NONCOMMUTATIVE SUPERGRAVITY
L. CASTELLANI
U.P.O. - ALESSANDRIA

Corfu Summer Institute
 Conforearisno
$\begin{array}{ll}\text { P. ASCHIERI, L.C. JHEP OYO6:086, 2009 (hepth 0902.3817) } \\ & \text { JHEP 0906:087, 2009 (hepth 0902.3823) } \\ & \text { J.GEOM. PHYS 60:375, 2010 (0906.2774) }\end{array}$

1. InTRODUCTION
2. * FIELD THEORIES
3. TWISTED DIFF. CALCULUS
4. * Gravity
5. * GRAVITY + FERMIONS (SPIN 1/2)
6. * Supergravity ($D=3$ and $D=4$)
7. SOLUTIONS
8. INTRODUCTION

- WHY NC AT SMALL SCALES $\sqrt{\frac{\hbar G}{C^{3}}}$
- $\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}$
- known (OLD) Examples:
- Phase space of QM: $\left[x^{i}, p^{j}\right]=$ in δ if
- electrons in 2-Dim + Strong magnetic field \vec{B} $\left\{x^{\mu}, x^{\mu}\right\}=\frac{c}{e|B|} \varepsilon^{\mu \nu}$. QUANTIZATION \rightarrow NC POSITION OP.
- SNyder (1947)
- Deformation (of product due to) quantization ARISES IN THE NC STRUCTURE OF QM
- weyl quantization rule

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSICAL PHASE SPACE } \\
\text { FUNCTIONS }
\end{array} \longrightarrow \begin{array}{l}
\text { QUANTUM } \\
\text { OPERATORS }
\end{array} \\
& q^{m} p^{m} \rightarrow W\left(q^{m} p^{n}\right)=\frac{1}{2^{m}} \sum_{k=0}^{m}\binom{m}{k} \hat{p}^{m-k} \hat{q}^{m} \hat{p}^{k} \\
& \text { ex: } W\left(q p^{2}\right)=\frac{1}{4}\left(\hat{p}^{2} q+2 \hat{p} \hat{q} \hat{p}+\hat{q} \hat{p}^{2}\right)
\end{aligned}
$$

- yields hermitian operator
- CAN BE RESTATED AS W $\left.q^{m} p^{n}\right)=: e^{-\frac{i \hbar}{2} \frac{\partial^{2}}{\partial q} \partial p} q^{m} p^{n}:$
\therefore MEANS $q \rightarrow \hat{q}, p \rightarrow \hat{p}$ and \hat{q} ORDERED TO LEFT
- W is Invertible $\Rightarrow 1-1$ CORRESP. BETWEEN OP. AND Phase space functions
- moyal product

$$
A * B \equiv W^{-1}(W(A) W(B))
$$

von neumann (1931), Groenemod (1946), MOyal (1949) ...

- Explicitly

$$
\begin{aligned}
& \text { EXPLICITLY } \\
& A * B=A(q, p) e^{\frac{i \hbar}{2} \Delta} \quad B(q, p) \\
& \Delta \equiv \frac{\overleftarrow{\partial} \vec{\partial}}{\partial q}-\frac{\overleftarrow{\partial}}{\partial p} \frac{\partial}{\partial p} \frac{\leftarrow}{\partial q}
\end{aligned} \quad A \Delta B=\{A, B\}_{\text {pB }}
$$

- InHertis the properties of the op. product: associative, noncommutative

KONTSEVICH, fEDOSOV: GIVEN A POISSON STRUCTURE $\{A, B\}=g i j(x) \partial_{i} A \partial_{j} B$ ON A MANIFOLD \mathbb{N}
There is essentially one * product

$$
A \times B=A B+\frac{i \hbar}{2}\{A, B\}+O\left(\hbar^{2}\right)
$$

UP TO LINEAR REDEFINITIONS OF A, B

$$
A \rightarrow D(\hbar) A \equiv A+\hbar D_{1}(A)+\hbar^{2} D_{2}(A)+\cdots
$$

$D_{i}:$ Fun $\mathbb{M} \rightarrow$ Fund l diff op.
LC (1978) : RELATION TO OTHER QUANTIZATION RULES
NB isomorphic algebras, but inequivalent hamiltonians cf Vassilevich
2. * FIELD THEORIES

