcal{F}_{\kappa} = \exp\left(\frac{1}{\kappa} P_0 \otimes P_j \frac{\partial}{\partial P_j}\right)$ such that
 $\sigma^{\kappa}(|\mathbf{k}_1\rangle \otimes |\mathbf{k}_2\rangle) = |(1 - \epsilon_1) \mathbf{k}_2\rangle \otimes |(1 - \epsilon_2)^{-1} \mathbf{k}_1\rangle$, $\epsilon_i = \frac{|\mathbf{k}_i|}{\kappa}$

• E.g. there will be two 2-particle states

$$\begin{aligned} |\mathbf{k}_{1}\mathbf{k}_{2}\rangle_{\kappa} &= \quad \frac{1}{\sqrt{2}}\left[|\,\mathbf{k}_{1}\rangle\otimes\,|\,\mathbf{k}_{2}\rangle+|\,(1-\epsilon_{1})\mathbf{k}_{2}\rangle\otimes\,|\,(1-\epsilon_{2})^{-1}\mathbf{k}_{1}\rangle\right] \\ |\mathbf{k}_{2}\mathbf{k}_{1}\rangle_{\kappa} &= \quad \frac{1}{\sqrt{2}}\left[|\,\mathbf{k}_{2}\rangle\otimes\,|\,\mathbf{k}_{1}\rangle+|\,(1-\epsilon_{2})\mathbf{k}_{1}\rangle\otimes\,|\,(1-\epsilon_{1})^{-1}\mathbf{k}_{2}\rangle\right] \end{aligned}$$

with same energy and different linear momentum

$$\begin{split} \mathsf{K}_{12} &= \mathsf{k}_1 \oplus \mathsf{k}_2 = \quad \mathsf{k}_1 + (1 - \epsilon_1) \mathsf{k}_2 \\ \mathsf{K}_{21} &= \mathsf{k}_2 \oplus \mathsf{k}_1 = \quad \mathsf{k}_2 + (1 - \epsilon_2) \mathsf{k}_1 \end{split}$$

Deforming Fock space $1.\kappa$: multi-particle states

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of \mathcal{H} In the κ -deformed case try to proceed in an analogous way BUT...

the symmetrized state

$$1/\sqrt{2}(|\mathbf{k_1}\rangle\otimes|\mathbf{k_2}\rangle+|\mathbf{k_2}\rangle\otimes|\mathbf{k_1}\rangle)$$

is NOT an eigenstate of P_{μ} due to the role of non-trivial coproduct

Multi-particle states of κ -Fock-space are built via a "momentum dependent" symmetrization

• "modulated flip"
$$\sigma^{\kappa} = \mathcal{F}_{\kappa} \sigma \mathcal{F}_{\kappa}^{-1}$$
, $\mathcal{F}_{\kappa} = \exp\left(\frac{1}{\kappa} P_0 \otimes P_j \frac{\partial}{\partial P_j}\right)$ such that
 $\sigma^{\kappa}(|\mathbf{k}_1\rangle \otimes |\mathbf{k}_2\rangle) = |(1 - \epsilon_1) \mathbf{k}_2\rangle \otimes |(1 - \epsilon_2)^{-1} \mathbf{k}_1\rangle$, $\epsilon_i = \frac{|\mathbf{k}_i|}{\kappa}$

E.g. there will be two 2-particle states

$$\begin{aligned} |\mathbf{k}_{1}\mathbf{k}_{2}\rangle_{\kappa} &= \frac{1}{\sqrt{2}} \left[|\mathbf{k}_{1}\rangle \otimes |\mathbf{k}_{2}\rangle + |(1-\epsilon_{1})\mathbf{k}_{2}\rangle \otimes |(1-\epsilon_{2})^{-1}\mathbf{k}_{1}\rangle \right] \\ |\mathbf{k}_{2}\mathbf{k}_{1}\rangle_{\kappa} &= \frac{1}{\sqrt{2}} \left[|\mathbf{k}_{2}\rangle \otimes |\mathbf{k}_{1}\rangle + |(1-\epsilon_{2})\mathbf{k}_{1}\rangle \otimes |(1-\epsilon_{1})^{-1}\mathbf{k}_{2}\rangle \right] \end{aligned}$$

