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AdS⇐⇒ CFT

gravity⇐⇒ gauge theory



AdS/CFT gives a construction of quantum gravity in
AdS spacetime:

Gravity =⇒ Gauge Theory =⇒Wilson

Outline

I Introduction: Lessons, limitations, and open questions
I Parallels between the Wilson and holographic

renormalization groups



Limitations
I In its current form, the duality reports only the observations

of an external observer studying gravity in an anti-de Sitter
box:

boundary

bulk

I In the regime with Einstein gravity, the gauge theory is
strongly coupled, so we can’t calculate.

Nevertheless, important conceptual lessons have been learned.



Lessons

One has a construction of gravity in AdS space in which:

I Black hole information is preserved: Hawking radiation is
pure.

I The Bekenstein-Hawking entropy counts all the states of
the black hole.

I Lorentz invariance is preserved.
I Instantonic wormholes do not contribute to the path

integral.

Each of these contradicts assertions that have been made
about how quantum gravity must behave. The first two points
are closely related, and point to a profound modification of
spacetime: gravity is not a Wilsonian theory.



Evaporating black hole:

The number of states in canonical quantization on the blue
spatial slice is vastly larger than eSBH . If the
Bekenstein-Hawking entropy has the usual statistical
mechanical interpretation, the true Hilbert space must be much
smaller that this. (Equivalent to information paradox.)



Holographic principle

I The curvature on this slice is nowhere large, so
gravitational effective field theory should be valid, but it
gives far too many states. This implies a radical nonlocality
in quantum gravity.

I Approaches that reduce to Einstein gravity as an effective
field theory on the slice (e.g. closed string field theory, loop
quantum gravity, asymptotic safety, dynamical
triangulations) start with a Hilbert space that is much too
large; they are not holographic.

I Holographic principle (’t Hooft, Susskind): quantum gravity
in any region should be formulated in terms of a Planckian
density of degrees of freedom on its surface.



AdS/CFT gives a precise realization of holography, constructing
gravity in the bulk in terms of gauge theory on the boundary

boundary

bulk



Open questions
We would like to understand
holography also for
subvolumes in the bulk,

and for cosmological
spacetimes

initial singularity 

inflating bubbles 



Wilson vs. holography
Gravity =⇒ Gauge Theory =⇒Wilson

Idea: pull the Wilson RG back to the gravity theory, where it
becomes the holographic RG.

Wilson: integrate out high energy modes progressively.

AdS/CFT maps, ECFT to 1/z, where z is the emergent
coordinate:

ds2 = L2 dz2 + dxµdxµ

z2 .

UV, z = 0

IR,      
z = ∞

So we should separate



Holographic renormalization group
This suggests that we should integrate fields at small z first, and
progressively move the cutoff to the IR:

UV, z = 0

IR,      
z = ∞

This holographic RG idea has been widely studied.

However, much of this departs from the Wilsonian spirit, which
we will try to follow (Idse Heemskerk & JP, 1009.xxxx and work
in progress).



Outline

1. Splitting the path integral in the bulk.

2. Splitting the path integral in the field theory, and looking for
parallels.



1. Splitting the bulk path integral

UV, z = 0

IR,      
z = ∞

Consider scalar fields ϕI(z, x) in a fixed AdS background (later
we’ll discuss the metric):

Z =

∫
Dϕ e−

∫∞
0 dzL(z)

=

∫
Dϕ|z>`Dϕ̃Dϕ|z<` e−

∫∞
` dzL(z)−

∫ `
0 dzL(z)

=

∫
Dϕ̃ΨIR(`, ϕ̃)ΨUV(`, ϕ̃) .

where ϕ̃I(x) = ϕI(z, x). Here ` is a length, ∼ 1/cutoff energy.
We want to interpret each factor in this last line.