- point of VIEw: USUAL functions of \mathbb{R}^{4} WITH DEFORMED PRODUCT (MOYAL)

$$
\begin{aligned}
A(x) & * B(x) \equiv A(x) e^{\frac{i}{2} \tilde{\partial}_{\mu} \theta^{\mu \nu} \partial_{\nu}} \quad B(x) \\
& \left.=A B+\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} A \partial_{\nu} B+\frac{1}{2!}\left(\frac{1}{2}\right)^{2} \theta^{\mu \nu} \partial^{\alpha \sigma} \partial_{\mu} \partial_{\rho} A\right)\left(\partial_{\nu} \partial_{0} B\right)
\end{aligned}
$$

- In particular $\quad x^{\mu} * x^{\nu}-x^{\nu} * x^{\mu}=i g^{\mu \nu}$
- STUDY OF * DEFORMED FIELD THEORIES

$$
S=\int d^{D} x \mathcal{L}(\phi)_{*}
$$

- Cyclicity of $\int \phi * x * \cdots d^{\frac{D}{x}}$

NEXT : * GRAVITY AND SUPERGRAVITY

- FORMS $, d, \wedge, \mathcal{L}_{v} \ldots \rightarrow$ DIFF CALCULUS
- More general: Twisted diff calculus
\rightarrow DEFORM PRODUCTS OF FORMS

3. TWISTED DIFF CALCULUS

WORONOVICZ, ... WAS GROUP
i) $g * h \equiv \mu \circ F^{-1}(g \otimes h), \quad F:$ TWIST
 vector fields on smooth MANIFOLD AVG

- Example: moyal twist (a particular abfllan twist)

$$
F=\exp \left(-\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}\right)
$$

- NOTATION: $F=f^{\alpha} \otimes f_{\alpha}, F^{-1}=\bar{f}^{\alpha} \otimes \bar{f} f_{\alpha}$

THUS: $f * g=F^{\alpha}(f) F_{\alpha}(g)$

- *-exterior product \wedge_{*}

$$
\tau \wedge_{\star} \tau^{\prime} \equiv \tilde{f}^{\alpha}(\tau) \wedge \bar{f}_{\alpha}\left(\tau^{\prime}\right) \quad \bar{f}^{\alpha}(\tau) \equiv \mathcal{L}_{\bar{f}^{\alpha}} \tau
$$

Associative

- exterior derivative d

$$
\begin{aligned}
& d(f * g)=d f * g+f * d g \\
& d\left(\tau \wedge_{*} \tau^{\prime}\right)=d \tau \wedge_{\star} \tau^{\prime}+(-1)^{\log (\tau)} \tau \wedge_{*} d \tau^{\prime}
\end{aligned}
$$

USUAL (GRADED) LEIBNIZ RULE

- INTEGRATION: GRADED CYClICITY

FOR ABEUAN TWISTS:

$$
\begin{aligned}
& \int \tau \Lambda_{*} \tau^{\prime}=(-1)^{\operatorname{deg}(\tau) \operatorname{deg}\left(\tau^{\prime}\right)} \int \tau^{\prime} \Lambda_{*} \tau \\
& \text { UP TO BOY TERMS }
\end{aligned}
$$

- complex conjugation

CHOOSING REAL FIELDS IN THE DEF. OF TWIST \Rightarrow

$$
\begin{gathered}
(f * g)^{*}=g^{*} * f^{*} \\
\left(\tau \wedge \tau^{\prime}\right)^{*}=(-1)^{\operatorname{deg}(\tau) \operatorname{deg}\left(\tau^{\prime}\right)} \tau^{\prime *} \wedge * \tau^{*}
\end{gathered}
$$

