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Motivation

study QCD phase diagram 
fully non-perturbatively:

functional renormalisation group

applicable for all temperaturescredits: GSI Darmstadt

ultimate goal: computation of physical observables from microscopic dynamics

experiment:
• thermodynamic potential, 
• pressure, 
• entropy, 
• screening masses, etc.
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Outline

taken from: Fischer, Maas, Pawlowski, Annals Phys. 324 (2009).

16

we have discussed the equivalence and consistency of the
renormalization procedure for both, DSEs and FRGs.
Moreover, the FRG provides a consistent momentum cut-
off regularization of the corresponding DSE equation via
(44) and thus allows to deduce the modified STIs for the
DSE in the presence of an ultraviolet momentum cut-off,
see [22, 60]. A crucial difference in the present truncation
is the tadpole diagram in the gluon FRG-equation that
depends on the full four-gluon vertex. This incorporates
two-loop contributions of the sunset diagram in the gluon
DSE, see Fig. 3.

VI. COMPARISON WITH LATTICE RESULTS

In the previous two sections we obtained two different
types of solutions for the ghost and gluon propagators in
the DSE and FRG approaches. It is certainly instructive
to compare these results to the ones from lattice calcu-
lations. As became apparent from a number of works in
the past years such a comparison is not unambiguous.
Ideally one strives for a situation where exactly the same
quantities are calculated in the continuum and on the lat-
tice. However, this is currently not the case for a number
of reasons. First, lattice calculations are necessarily done
in a finite volume. It is therefore mandatory to take into
account finite volume effects and zero mode contributions
absent in the infinite volume/continuum limit. Second,
one encounters finite size contributions due to the non-
vanishing lattice spacing. Third, artefacts due to the
gauge fixing procedure are different from the ones in a
continuum formulation.

Before we discuss these issues further let us com-
pare the continuum solutions with the lattice results of
refs. [41, 75] in minimal Landau gauge. In the top dia-
gram of fig. 9 we display the gluon dressing function from
different approaches. At large momenta, where pertur-
bation theory sets in, all results are in excellent agree-
ment with each other. The DSE results as well as the
FRG results in the intermediate regime show only a mild
dependence of the type of solution, i.e. scaling or de-
coupling does not really matter here, as expected. As
compared to the standard DSE results the dressing func-
tion from the functional RG approach is closer to the
lattice data. From the discussion of the last section this
was to be expected, since the FRG truncation included
effects from the gluonic two-loop diagrams neglected in
the DSE-truncation. Note that such contributions can be
either included directly or phenomenologically by modi-
fying the three-gluon interaction in the one-loop diagram
also into the DSE framework, see e.g. [76].

The infrared behavior of the propagator functions for
the gluon, D(p2) = Z(p2)/p2, of both solutions are com-
pared in the second panel of fig. 9. Clearly, the scal-
ing solution comprises an infrared vanishing propaga-
tor, whereas the decoupling solutions are infrared finite.
Changing the boundary condition G−1(0, µ2) from zero
to finite values first leads to a finite but small value for
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FIG. 9: Both type of solutions of sections IV and V compared
to lattice results in minimal Landau gauge from [41, 75].

D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

gluon dressing function

ghost dressing function
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Yang-Mills action:

Landau gauge: 

Yang-Mills Theory - Basics

Da
µν = δab∂µ + gfabcAc

µ

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν

effective action

covariant derivative:

field-strength tensor:

Γ[A, c̄, c]

Z[J, η, η̄] ≡ eW [J,η,η̄] =

�
DADc̄Dc e−S[A,c̄,c]+

�
(J·A+η̄·c−c̄·η)

Γ[A, c̄, c] = sup
J,η,η̄

��
(J ·A+ η̄ · c− c̄ · η) − W [J, η, η̄]

�

SYM =

�
d4x

�
−1

4
F a
µνF

a
µν +

1

2ξ
(∂µA

a
µ)

2 + c̄a∂µD
ab
µ cb

�

ξ → 0
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Flow Equation (for Yang-Mills Theory)

Wetterich, Phys. Lett. B301 (1993) 90-94.

∂tΓk[A, c̄, c] =
1

2
Tr

�
1

Γ(2)[A, c̄, c] +Rk
∂tRk

�
− ∂tCk
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∂tΓ[A, c̄, c] =
−

1
2

−

Flow Equation (for Yang-Mills Theory)

Wetterich, Phys. Lett. B301 (1993) 90-94.

∂tΓk[A, c̄, c] =
1

2
Tr

�
1

Γ(2)[A, c̄, c] +Rk
∂tRk

�
− ∂tCk

full propagator regulator

t = k ln k
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Yang-Mills Propagators

obtained from generating flow equation via functional derivation wrt the in-/out-going fields

∂t
−1

= +

∂t
−1

= −
−1/2 +

+−1/2
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∂t
−1

= +

∂t
−1

= −
−1/2 +

+−1/2

Yang-Mills Propagators    ( truncated )

obtained from generating flow equation via functional derivation wrt the in-/out-going fields
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Yang-Mills Propagators - Parametrisation

ghost propagator

zero temperature:

Dab
gh(p) = −G(p)

p2
δab

gluon propagator , Πµν . . . transversal 4d-projectorDab
gl,µν(p

2) = Πµν
Z(p2)

p2
δab
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Yang-Mills Propagators - Parametrisation

gluon propagator

ghost propagator

finite temperature (Matsubara formalism):

gluon propagator

ghost propagator

zero temperature:

p0 = 2πTnp , np . . . Matsubara modes

Dab
gh(p) = −G(p)

p2
δab

transversal- longitudinal-

3d projector

, Πµν . . . transversal 4d-projector

Dab
gl,µν(p

2
0, �p

2) = δabPT
µν

ZT (p20, �p
2)

p20 + �p 2 + δabPL
µν

ZL(p20, �p
2)

p20 + �p 2

Dab
gl,µν(p

2) = Πµν
Z(p2)

p2
δab
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•            limit trivially satisfied
• truncations for (1) and (2) may differ

Γ̄k,T [A, c̄, c] = Γk,T − Γk,T=0

Litim, Pawlowski, arXiv: hep-th/9901063.
Litim, Pawlowski, JHEP 11 (2006) 026.

