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Fun with linear quantum fields

Free quantum fields are boring...

for inertial observers

e Inertial observers same notion of energy —> same vacuum state

® Observers who measure different energies — different vacuum states...

Inertial vs. accelerated observers: Unruh effect
Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Michele Arzano — Anatomy of a deformed symmetry: field quantization curved momentum space 2/17



Fun with linear quantum fields

Free quantum fields are boring...

for inertial observers

e Inertial observers same notion of energy —> same vacuum state

® Observers who measure different energies — different vacuum states...
Inertial vs. accelerated observers: Unruh effect
Free falling vs. fiducial observer in Schwarzschild background: Hawking effect

Observers in an expanding universe: cosmological particle creation (Parker)

the free field comes alive!

Less known context in which free QFT manifests non-trivial features
field quantization on curved momentum space
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Outline

Relativistic particles, fields and quantization: a (pedantic) review
Bending phase space and a new quantization ambiguity

rk-quantum fields, the “fine structure” of x-Fock space and hidden
entanglement
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From particles to fields

[Phase space of a classical relativistic particle ' = co-adjoint orbit of the Lorentz group]
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e Spinning relativistic particle I = Ops; m, s labels of Casimir ops. Ci(p), Co(w)

e Momentum sector of On, o = restriction to the abelian sub-algebra t* C is0*(3,1)
dual to the algebra of translation generators t: “mass shell” M,, C t* = R®!

Ci(p) = (p°) —p* = m’
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e General formulation of phase space of G-symmetric mechanical systems

> Phase space manifold = orbits of G on g*
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e Momentum sector of On, o = restriction to the abelian sub-algebra t* C is0*(3,1)
dual to the algebra of translation generators t: “mass shell” M,, C t* = R®!

Ci(p) = (p°) —p* = m’
e Take ¢ € C*°(My), under Fourier transform
(C(p) — m)P(p) =0 <= (O + m*)¢(x) =0,
#(x) € S equipped with w(¢1, ¢2) = [£(P2Vud1 — P1V uep2)dTH

[ Phase space of a classical Klein-Gordon field {S,w} ]
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Field quantization
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Field quantization

Classical fields ‘ Quantum fields

state = point in phase space ¢ € S | state = ray in complex Hilbert space H
observable = function on S observable = self-adjoint operator on H
joint system = S* @ S joint system = H* ® H°
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o define an inner product (1, ¢2) = —iw(d1, $2)

® restrict to “positive” energy subspace S on which (+,-) is positive definite

e introduce a “complex structure” on S (J: S — S with J°=-1); S°* spanned
by ¢*: J(¢*) = +i(¢™)

® “One-particle” Hilbert space H

(SC+7 (" ))
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® restrict to “positive” energy subspace S on which (+,-) is positive definite

e introduce a “complex structure” on S (J: S — S with J°=-1); S°* spanned
by ¢*: J(¢*) = +i(¢™)

o “One-particle” Hilbert space H = (ST, (-, "))

e ‘“n-particle” Hilbert space H®" = H @ H... @ H,;

n—times

for n-identical particles S,H®" with S, = 2>, o

e Fock space Fs(H) = P2, SaHE"
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classical observables = functions on phase space
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Observables and symmetries
classical observables = functions on phase space

Quantization:
® to each classical observable 1) associate an operator Oy on H

® '“2nd quantization” of a 1-particle operator O (Cook 1953)
df(0)=1+0+(0®1+10)+(01®1+1R081+ 1Q1R0)+ ...
such construction naturally leads to the notion of coproduct AO =0 ®1+1® O
dr(O) =140+ A0 + D30 + ... + A0 + ...
with A,O =(A®1)oA,_1, Ay =Aand n>2
Space-time symmetry generators are special observables

® #H constructed from S (solutions of K-G equation) — H is a unitary irreps of the
Poincaré algebra P
® We have a natural action of the generators of P as one-particle operators

® A commuting set of such operators used to label one-particle states (e.g. P — |p))

® The coproduct A extends the action of elements of P to multiparticle states
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[What about “curved momentum space” and symmetry deformation?]

e Momenta of a classical relativistic particle given by “coordinates” (p°, pi) on t*