4. * GRAVITY
i) CLASSICAL

$$
\begin{aligned}
& S=\int R^{a b} \wedge V^{c} \wedge V^{d} \epsilon_{a b c d}=-4 \int R \sqrt{-g} d^{4} x \\
& W / T H \quad R^{a b} \equiv d \omega^{a b}-\omega^{a c} \wedge \omega_{c}^{b}
\end{aligned}
$$

- INDeX-free :

$$
\begin{aligned}
& S=i \int \operatorname{Tr}\left(R \wedge V_{\wedge} V_{\gamma_{s}}\right) \\
& V=V^{a} \gamma_{a}, \Omega=\frac{1}{4} \omega^{a b} \gamma_{a b}, R=d \Omega-\Omega \wedge \Omega
\end{aligned}
$$

THEN $R=\frac{1}{4}\left(d \omega^{a b}-\omega^{a c} \wedge \omega_{c}^{b}\right) \gamma_{a b}=\frac{1}{4} R^{a b} \gamma a b$
AND $\quad i \int \operatorname{Tr}\left(R \wedge V_{\wedge} V_{\gamma_{s}}\right)=$

$$
\frac{i}{4} \int R^{a b} \wedge V^{c} \wedge V^{d} \underbrace{\operatorname{Tr}\left(\gamma_{a b} \gamma_{c} \gamma_{d} \gamma_{s}\right)}_{-4 i \epsilon_{a b c d}}
$$

IS THE USUAL EINSTEIN-HILBERT ACTION

- invariances :
- DIFF $\quad \mathcal{L}_{\varepsilon}=i_{\varepsilon} d+d i_{\varepsilon}$

$$
\varepsilon=\varepsilon^{\mu} \partial_{\mu}
$$

- local lorentz

$$
\begin{aligned}
& \delta_{\varepsilon} V=-V \varepsilon+\varepsilon V \\
& \delta_{\varepsilon} \Omega=d \varepsilon-\Omega \varepsilon+\varepsilon \Omega
\end{aligned} \quad \varepsilon=\frac{1}{4} \varepsilon^{a b} \gamma_{a b}
$$

- under Lorentz : $\delta_{\varepsilon} R=\varepsilon R-R \varepsilon$

THUS $\delta_{\varepsilon} S=-i \delta_{\varepsilon} \int \operatorname{Tr}\left(R_{\wedge} V_{\wedge} V_{\gamma_{5}}\right)=0$
BY CYCLICITY OF Tr AND BECAUSE $\left[\gamma_{s}, \varepsilon\right]=0$
HERMITICITY

$$
\gamma_{0} V \gamma_{0}=V^{\dagger},-\gamma_{0} \Omega \gamma_{0}=\Omega_{,}^{\dagger},-\gamma_{0} \varepsilon \gamma_{0}=\varepsilon^{\dagger}
$$

CAN BE USED TO CHECK REALITY OF ACTION

CHARGE CONJUGATION

$$
\begin{aligned}
& \text { REEF CONJUGATION } \\
& C V C=V^{T}, \quad C \Omega C=\Omega^{T}, \quad C \varepsilon C=\varepsilon^{T}
\end{aligned}
$$

ii) * GRAVITY

$$
S=-i \int \operatorname{Tr}\left(R \wedge_{*} V \wedge_{*} V \gamma_{s}\right)
$$

(CHAMSEDDINE ZOOS)
WITH:

$$
\begin{aligned}
& V=V^{a} \gamma_{a}+\tilde{V}^{a} \gamma_{a} \gamma_{5} \\
& \Omega=\frac{1}{4} \omega^{a b} \gamma_{a b}+i \omega 1+\tilde{\omega} \gamma_{s}
\end{aligned}
$$