with same energy and different linear momentum

$$\begin{aligned} &\mathsf{K}_{12} = \mathsf{k}_1 \oplus \mathsf{k}_2 = &\mathsf{k}_1 + (1 - \epsilon_1)\mathsf{k}_2 \\ &\mathsf{K}_{21} = \mathsf{k}_2 \oplus \mathsf{k}_1 = &\mathsf{k}_2 + (1 - \epsilon_2)\mathsf{k}_1 \end{aligned}$$

given *n*-different modes one has n! different *n*-particle states, one for each permutation of the *n* modes $k_1, k_2 \dots k_n$

The non-trivial algebraic structure of $\kappa\text{-translations}$ endows the Fock space with a "fine structure"

The non-trivial algebraic structure of $\kappa\text{-translations}$ endows the Fock space with a "fine structure"

• the different states can be distinguished measuring their momentum splitting e.g.
$$\begin{split} |\Delta K_{12}| \equiv |K_{12} - K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1|\mathbf{k}_2| - \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1| |\mathbf{k}_2| \\ \text{of order } |\mathbf{k}_i|^2 / \kappa \end{split}$$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1| \mathbf{k}_2| \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1| |\mathbf{k}_2|$ of order $|\mathbf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong S_2 \mathcal{H}^2 \otimes \mathbb{C}^2$, where $S_2 \mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$\begin{array}{lll} |\epsilon\rangle \otimes |\uparrow\rangle & = & |\mathbf{k}_{1}\mathbf{k}_{2}\rangle_{\kappa} \\ |\epsilon\rangle \otimes |\downarrow\rangle & = & |\mathbf{k}_{2}\mathbf{k}_{1}\rangle_{\kappa} \end{array}$$

with $\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1| \mathbf{k}_2| \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1| |\mathbf{k}_2|$ of order $|\mathbf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong S_2\mathcal{H}^2 \otimes \mathbb{C}^2$, where $S_2\mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$\begin{array}{lll} |\epsilon\rangle \otimes |\uparrow\rangle &=& |\mathbf{k}_1\mathbf{k}_2\rangle_{\kappa} \\ |\epsilon\rangle \otimes |\downarrow\rangle &=& |\mathbf{k}_2\mathbf{k}_1\rangle_{\kappa} \end{array}$$

with $\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$

Planckian mode entanglement becomes possible!

The non-trivial algebraic structure of κ -translations endows the Fock space with a "fine structure"

- the different states can be distinguished measuring their momentum splitting e.g. $|\Delta K_{12}| \equiv |K_{12} K_{21}| = \frac{1}{\kappa} |\mathbf{k}_1| \mathbf{k}_2| \mathbf{k}_2 |\mathbf{k}_1|| \leq \frac{2}{\kappa} |\mathbf{k}_1| |\mathbf{k}_2|$ of order $|\mathbf{k}_i|^2/\kappa$
- the 2-mode Hilbert space becomes $\mathcal{H}^2_{\kappa} \cong S_2 \mathcal{H}^2 \otimes \mathbb{C}^2$, where $S_2 \mathcal{H}^2$ is the ordinary symmetrized 2-mode Hilbert space and our states can be written as

$$\begin{array}{lll} |\epsilon\rangle \otimes |\uparrow\rangle &=& |{\bf k}_1 {\bf k}_2\rangle_{\kappa} \\ |\epsilon\rangle \otimes |\downarrow\rangle &=& |{\bf k}_2 {\bf k}_1\rangle_{\kappa} \end{array}$$

with $\epsilon = \epsilon(\mathbf{k_1}) + \epsilon(\mathbf{k_2})$

Planckian mode entanglement becomes possible!