∫
Dϕ̃ΨIR(`, ϕ̃)ΨUV(`, ϕ̃)

UV, z = 0

IR,      
z = ∞

It is plausible to interpret the large-z part of the path integral in
terms of a CFT with a UV cutoff (Susskind & Witten, 1998),

ΨIR(`, ϕ̃) =

∫
DM|k`<1 exp

{
−
∫

ddx ϕ̃I(x)OI(x)

}
,

where M stands for the (N × N matrix) fields of the CFT. This is
the usual dictionary between bulk fields and single-trace
boundary interactions, OI ∼ Tr(M∂2M∂M . . .), now with a UV
cutoff.

To understand in detail what is nature of the cutoff in the CFT is
a hard question. For today, we will just postulate this, and look
at the resulting structure.



∫
Dϕ̃ΨIR(`, ϕ̃)ΨUV(`, ϕ̃)

Similarly, it is tempting to identify the UV factor with a Wilsonian
action, integrating out the fields above the cutoff scale.

IIR(`, ϕ̃) = ln ΨUV(`, ϕ̃) is not local, because of propagation of
the fields as we integrate in from the boundary, but it is localized
on the scale `. Thus it can be expanded in an infinite number of
higher derivative local terms (like the Wilsonian action).



∫
Dϕ̃ΨIR(`, ϕ̃)ΨUV(`, ϕ̃)

But what is the role of the functional integral over ϕ̃I on the
interface? It looks like some weighted average over couplings.

Example: a single scalar supposing that the UV factor is a local
gaussian

ΨUV(`, ϕ̃) = exp
{
− 1

2h

∫
ddx (ϕ̃(x)− g(x))2

}
.

Using our postulate for ΨIR and carrying out the integral over ϕ
gives

Z ∝
∫
DA|k`<1 exp

{
−
∫

ddx
(

g(x)O(x)− h
2
O(x)2

)}
.

I.e., the φ̃ integral generates double trace terms.



∫
Dϕ̃ΨIR(`, ϕ̃)ΨUV(`, ϕ̃)

The Wilsonian action is not ΨUV(`, ϕ), but an integral transform,

e−S` =

∫
Dϕ̃ exp

{
−
∫

ddx ϕ̃I(x)OI(x)

}
ΨUV(`, ϕ̃) .

This generates a multi-trace interaction, localized on scale `.

Thus the Wilsonian action necessarily contains multi-trace
terms. On the field theory side, pointed out by Li,
hep-th/0001193. On the bulk side, by Vielle 1005.4921 (also
Faulkner & Liu, unpublished).



RG equations

Varying ` gives radial Schrödinger equations

∂`ΨIR(`, ϕ̃) = H(ϕ̃, δ/δϕ̃)ΨIR(`, ϕ̃) ,

∂`ΨUV(`, ϕ̃) = −H(ϕ̃, δ/δϕ̃)ΨUV(`, ϕ̃) .

The ‘Wilsonian action’ is the integral transform of ΨUV and
satisfies

∂`e−S` = −H(δ/δO,O)e−S` .

This should be compared with the RG on the field theory side.

The path integral is independent of where the splitting is done,

0 =
d
d`

Z =
d
d`

〈
e−S`

〉
`
.



Holographic RG

The ‘holographic RG’ considered in much of the literature (e.g.
de Boer, Verlinde2 hep-th/9903190) deals only with ΨIR, (which
has only single-trace couplings)

∂`ΨIR(`, ϕ̃) = H(ϕ̃, δ/δϕ̃)ΨIR(`, ϕ̃) .

But it is not an RG, because of 2nd and higher derivatives in
the coupling ϕ̃ (vs. β(g)∂g), from the flow turning on double
trace operators.

In the classical approximation, it becomes a first order
Hamilton-Jacobi equation for IIR = ln ΨIR,

∂`IIR(`, ϕ̃) = H(ϕ̃, δIIR/δϕ̃) .

However, this is nonlinear so still not an RG equation. (Also,
RG scheme is IR-dependent, not Wilsonian).



Dynamical metric

To treat the metric we can just go to synchronous coordinates,

ds2 = L2 dz2

z2 + hµν(z, x)dxµdxν .

(Start at AdS boundary). The
metric then behaves much
like a scalar field.