® (On-shell) momenta label |p) basis of #, irreps of ISO(3,1). Such basis can be
built from orbit of characters (plane waves) e, € T~

“Curving” momentum space = introduce a non-trivial Lie bracket on t*
Two main consequences:
e “non-commuting coordinates” — [-, ] # 0

o group-like plane waves: — e,e; = eppq 7 €gop = €€, (€)' = eop

consequence for translation generator observables: AP, # P, ® 1+ 1® P, and
T2AP, #AP,, wp2(a®b)=(b® a)

i.e. “non-Leibniz” and “non-symmetric” action on multi-particle states
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Curved momenta from QG

Why group valued momenta? — motivation from 3d (quantum) gravity
e Phase space of relativistic free particle in 3d Minkowski space p., ja
{arjb} = —€abc j, {JasPo} = —€abc P, {pPaypp} =0
e upon quantization j, — J,, p, — Pa, observables which belong to U(ps3)
e Chern-Simons formulation of 2+ 1 gravity + point particles (Schroers 0710.5844)

> quantization of Poisson brackets for p, and j,

D(U(su(1,1)) = U(su(1, 1)) x C(SU(1, 1))

» momenta become co-ordinate functions on SU(1,1)

[ APa:Pa®1+1®Pa"‘M;lfabch@Pc'f'u- ]

(see also Noui et al. 0806.4121, Freidel & Livine hep-th/0512113)

Michele Arzano — Anatomy of a deformed symmetry: field quantization curved momentum space 8/17



k-Poincaré |

Looking for 4d analogues? Our model: k-Poincaré

Michele Arzano — Anatomy of a deformed symmetry: field quantization curved momentum space 9/17



k-Poincaré |

Looking for 4d analogues? Our model: k-Poincaré

e rk-Poincaré shares an important feature with Lorentz double

Michele Arzano — Anatomy of a deformed symmetry: field quantization curved momentum space 9/17



k-Poincaré |

Looking for 4d analogues? Our model: k-Poincaré

e rk-Poincaré shares an important feature with Lorentz double
> Non-trivial Lie bracket on t* = b
(P, Pl = = (Piok — PI).
» momenta: coordinates on (non-abelian) T* = B sub-manifold of dS,
oMM+ s =K Mo+ >0

with & ~ Epjanck
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k-Poincaré |

Looking for 4d analogues? Our model: k-Poincaré

e rk-Poincaré shares an important feature with Lorentz double
> Non-trivial Lie bracket on t* = b
(P, Pl = = (Piok — PI).
» momenta: coordinates on (non-abelian) T* = B sub-manifold of dS,
o+ AT A =R o+ >0

with & ~ Epjanck

e for plane waves in B consider a one-parameter splitting

.1—8 0 o fi 148 0
ep=e 2 PR PF =T PR

0 < |B| £ 1, with momentum composition rules and “antipodes”
0 0 i 1=B_0 P _1+8 0 0 =B0 ;
pP®sq=(p +q.p ez 44 e "), opp=(—p; —e*"p).

each choice of 8 corresponds to a choice of coordinates on the manifold B.
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k-Poincaré |

for B =1 we have “flat slicing” coordinates

2
m(po,p) = rsinhpo/k+ 2 e/",

K
ni(po,p) = piel/",

p2
na(po,p) = Hcoshpo/ﬁ—;e”"/”-

K

corresponds to “bicrossproduct” basis of U(t) introduced in Majid-Ruegg ('94) to prove that

P.. = U(s0(3,1)) >« C(B)
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K
ni(po,p) = piel/",

p2
na(po,p) = Hcoshpo/ﬁ—;e”"/”-

K

corresponds to “bicrossproduct” basis of U(t) introduced in Majid-Ruegg ('94) to prove that
P.. = U(s0(3,1)) >« C(B)

e deformed boost action

2Py

[N, Pi] = "5U(§ (1 - fT) + i’ﬂ) + L PIP;
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k-Poincaré |

for B =1 we have “flat slicing” coordinates

2
770(P0ap) = &sinh pO/’i+ %ePO/Nv
K
ni(po,p) = piel/",
p2
ma(po,p) = rcoshpo/k— ePo/r.
K

corresponds to “bicrossproduct” basis of U(t) introduced in Majid-Ruegg ('94) to prove that
P.. = U(s0(3,1)) >« C(B)

e deformed boost action

2Py

[N, Pi] = "5U(§ (1 - fT) + i’ﬂ) + L PIP;