Flow Equation for Thermal Fluctuations 

at non-vanishing temperature:       quantum and thermal fluctuations

(1) calculate quantum fluctuations at zero temperature
(2) project onto thermal fluctuations and add to (1)

idea:

thermal flow:

advantages:
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Flow Equation for Thermal Fluctuations 

technique make a guess for the finite temperature result and iterate around it:
• does not change the final result
• numerical stability in iteration procedure as one starts „closer to physics“
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Flow Equation for Thermal Fluctuations 

technique make a guess for the finite temperature result and iterate around it:
• does not change the final result
• numerical stability in iteration procedure as one starts „closer to physics“

„re-ordering“
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�

Γ(2)
k,T,trial =
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k
T
�

n

�

�p
Γ̇(2)
k,T=0



Flow Equation for Thermal Fluctuations 

technique make a guess for the finite temperature result and iterate around it:
• does not change the final result
• numerical stability in iteration procedure as one starts „closer to physics“

... 0-th iteration

„re-ordering“
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Γ(2)
k,T = Γ(2)

k,0 +
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k,0

�
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thermal contribution
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k,T,trial − Γ(2)

k,T,trial

�
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Γ(2)
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Γ(2)
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k,0

�
+
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Results
p r e l i m

 i n a r y



Electric Gluon-Propagator    (after 0th iteration)
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Electric Gluon-Propagator    (after 0th iteration)

2πT∼ 1

m2
thermal
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Magnetic Gluon-Propagator    (after 0th iteration)

L. Fister, U. Heidelberg ERG 2010, Corfu

p r e l i m i n a r y

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

spatial momentum p

T = 0
T=300 MeV



Electric Gluon-Propagator    (higher iterations)
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Electric Gluon-Propagator    (higher iterations)
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Lattice Results
No. X A. Maas: Describing gluons at zero and finite temperature 2
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Fig. 1. Top left panel: Transverse gluon propagator DT for SU(2) as a function of temperature and momentum.

Top right panel: Longitudinal gluon propagator DL for SU(2) as a function of temperature and momentum.

Bottom left panel: Longitudinal gluon propagator DL for SU(3) as a function of temperature and momentum.

Bottom right panel: Electric screening mass for SU(2) and SU(3) together with a fit of the high-temperature

domain. Volumes are between (3.5 fm)4 at zero temperature and (9.4 fm)4 at the highest temperature, with

a ranging between 0.2 and 0.16 fm. Details will be available elsewhere[10].

This also applies to gluons polarized longitudi-
nally w. r. t. the heat-bath, as they belong already
perturbatively to a BRST quartet[5]. Their propa-
gator is dominated at low momenta by an electric
screening mass[5, 7]. It emerges because the longitu-
dinally polarized gluon ceases almost completely to
interact ultra-softly, in contrast to the transversely
polarized one[8]. Therefore, it is only influenced by
interactions with hard modes, which provide a screen-
ing mass on the order of the temperature.

Both facts together imply that gluons are confined
at all temperatures. But this is not in contradiction to
a Stefan-Boltzmann-like behavior of thermodynamic
quantities, as the latter are dominated by hard inter-
actions, and the confining interactions are thermody-
namically sub-leading at large temperatures[6, 8].

However, it is not yet possible to determine the
temperature-behavior of the screening mass using
functional methods[5], but see[4]. For this purpose
here lattice gauge theory is used∗. The results, using

∗Here actually a decoupling-type gauge is employed, but the difference at presently accessible volumes and discretizations for
the gluon propagator are yet negligible[2].

A. Maas, arXiv: 0911.0348 [hep-lat].



Summary / Outlook

have seen:      first results for non-perturbative propagators     (preliminary) 

motivation:     Yang-Mills propagators at non-vanishing temperature

idea:              introduce thermal flow equation and add to zero temperature part

flow at finite temperature

zero temperature result („input“)

(purely) thermal flow

outlook:          couple to full QCD calculation 

talk J. M. Pawlowski
talk L. M. Haas
Braun, Gies, Pawlowski, Phys. Lett. B684 (2010) 262-267.
Braun, Haas, Marhauser, Pawlowski, arXiv: 0908.0008 [hep-ph].
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Dyson-Schwinger Approx. for the Ghost-Eq.

−1

+

= ∂t (DSE) = + ∂t∂t∂t

=

∂t = 0

with

= ∂t Gc =

= ∂t GA =

∂t

∂t



Vertices



∆̂Γ̇(2)
k,T = T

�

n

�
d3p

(2π)3
Γ̇(2)
k,0 −

�
d4p

(2π)4
Γ̇(2)
k,0

∆Γ̇(2)
k,T = T

�

n

�
d3p

(2π)3

�
Γ̇(2)
k,T − Γ̇(2)

k,T=0

�

Full Method

Γ(2)
k,T = Γ(2)

k,T=0 +
�
Γ(2)
Λ,T − Γ(2)

Λ,0

�

� �� �
T
Λ

→0

≈ 0

+

�
dk

k
∆̂Γ̇(2)

k,T

�
Γ(2)
k,T=0

�
+

�
dk

k
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k,T

�
Γ(2)
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