* Invariance :
- DIFF $\alpha_{\varepsilon}=i_{\varepsilon} d+d i_{\varepsilon}$
- LOCAL SOC 1,3$) \times \cup(1) \times U(1) \quad(S L(2, \mathbb{C}) \rightarrow G L(2, \mathbb{C}))$

$$
\begin{aligned}
& \delta_{\varepsilon} V=-V * \varepsilon+\varepsilon * V, \delta_{\varepsilon} \Omega=d \varepsilon-\Omega * \varepsilon+\varepsilon * \Omega \\
& \varepsilon=\frac{1}{4} \varepsilon^{a b} \gamma_{a b}+i \varepsilon^{*} 1+\tilde{\varepsilon}^{\cdot} \gamma_{s}
\end{aligned}
$$

*-GAUGE INVARIANCE DUE TO

$$
\delta_{\varepsilon} R=-R * \varepsilon+\varepsilon * R
$$

CYCLICITY OF T_{r}, GRADED CYCLICITY OF \int \& STILL COMMUTES WITH γ_{S}

- FIELD ERS (INDEX-FRFE)

EINSTEIN: $T_{r}\left[T_{a, a 5}\left(i V \wedge_{*} R+i R \wedge_{*} V\right)\right]=0$
TORSION: $T_{r}\left[\Gamma_{a b, 1, s}\left(i T \wedge_{*} V-i V \wedge_{*} T\right)\right]=0$
WITH $T \equiv d V-\Omega \wedge_{*} V-V \wedge_{*} \Omega=T^{a} \gamma_{a}+\widetilde{T}^{a} \gamma_{a} \gamma_{s}$
SOLUTION: $T=0$

- FIELDS: $V^{a} \tilde{V}^{a}$

$$
\omega^{a b} \omega, \tilde{\omega}
$$

- HOW to get rid of ExTra fields in $\theta \rightarrow 0$ LIMe?
- ANSWER: CHARGE CONJUGATION CONDITIONS ON V, ω (Exploiting θ-DEPENDANCE) compatible with *-transf.
θ - DEPENDENT FIELDS
- MOYAL TWIST $\quad F^{-1}=e^{\frac{i}{2} \theta \overbrace{}^{p \sigma} \partial_{\rho} \theta \partial_{\sigma}} \quad \theta$ DIMENSIONFUL
- $\phi_{\theta}(x)=\phi_{0}(x)+\theta \phi_{1}(x)+\theta^{2} \phi_{2}(x)+\cdots$

$$
\varepsilon_{\theta}(x)=\varepsilon_{0}(x)+\theta \varepsilon_{1}(x)+\theta^{2} \varepsilon_{2}(x)+\cdots
$$

\rightarrow INFINITE TOWER OF X-DEPENDENT FIELDS
FINITE NUMBER AT EACH ORDER IN θ
at orth order only classical fields contribute

- Gauge transf of $\phi_{i}(x)$ deduced by expanding in of

$$
\delta_{\varepsilon} V=-V * \varepsilon+\varepsilon * V, \quad \delta_{\varepsilon} \Omega=d \varepsilon-\Omega * \varepsilon+\varepsilon * \Omega
$$

$N B: \Phi_{0}$ TRANSFORMS WITH CLASSICAL δ_{ε}^{0}

- the seiberg - witten map can be used to relate higher-order fields to the classicn fields in a way consistent with the*gauge variations

$$
\delta_{\varepsilon} \phi\left(\phi_{0}\right)=\phi\left(\delta_{\varepsilon}^{0} \phi_{0}\right)
$$

Then the x-deformed theory contains only the ϕ_{0} FIELDS

HERMITICITY AND CHARGE CONJUGATION

$$
\gamma_{0} V \gamma_{0}=V^{\dagger},-\gamma_{0} \Omega \gamma_{0}=\Omega^{\dagger},-\gamma_{0} \varepsilon \gamma_{0}=\varepsilon^{t}
$$