® and co-products

A(N) = Nj®1+e*"0/“®Nj+i’:’Pk®M,
A(Po) = Ph®14+1® Py, A(P,-):P,—®1+exp(—P0/n)®P,-
AM) = MOl+1eM,
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770(P0ap) = &sinh pO/’i+ %ePO/Nv
K
ni(po,p) = piel/",
p2
ma(po,p) = rcoshpo/k— ePo/r.
K

corresponds to “bicrossproduct” basis of U(t) introduced in Majid-Ruegg ('94) to prove that
P.. = U(s0(3,1)) >« C(B)

e deformed boost action

2Py

[N, Pi] = "5U(§ (1 - fT) + i’ﬂ) + L PIP;
® and co-products

€jki

AN) = N@l+e /PN + —Pie M,
A(Po) = Ph®14+1® Py, A(P,-):P,—®1+exp(—P0/n)®P,-
AM) = M®RL1+1eM,

in the limit Kk — oo recover ordinary Poincaré algebra
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A new quantization ambiguity
Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”
CF(P) ¢ = m*p

C;*(P) defined by the Lorentz invariant hyperboloid on B: n4 = i
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® to define k-Hilbert space need to split M}, in positive and negative energy subspaces!
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C{*(P) defined by the Lorentz invariant hyperboloid on B: 14 = im
® On ¢ € C>°(Mp;) measure du(p) 5(Cy(p)) which we can use to define an inner product

® to define k-Hilbert space need to split M}, in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = from

781
(—0:0:)1/2
killing vector 0;. In terms of Py = i0: we have a positive energy projector

P+:§(1+|’;—g‘)
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Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”
CE(P) ¢ = m?¢
C{*(P) defined by the Lorentz invariant hyperboloid on B: 14 = im
® On ¢ € C>°(Mp;) measure du(p) 5(Cy(p)) which we can use to define an inner product
® to define k-Hilbert space need to split M}, in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = from

781
(—0:0r)1/?
killing vector 0;. In terms of Py = i0: we have a positive energy projector

+_ 1 Po_
Pr=3(1+ )
preferred choice of (local) “primitive” generators Py, P; for which Ci(P) = Pg - P,? and

AP, =P, ®1+1QP,
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Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”
CE(P) ¢ = m?¢
C{*(P) defined by the Lorentz invariant hyperboloid on B: 14 = im
® On ¢ € C>°(Mp;) measure du(p) 5(Cy(p)) which we can use to define an inner product
® to define k-Hilbert space need to split M}, in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = from

781
(—8:0:)1/2
killing vector 0;. In terms of Py = i0: we have a positive energy projector

+_ 1 Po_
Pr=3(1+ )
preferred choice of (local) “primitive” generators Py, P; for which Ci(P) = Pg - P,? and
AP, =P, ®1+1Q P,

® For U(b) there is no choice of primitive elements to decompose the Casimir! The action
of translation generators will be non-Leibniz and non-symmetric for ANY choice of basis!.
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A new quantization ambiguity
Functions on the deformed mass-shell ¢ € C>°(ME) defined by the “wave equation”
CF(P) ¢ = m*p
C{*(P) defined by the Lorentz invariant hyperboloid on B: 14 = im
® On ¢ € C>°(Mp;) measure du(p) 5(Cy(p)) which we can use to define an inner product

® to define k-Hilbert space need to split M}, in positive and negative energy subspaces!

® in ordinary QFT in Minkowski space define a complex structure J = ﬁ from
—0t0t

killing vector 0;. In terms of Py = i0: we have a positive energy projector
+_ 1 Po_
Pr=3(1+ )
preferred choice of (local) “primitive” generators Py, P; for which Ci(P) = Pg - P,? and
AP, =P, ®1+1Q P,

® For U(b) there is no choice of primitive elements to decompose the Casimir! The action
of translation generators will be non-Leibniz and non-symmetric for ANY choice of basis!.