UV, z = 0

IR,      
z = ∞

ΨUV is not the same as the WDW wavefunction, and does not
satisfy the constraints. The WDW wavefunction does not
behave like a Wilsonian action because it is nonlocal (the action
contains no z derivatives of gzz). Caustics?



Examples

Common flows studied in AdS/CFT:

Domain wall flow, from one CFT to another, initiated by relevant
single-trace perturbation.

Flow from alternate to standard quantization, initiated by
relevant double-trace interaction.



2. Splitting the CFT path integral: the Wilson RG

Review:

Z =

∫
DM|k<`−1

(∫
DM|k>`−1e−S

)
=

∫
DM|k<`−1 e−S` .

The Wilsonian action is localized on the scale `, so expansion
in derivatives gives an infinite number of terms.
It satisfies an RG equation,

e−S`+d` =

∫
DM|

(`+d`)−1<k<`−1 e−S`



Wilson RG
The general structure of the RG is

∂`SI =

∫
ddp ∆(p)

(
∂SI

∂M(p)

∂SI

∂M(−p)
− ∂2SI

∂M(p)∂M(−p)

)
,

where SI is the interaction, ∆ is the derivative of the propagator
with respect to cutoff. Simple graphical interpretation:

ṠI ∼ S′IS
′
I

 x

ṠI ∼ S′′I
 x



Trace structure

Li hep-th/0001193 noted that Wilson flow generates multi-trace
operators, even in the planar limit,

a) b)

x

x c)

Figure: Planar contributions to a two-point correlator.

The various terms in the Wilson RG change the number of
traces by +1, −1, or 0.



Comparing the RG’s

Recall holographic from of RG:

∂`e−S` = −H(δ/δO,O)e−S` .

d Wilson RG gives

H ∼ O δ2

δO2 +O2 δ
2

δO
+O δ

δO
.

This resembles string field theory in radial gauge (cf. Fukuma,
Ishibashi, Kawai and Ninomiya, hep-th/9312175).

The supergravity Hamiltonian is more complicated, as we’d
expect from integrating out the super-irrelevant operators.



Projection1

In comparing forms of the RG, we should note the effect of
projections.

To relate this to the usual RG of renormalizable QFT, separate
into

I ∆ ∼ d: approximately marginal - slow directions of flow
I ∆− d = O(1): irrelevant - rapidly converging directions of

flow
Integrating out the latter gives Callan-Symanzik RG. Compare
forms: ṠI = S′IS

′
I − S′′I vs. all orders.



Projection2

In AdS/CFT one has another separation
I ∆ ∼ d or ∆− d ≤ O(1): dual to massless string states
I ∆− d = O(λ1/4): dual to stringy states

In 0907.0151 (Heemskerk, Penedones, JP, Sully) it was
conjectured that this large ∆ hierarchy plus a large-N expansion
were sufficient conditions for a CFT to have a gravity dual.

The Wilson RG would keep all of these. Integrating out only the
super-irrelevant operators is dual to the supergravity limit in the
bulk.



The cutoff?

We can give a formal answer to the question, what is the cutoff
in the gauge theory that maps to the cutoff in z:

ΨIR(`, φ̃) =

∫
dφ̃′G(`, φ̃, φ̃′)ΨIR(0, φ̃′) ,

κ2∂`G(`, φ̃, φ̃′) = H(φ̃, π̃)G(`, φ̃, φ̃′) ,

G(0, φ̃, φ̃′) = δ(φ̃− φ̃′) . (1)

The point is that ΨIR(0, φ̃′) lives at the boundary and can be
translated into gauge theory variable by the standard dictionary.
In the simplest case of a free scalar in the bulk, the ‘cut-off
action’ contains general single- and double-trace operators. It is
not clear in what sense this functions as a cutoff.



Conclusions

I We have identified parallel structures between the Wilson
and holographic RG’s.

I If we can complete the correspondence we will have a
more general formulation of the holographic principle.

I This may also be useful in some of the applications of
AdS/CFT to solving strongly coupled field theories.