\rightarrow ACTION IS REAL

$$
\begin{aligned}
& C V_{\theta} C=V_{-\theta}^{T}, C \Omega_{\theta} C=\Omega_{-\theta}^{T}, C \varepsilon_{\theta} C=\varepsilon_{-\theta}^{T} \\
& \rightarrow \quad V_{\theta}^{a}=V_{-\theta}^{a}, \tilde{V}_{\theta}^{a}=-\tilde{V}_{-\theta}^{a} \\
& \quad \omega_{\theta}^{a b}=\omega_{-\theta}^{a b}, \omega_{\theta}=-\omega_{-\theta}, \tilde{\omega}_{\theta}=-\tilde{\omega}_{-\theta}
\end{aligned}
$$

\rightarrow FOR $\theta \rightarrow 0$ ONLY V_{0}^{a}, $\omega_{0}^{a b}$ SURVIVE
THE COMM. LIMIT IS THE USUAL FIRST-ORDER gravity.
6. * GRAVITY + FERMIONS (SPIN 1/2)
i) CLASSICAL

$$
\begin{aligned}
& S=i \int \operatorname{Tr}\left(R \wedge V_{\wedge} V_{\gamma_{5}}\right)-\int \operatorname{Tr}\left((D \psi) \bar{\psi} \wedge V_{\wedge} V_{\wedge} V_{\gamma_{5}}\right) \\
& \psi: D I R A C \text { SPINOR, } D \psi \equiv d \psi-\Omega \psi \\
& \operatorname{Tr}\left((D \psi) \bar{\psi} \wedge V_{\wedge} V_{\wedge} V \gamma_{5}\right)=\operatorname{Tr}((D \psi) \bar{\psi} \wedge V^{a} \wedge V^{b} \wedge V^{c} \underbrace{\epsilon_{a b c d} \gamma^{d}}_{\gamma_{a} \gamma_{b} \gamma_{c} \gamma_{5}} \\
& =\bar{\psi} \gamma^{a} D \psi \wedge V^{b} \wedge V^{c} \wedge V^{d} \epsilon_{a b c d} \\
& =\bar{\psi} D \psi \operatorname{det} V d^{4} \times
\end{aligned}
$$

- invariances
- DIFF
- Local lorentz $\delta_{\varepsilon} \psi=\varepsilon \psi \rightarrow \delta_{\varepsilon} \bar{\psi}=-\bar{\psi} \varepsilon$

$$
\begin{aligned}
\Rightarrow & \delta_{\varepsilon} D \psi=\varepsilon(D \psi) \\
& \delta_{\varepsilon}((D \psi) \bar{\psi})=\varepsilon((D \psi) \bar{\psi})-((D \psi) \bar{\psi}) \varepsilon \\
S= & i \int \operatorname{Tr}\left(R \wedge V_{\wedge} V \gamma_{S}\right)-\int \operatorname{Tr}\left((D \psi) \bar{\psi} \wedge V_{\wedge} V_{\wedge} V \gamma_{S}\right) \\
\delta_{\varepsilon} S= & 0
\end{aligned}
$$

$$
\cdot \bar{\psi} \equiv \psi^{\dagger} \gamma_{0}
$$

ii) * GRAVITY + FERMIONS

$$
S=-i \int \operatorname{Tr}\left(R \wedge_{*} V \wedge_{*} V \gamma_{s}\right)+\int \operatorname{Tr}\left((D \psi) \bar{\psi} \wedge_{*} V a_{*} V \wedge_{x} V V_{\gamma_{s}}\right)
$$

- invariant under diff and

$$
\begin{aligned}
\times \text { GAUGE SO }(1,3) \times U(1) \times U(1) \quad & (S L(2, \mathbb{C}) \rightarrow \\
& G L(2, \mathbb{C})
\end{aligned}
$$