No preferred choice of translation generators from which we can define an energy coordinate
on M? and thus no preferred choice of J and P to define one-particle Hilbert space.
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k-one-particle Hilbert space

Hilbert space construction for 8 = 1 (bicrossproduct basis), massless case

Po\\?2
Cr(P) = (2ksinh [ — — P2efo/x
L 2Kk
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k-one-particle Hilbert space

Hilbert space construction for 8 = 1 (bicrossproduct basis), massless case

K : Po 2 2 _Py/k
Ci(P) = ( 2ksinh [ — — P<e™
2K

® Hilbert space = M"* functions on deformed mass shell w,f(k) = —klog (1 F %l)
equipped with inner product

(¢1,02)x = /M;+ SUMT((I’[))) $1(p) ¢2(p)

. &3P0/ K
with du(p) = (%4 dpo dp
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k-one-particle Hilbert space

Hilbert space construction for 8 = 1 (bicrossproduct basis), massless case

K : Po 2 2 _Py/k
Cf(P) = ( 2ksinh | — = [P
2K

® Hilbert space = M"* functions on deformed mass shell w,f(k) = —klog (1 F %l)
equipped with inner product

o= [ 2 i) a(e)

. &3P0/ K
with du(p) = (%4 dpo dp

e _for “transplanckian” (|k| > ) modes (,-)x is no longer positive definite!
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k-one-particle Hilbert space

Hilbert space construction for 8 = 1 (bicrossproduct basis), massless case

K : Po 2 2 _Py/k
Ci(P) = ( 2ksinh [ — — P<e™
2K

® Hilbert space = M"* functions on deformed mass shell w,f(k) = —klog (1 F %l)
equipped with inner product

(¢1,02)x = /M;+ SUMT((I’[))) $1(p) ¢2(p)

. &3P0/ K
with du(p) = (%4 dpo dp

e _for “transplanckian” (|k| > ) modes (,-)x is no longer positive definite!

r-one-particle Hilbert space: H, functions on M**, positive energy, equipped with (-, )«
and modes truncated at k

Michele Arzano — Anatomy of a deformed symmetry: field quantization curved momentum space 12/17



Deforming Fock space 1.x: multi-particle states

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H
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In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/V2 (k1) ® |ka) + |k2) ® [k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct
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In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/v2(lk1) ® |k2) + [k2) @ [k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct

Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization

® “modulated flip" o = ]-'HU]:,ZI, Fi = exp (%Po ® Pj%) such that
J

o (k1) ®[k2)) = (1 —e1) ko) ® (1 —€2) " ki), &= ]

i
K
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Deforming Fock space 1.x: multi-particle states

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/v2(lk1) ® |k2) + [k2) @ [k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct

Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization
@ o _ —il _ 1 e}
® “modulated flip" o = FroF; ~, Fr = exp (EPO ® PJ'TPJ-) such that
_ ki
o (k1) @ o)) = (1 — 1) ko) © (1 —€2) k), = 1
e E.g. there will be two 2-particle states
kika)x = 5 [[k1) ® k) + | (1 —e1)ka) ® | (1= e2) k1))
keki)x = 75 [[k2) ® |k1) + (1 = e2)k1) ® | (1 — e1)"Tka)]
with same energy and different linear momentum
Kiz =ki ©ky = ki +(1—er)kr
Ko =k & ki = ka+(1-e)k
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Deforming Fock space 1.x: multi-particle states

In ordinary QFT the full (bosonic) Fock space is obtained from symmetrized tensor prods of H

In the k-deformed case try to proceed in an analogous way BUT...
the symmetrized state

1/v2(lk1) ® |k2) + [k2) @ [k1))
is NOT an eigenstate of P, due to the role of non-trivial coproduct

Multi-particle states of x-Fock-space are built via a “momentum dependent” symmetrization