• e.g. the state superposition of two total "classical" energies $\epsilon_A = \epsilon(\mathbf{k}_{1A}) + \epsilon(\mathbf{k}_{2A})$ and $\epsilon_B = \epsilon(\mathbf{k}_{1B}) + \epsilon(\mathbf{k}_{2B})$ can be entangled with the additional hidden modes e.g.

$$|\Psi
angle = 1/\sqrt{2}(|\epsilon_A
angle \otimes |\uparrow
angle + |\epsilon_B
angle \otimes |\downarrow
angle)$$

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

• start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If U(t) acts as an "entangling gate", the state ho(t) will be entangled

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If U(t) acts as an "entangling gate", the state ho(t) will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{PI}\rho(0)$$

• consider a quantum system evolving unitarily

$$\rho(t) = U(t)\rho(0)U^{\dagger}(t)$$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If U(t) acts as an "entangling gate", the state ho(t) will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{Pl}\rho(0)$$

As the system evolves she will see the <u>mixed state</u>

$$\rho_{obs}(t) = \operatorname{Tr}_{Pl}\rho(t) = \operatorname{Tr}_{Pl}\left[U(t)\rho(0)U^{\dagger}(t)\right].$$

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If U(t) acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{Pl}\rho(0)$$

As the system evolves she will see the <u>mixed state</u>

$$\rho_{obs}(t) = \operatorname{Tr}_{Pl}\rho(t) = \operatorname{Tr}_{Pl}\left[U(t)\rho(0)U^{\dagger}(t)\right].$$

For the *macroscopic* observer, the evolution is not unitary!

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If U(t) acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{Pl}\rho(0)$$

As the system evolves she will see the mixed state

$$\rho_{obs}(t) = \operatorname{Tr}_{Pl}\rho(t) = \operatorname{Tr}_{Pl}\left[U(t)\rho(0)U^{\dagger}(t)\right].$$

For the *macroscopic* observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

• consider a quantum system evolving unitarily

 $\rho(t) = U(t)\rho(0)U^{\dagger}(t)$

- start with a pure state $\rho(0)$ factorized with respect to the bipartition in $\mathcal{H}_{\kappa}^{n} \cong S_{n}\mathcal{H}^{n} \otimes \mathbb{C}^{n}$
- If U(t) acts as an "entangling gate", the state $\rho(t)$ will be entangled
- A macroscopic observer who is not able to resolve the planckian degrees of freedom at the beginning will see the reduced system in a pure state

$$\rho_{obs}(0) = \operatorname{Tr}_{Pl}\rho(0)$$

As the system evolves she will see the mixed state

$$\rho_{obs}(t) = \operatorname{Tr}_{Pl}\rho(t) = \operatorname{Tr}_{Pl}\left[U(t)\rho(0)U^{\dagger}(t)\right].$$

For the macroscopic observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

Conclusions

- Relativistic symmetries can be deformed to allow "curvature" for momentum space
- Motivations to look at such deformations come form QG and NCFT scenarios
- Quantization of (free) field theories with group valued momenta leads to **ambiguities** related to the different choices on coordinate functions on the momentum manifold
- Physical interpretation of such ambiguities?
- At the multiparticle level the non-trivial behaviour of field modes leads to a **deformed Fock space**: interesting **entanglement** phenomena can take place
- What role for "trans-planckian" issues in semiclassical gravity (BH evaporation, Inflation)??

References

- 1. MA, 1009.1097 [hep-th]; (this week!)
- 2. MA, J. Kowalski-Glikman, 1008.2962 [hep-th];
- 3. MA, J. Kowalski-Glikman and A. Walkus, 0908.1974 [hep-th];
- 4. MA and D. Benedetti, 0809.0889 [hep-th];
- 5. MA, A. Hamma and S. Severini, 0806.2145 [hep-th];
- 6. MA, 0710.1083 [hep-th];
- 7. MA and A. Marciano', 0707.1329 [hep-th]