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Introduction

Black holes are objects of extremely strong gravity.

They could provide information about quantum gravity.

This information is ”hidden” behind an event horizon.

Spherical symmetric Schwarzschild black hole.

ds2 = −
(

1− GN
M

r

)
dt2 +

(
1− GN

M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

When we consider rotating black holes the centrifugal repulsion competes the
gravitational attractive force and an event horizon exists only up to a maximum
value of angular momentum.

Limitations

Curvature singularities

Information paradox
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Motivations & earlier results

Curvature singularities?

TeV scale gravity (Quantum gravity effects at LHC)

High energy scattering

Cross section
σ ∼ πr2

Sch

Earley & Giddings → closed trapped surfaces

σ ∼ πr2
Kerr

previous results

Four dimensional Schwarzschild

[A. Bonanno, M. Reuter 2000]

Four dimensional Kerr

[M. Reuter, P. E. Tuiran 2006]

Higher dimensional, spherical symmetric

[K. Falls, D. Litim, A. Raghuraman 2010]
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Classical solutions

Higher dimensional black holes can rotate in more than one independent planes
(b d−1

2
c angular momentum). For simplicity we look at the case with only one rotation.

[R. Myers, M. Perry 1986]

Myers-Perry metric (one angular momentum)

ds2 = −dt2 + GN
M

rd−5Σ
(dt − α sin2 θdφ)2 +

Σ

∆
dr2 + Σdθ2

+(r2 + α2) sin2 θdφ2 + r2 cos2 θdΩ2
d−4

with

Σ = r2 + α2 cos2 θ, ∆ = r2 + α2 − GN
M

rd−5
,

and

M =
16πMphys

(d − 2)Ωd−2
, α =

d − 2

2

J

Mphys
,
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Classical solutions

Horizons (g rr = 0 ⇒ ∆ = 0)

d = 4 → 0, 1 or 2 horizons depending on the ratio α/M (Kerr B.H.)

d = 5 → 0 or 1 horizon depending on the ratio α/M

d ≥ 6 → Always 1 horizon (Ultra-spinning black holes)

Properties

The four laws of black hole thermodynamics still hold.

Violation of uniqueness theorems. In four dimensions every stationary vacuum
black hole belongs to the Kerr-Newman family. In higher dimensions there exist
solutions with the same mass and angular momentum but with different horizon
topology.

e.g. Black ring in five dimensions.
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Classical solutions

New solutions and instabilities

There have been found recently new black hole solutions such like black branes.

It was shown that these solutions suffer from linear instabilities (G-L instabilities).

For d ≥ 6 and at the limit of very high rotation it was found that singly spinning
rotating black holes approach the black branes solution.

This led to the heuristic argument that ultra-spinning black holes are unstable.

This was recently supported numerically for various dimensions.

Interesting relation between linear and thermodynamical stability.

Temperature

T =
1

4πr+

(
2r2

+

r2
+ + α2

+ d − 5

)

minimum at α
r+

=
√

d−3
d−5
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Quantum gravity effects

As in any field theory, quantum effects turn the coupling constants into energy
dependent quantities through the renormalization process.

Newton’s constant turns into a position dependent coupling:

GN → G(r)

We assume that the leading quantum corrections of the metric are captured by
this replacement.

The main effect to be discussed is the potential weakening of gravity at high
energies (short distances).

Therefore, we are going to study the effects of the weakening GN → G(r) < GN .

We will study these effects in the context of asymptotic safety for gravity.
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Asymptotic safety

Using the exact renormalization group the higher dimensional Callan-Symanzik
equation is

[D. Litim, P. Fischer 2006]

dg(k)

d ln k
= (d − 2 + η)g(k) g(k) = kd−2Gk

Non-Gaussian fixed point when η∗ = 2− d

In the vicinity of the Planck scale we can approximate the momentum
dependence of the gravitational coupling by

1

G(k)
=

1

GN
+ ωkd−2, ω = 1/g∗

0
k

1

GHkL
GN
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Quantum gravity effects

Matching the momentum and position scales

We have the running gravitational coupling as a function of momentum and we
want to convert it into a function of position.

We have to make an identification between the momentum scale and the
coordinate variable r .

We are going to use the IR matching with k = 1/rγ

The gravitational coupling takes the form

G(r) = GN
rγ(d−2)

rγ(d−2) + ωGN

In what follows we are going to use the value γ = 1

The qualitative results remain the same for every γ > d−3
d−2

.
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Asymptotically safe black holes

We make the substitution GN → G(r) = GN
rd−2

rd−2+ωGN
and we are first interested for

the horizon structure of the quantum black holes

Horizons

The horizons are found from the relation ∆ = 0 or

r2 + α2 −MGN
r3

rd−2 + ωGN
= 0

In contrast to the classical case, quantum corrected black holes have always 0, 1,
or 2 horizons.

Now the condition for the existence of horizons is a relation between all the
parameters of our spacetime F (M, α, ω) = 0.

Dimensionless variables:

x =
r

rcl
, Ω =

ωGN

rd−2
cl

, A =
α2

r2
cl

with rcl = (GNM)
1

d−3
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The lapse function in 6 dimensions for various values of Ω.
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Four dimensions (d = 4)
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Five dimensions (d = 5)
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Six dimensions (d = 6)
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Asymptotically safe black holes

Review of black hole properties

The radius of the horizon gets smaller as the mass of the black hole approaches
MPl , until it reaches the critical radius.

The radius of the horizon gets smaller as the angular momentum grows until it
reaches the critical radius.

For every mass there is a maximum value of angular momentum for which
horizons exist.

There is a minimum mass Mcr below which there are no horizons, which
corresponds to the non-rotating limit.

Since there is a maximum value of angular momentum, ultra-spinning black holes
cease to exist.
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Asymptotically safe black holes

Temperature

The temperature is found to be

T =
κ

2π
=

∂r∆|r=r+

4π(r2
+ + α2)

=
1

4πr+

[
2r2

+

r2
+ + α2

+ (d − 5)− η(r+)

]
.

where η(r+) = r+
G ′(r+)
G(r+)

is the anomalous dimension of gravity.

Temperature is always positive and vanishes for extremal black holes.

Classically, for d ≥ 6 there are not extreme black holes and the temperature
diverges for small masses

When quantum corrections are considered there is a change of behavior and
temperature vanishes for Mcr .

Interesting applications for the thermodynamical stability of these black holes.
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The temperature in 6 dimensions
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Asymptotically safe black holes

Ultra-spinning instabilities (6 dimensions)
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Classically, temperature displays a minimum and for large angular momentum
diverges.

Depending on the value of Ω the divergence is ”softened” or it is absent.
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Asymptotically safe black holes

Area & angular velocity

Area
AH = rd−4

+ (r2
+ + α2)Ωd−2.

Angular velocity of the horizon

ΩH =
dφ

dt

∣∣∣∣
r=r+

=
α

r2
+ + α2
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Conclusions & current work

Conclusions

The horizon structure is different for d ≥ 5.

The horizon radius gets smaller when quantum corrections are ”turned on”.

Ultra-spinning black holes cease to exist.

The temperature is always smaller than the classical and it vanishes at
extremality.

The ultra-spinning instability is ”weakened”

Current work

Entropy and specific heat.

Laws of black hole thermodynamics.

Fate of classical instabilities.

Black hole production at the LHC.

Thank you for your attention!
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