® “modulated flip" o = ]-'HU]:,ZI, Fi = exp (%Po ® Pj%) such that
J

_ kil
€ = —
K

o (k1) ® [k2)) = |(1 — e1) ko) ® |(1 — €2) "V ka)
e E.g. there will be two 2-particle states

kiko)e = 75 [[k1) ® |ka) + (1 —e1)ka) ® | (1 — e2) " ka)]
V2
lkok1)r = =5 [[k2) @ [ ki) + | (1 — e2)k1) ® | (1 — e1)"ka)]
V2
with same energy and different linear momentum
Kiz =ki ©ky = ki +(1—er)kr
K1 =k @ ki = ka+(1—e)ks

given n-different modes one has n! different n-particle states, one for each
permutation of the n modes kj , ks ... kn
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”

® the different states can be distinguished measuring their momentum splitting e.g.
|AK12| = K12 — Ka1| = 2 [kg|ka| — ka|kq|| < 2|kq][ke]

of order |k;|?/x
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”

® the different states can be distinguished measuring their momentum splitting e.g.
|AK12| = K12 — Ka1| = 2 [kg|ka| — ka|kq|| < 2|kq][ke]
of order |k;|?/x

® the 2-mode Hilbert space becomes Hﬁ ~ SoH? ® C2, where S 7?2 is the ordinary
symmetrized 2-mode Hilbert space and our states can be written as

&1 k1ka) s

a®ll) = |kki)x

with € = e(kq) + e(ka)
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Hidden entanglement at the Planck scale

The non-trivial algebraic structure of k-translations endows the Fock space with a
“fine structure”

® the different states can be distinguished measuring their momentum splitting e.g.
|AK1| = [Ki2 — Ka1| = £ |kg[ka| — kolky || < 2[kq[ke]
of order |k;|?/x

® the 2-mode Hilbert space becomes Hﬁ ~ SoH? ® C2, where S 7?2 is the ordinary
symmetrized 2-mode Hilbert space and our states can be written as

@1 = lkika)s
@[ = |kaki)s
with € = e(kq) + e(ka)
( Planckian mode entanglement becomes possible! J

® e.g. the state superposition of two total “classical” energies e4 = e(ky,) + €(ka4) and
eg = e(kig) + e(k2p) can be entangled with the additional hidden modes e.g.

W) = 1/vV2(lea) @ | 1) + les) @ | 1))
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Planckian degrees of freedom and decoherence

® consider a quantum system evolving unitarily

p(t) = U(t)p(0)UT (1)
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® A macroscopic observer who is not able to resolve the planckian degrees of freedom at the
beginning will see the reduced system in a pure state

pobs(o) = Trp/p(O)
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® consider a quantum system evolving unitarily

p(t) = U(t)p(0)UT(t)
® start with a pure state p(0) factorized with respect to the bipartition in H! = S,H" ® C"
e If U(t) acts as an “entangling gate”, the state p(t) will be entangled

® A macroscopic observer who is not able to resolve the planckian degrees of freedom at the
beginning will see the reduced system in a pure state

pobs(o) = Trp/p(O)

® As the system evolves she will see the mixed state

poss(t) = Trpip(t) = Trpy [U(t)p(O)UT(t)] .
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® consider a quantum system evolving unitarily

p(t) = U(t)p(0)UT (1)
® start with a pure state p(0) factorized with respect to the bipartition in H! = S,H" ® C"
e If U(t) acts as an “entangling gate”, the state p(t) will be entangled

® A macroscopic observer who is not able to resolve the planckian degrees of freedom at the
beginning will see the reduced system in a pure state

pobs(o) = Trp/p(O)

® As the system evolves she will see the mixed state

poss(t) = Trpip(t) = Trpy [U(t)p(O)UT(t)} .

For the macroscopic observer, the evolution is not unitary!

A simple model which exhibits decoherence due to presence of planckian d.o.f...

a new window to phenomenological effects??
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Conclusions

Relativistic symmetries can be deformed to allow “curvature” for momentum
space

e Motivations to look at such deformations come form QG and NCFT scenarios

e Quantization of (free) field theories with group valued momenta leads to
ambiguities related to the different choices on coordinate functions on the
momentum manifold

e Physical interpretation of such ambiguities?

e At the multiparticle level the non-trivial behaviour of field modes leads to a
deformed Fock space: interesting entanglement phenomena can take place

e What role for “trans-planckian” issues in semiclassical gravity (BH evaporation,
Inflation)??
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