- charge conjugate $\psi^{c} \equiv C(\bar{\psi})^{\top}$ transforms under *-gauge as ψ_{-g}
. \Rightarrow MAJORANA CONDITION

$$
\psi_{\theta}^{C}=\psi_{-\theta} \quad\left(\Rightarrow \psi_{\theta}^{\dagger} \gamma_{0}=\psi_{-\theta}^{\top} C\right)
$$

7. * supergravity
i) CLASSICAL

$$
\begin{aligned}
S= & i \int \operatorname{Tr}\left(R \wedge V_{\wedge} V_{\gamma_{s}}\right)
\end{aligned}-2 \int \pi\left[\left((D \psi) \wedge \bar{\psi}+\psi_{\wedge} D \bar{\psi}\right) \wedge V_{\gamma_{5}}\right] \quad \begin{aligned}
\operatorname{Tr}\left[(D \psi) \wedge \bar{\psi} \wedge V_{\gamma_{s}}\right] & =\bar{\psi} \gamma^{5} \wedge V_{\wedge} D \psi=\bar{\psi} \gamma^{5} \gamma_{a} D \psi \wedge \wedge V^{a} \\
& =\epsilon^{\mu \nu \rho \sigma} \bar{\psi}_{\mu} \gamma^{5} \gamma^{a} D \psi_{\rho} V_{\nu}^{a} d^{4} x
\end{aligned}
$$

RARITA - SCHWINGER (SPIN 3/2)

$$
\text { - } D \psi=d \psi-\Omega \psi
$$

- majorana condition

$$
D \bar{\psi}=d \bar{\psi}-\bar{\psi} \Omega
$$

$$
\psi^{\top} \gamma_{0}=\psi^{\top} C
$$

- torsion el : $\delta \Omega$ variation

$$
\delta S=\int T_{r}\left[\delta \Omega\left[-i(T V-V T) \gamma_{s}-2 \psi \wedge \bar{\psi} \wedge V_{\gamma_{s}}-2 \gamma_{\gamma_{s}} \wedge \wedge \wedge \bar{\psi}\right]\right.
$$

$W I T H T \equiv d V-\Omega \wedge V-V \wedge \Omega$

- SOLUTION: $T=i\left(\psi_{i} \bar{\psi}-\gamma_{s} \psi \wedge \bar{\psi} \gamma_{s}\right)=i\left[\psi_{\sim} \bar{\psi}, \gamma_{s}\right] \gamma_{s}$ REPRODUCES $D V^{c}=\frac{i}{2} \bar{\psi} \gamma^{c} \psi$
using fierz identity

$$
\begin{aligned}
\psi_{A} A \bar{\psi}_{B}=\frac{1}{4} & \left(\mathbb{1} \bar{\psi}_{B} \psi_{A}+\gamma_{S} \bar{\psi}_{B} \gamma_{S} \psi_{A}+\gamma_{S} \gamma_{A} \bar{\psi}_{B} \gamma^{5} \gamma_{0} \psi_{A}+\gamma_{a} \bar{\psi}_{B} \gamma^{a} \psi_{A}\right. \\
& \left.-\frac{1}{8} \gamma^{a b} \bar{\psi}_{B} \gamma_{a S} \psi_{A}\right)
\end{aligned}
$$

- SuPERSMMMETRY

$$
\begin{aligned}
& \delta_{\varepsilon} V=i\left(\bar{\varepsilon} \gamma^{a} \psi\right) \gamma_{a}=-i\left[\psi \bar{\varepsilon}-\varepsilon \bar{\psi}, \gamma_{s}\right] \gamma_{s} \\
& \delta_{\varepsilon} \psi=d \varepsilon-\Omega \varepsilon \\
& \delta_{\varepsilon} \bar{\psi}=d \bar{\varepsilon}+\bar{\varepsilon} \Omega \\
& \Rightarrow \delta_{\varepsilon} D \psi=-R \varepsilon \\
& \delta_{\varepsilon} D \bar{\psi}=\bar{\varepsilon} R \\
& \begin{array}{l}
\delta_{\varepsilon} S=0 \quad \\
\quad \begin{array}{l}
\text { IF } \psi, \varepsilon \text { MAJORANA SPINORS }
\end{array} \\
\quad\left(\Rightarrow \bar{\psi} \varepsilon=\bar{\varepsilon} \psi, \bar{\psi} \gamma_{s} \varepsilon=\bar{\varepsilon} \bar{\varepsilon}_{\delta} \psi \text { etc... }\right)
\end{array}
\end{aligned}
$$

ii) * SUPERGRAVITY

$$
S=i \int \operatorname{Tr}\left(R \wedge_{*} V \wedge_{*} V \gamma_{s}\right)-2 \int \operatorname{Tr}\left(\left(D \psi_{\wedge_{*}} \bar{\psi}+\psi \wedge_{*} D \psi\right) \wedge_{x} V \gamma_{s}\right)
$$

INVARIANT UNDER

- DIFF $\mathcal{L}_{\varepsilon}=i_{\varepsilon} d+d i_{\varepsilon} \quad \varepsilon=\varepsilon^{\mu} \partial_{\mu}$
- GAUGE \quad SO $(1,3) \times U(1) \times U(1) \quad \varepsilon=\frac{1}{4} \varepsilon^{a b} \gamma_{a b}+\varepsilon^{\dot{1}} 1+\tilde{\varepsilon}^{\prime} \cdot \gamma_{S}$
- SUSY $\delta_{\varepsilon} V=-i\left[\psi * \bar{\varepsilon}-\varepsilon * \bar{\psi}, \gamma_{s}\right] \gamma_{s}$

$$
\delta_{\varepsilon} \psi=d \varepsilon-\Omega * \varepsilon
$$

- broken for majorana gravitino!
- Unbroken for weyl gravitino (\rightarrow COMplex vielbein)

$$
\begin{array}{ll}
D=3, N=1 * \text { SUPERGRAVITY } & V=\frac{1}{4} \omega^{a} \gamma_{a}+i v \mathbb{1} \\
S=\int \operatorname{Tr}\left(R \wedge_{*} V\right)+i \omega \mathbb{1} \\
S T\left(D \psi a_{*} \bar{\psi}\right)
\end{array}
$$

(CACCIATORI, MARTUCCI by different method)

- invariant under
- DIFF
- LOCAL SO $(1,2) \times U(1) \approx U(1,1)$ *GAUGE
- $N=1 *$ SUPERSYMMETRY

$$
\delta_{\varepsilon} V=i(\varepsilon * \bar{\psi}-\psi * \bar{\varepsilon}), \quad \delta_{\varepsilon} \psi=d \varepsilon-\Omega * \varepsilon
$$

7. SOLUTIONS PASCHIERI,L.C. 0906.2774
T. OHL, A. SCHENKEL 0906. 2730

- solutions of classical gravity and their killing vectors
- USE A commuting subset K of these killing vectors. To define a * product (abelian twist)
- CHOOSE VIELBEIN V SUCH THAT $\quad \mathcal{L}_{K} V=0$
- THEN all * products involving l's reduce TO ORDINARY PRODUCTS!
$\Rightarrow V$ IS A SOLUTION ALSO OF x-EQ. OF MOTION

8. CONCLUSIONS

- $D=3$ *SUPERGRAVITY : * SUPERSYMMETRIC

USUAL COMM. LIMIT
$D=4$ * SUPERGRAVITY: 1) MAJORANA $\psi \rightarrow$ NO *SUSY
USUAL COMM. LIMIT
2) WEYL $\psi \rightarrow$ * SUSY CHIRAL LIMIT (COMPLEXV)

